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Abstract: Police narrative reports from 911 responses contain valuable signs for early behavioral
health intervention, but obtaining them manually is time-consuming and tedious. We present
RECAP, a human-Al collaboration framework that fine-tunes three large language models: Mistral-
7B, Llama-3-8B, and TinyLlama to classify BH cases in narratives and generate short, sentence-level
rationales. The models are trained on an annotated corpus using supervised instruction data and then
aligned using direct preference optimization (DPO), allowing patrol officer preferences to continually
influence system behavior without disrupting existing workflows. On a held-out test set, Mistral-
7B achieves 85.2% weighted accuracy and 84.2% F1-score, matching strong prior baselines while
improving interpretability by short, text-span-linked explanations; Llama-3-8B performs similarly,
while TinyLlama provides competitive accuracy at a lower compute cost. RECAP is designed to
reduce manual effort and identify behavioral health signs earlier in public narratives, while providing
rationales and maintaining officer control.

Keywords: behavioral health; text classification; large language model; human-in-the-loop;
explainable Al

1. Introduction

Police respond to a large number of behavioral-health (BH)-related incidents, and a significant
share of 911 calls involve BH concerns [10, 18]. Each incident results in a narrative report; however,


https://www.aimspress.com/journal/aci
http://dx.doi.org/10.3934/aci.2025019

338

extracting BH-relevant signals from these narratives is manual, time-consuming, and inconsistent in
practice. We explore whether large language models (LLMs) can reliably help officers by automating
multilabel BH classification and producing clear, human-readable rationales during report writing
without disrupting existing workflows.

We present RECAP, a human-AlI collaboration framework that integrates fine-tuned LLMs directly
into the reporting workflow. RECAP uses three backbones trained on an annotated corpus of police
narratives: Mistral-7B, Llama-3-8B, and TinyLlama to (i) assign BH categories and subcategories and
(i1) generate short, sentence-level explanations based on the narrative text. Models are trained using
supervised instruction data and then aligned using direct preference optimization (DPO), allowing
patrol officers’ preferences to refine system behavior iteratively.

Previous work shows that deep neural models (for example, hierarchical RNNs, CNNs, and
transformers such as BERT, RoBERTa, and XLNet) can detect mental-health-related signals in social
media [8, 11, 15, 20, 24], but comparable, workflow-integrated solutions for police incident narratives
remain limited. Early detection of BH cases can improve response triage, inform co-responder
deployment, and reduce paperwork burden, which frees up time for direct service and safety-critical
duties. The work is important for the classification of BH from police narratives, considering not only
mental health but also domestic, non-domestic, and substance abuse BH indicators [4]. This work
creates the “gold standard” benchmark for BH classification from police narratives and introduces a
CNN-LSTM reaching an accuracy of 86.67% [3]. Brown et al. [2] build on this work by adopting a
novel query strategy, which increases accuracy to 92%. Another study proposed a transformer-based
classifier for behavioral health analysis with an accuracy of 53% [17].

In summary, we achieved the following in this work:

¢ A novel Human-Al teaming framework [RECAP Framework] that improves police report BH
classification using large language models (LLMs), enhancing accuracy and interpretability.

e To ensure the framework is up to date, we use iterative RLHF updates to keep the models aligned
with practitioner judgment while reducing officers’ effort. [Human-in-the-loop learning]

e We demonstrated that fine-tuned LLMs (Mistral-7B, TinyLlama, and Llama-3-8B) yield
promising results: 85.2% weighted accuracy and 84.2% F1 score, for BH classification in police
reports and providing rationales for classification.

The remainder of this paper is organized as follows: Section 2 provides existing works in LLMs
and their fine-tuning. Section 3 explains the framework. Section 4 describes the experimental setup
and evaluation metrics used in this work. Section 5 shows the results and outputs of my framework.
Section 6 examines the study’s limitations and proposes potential avenues for future research.

2. Background: transformers, parameter-efficient fine-tuning, and preference alignment

2.1. Transformers and LLMs

Since the introduction of the transformer architecture, it has quickly become the dominant
architecture in numerous natural language processing tasks [22]. The impact of the transformer
architecture has been enhanced by architectures such as BERT [7] and GPT [4, 19]. However, LLMs
like GPT 3.5 and GPT 4 are costly to train and infer; with the addition of these models being
closed-source, companies and research teams developed open-source solutions that can challenge the
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performance of much larger language models. Open-source LLMs such as Mistral and Llama provide
advanced NLP capabilities to a wider community while keeping costs low and allowing task-specific
fine-tuning [1, 13,25].

2.2. Parameter-efficient fine-tuning (PEFT)

Even “small” LLMs like Mistral-7B or Llama-3-8B still hold billions of parameters, making full
fine-tuning slow and memory-intensive on consumer hardware. PEFT mitigates this by updating only
a tiny weight subset, retaining accuracy while slashing memory use [23]. A leading PEFT method,
LoRA [9], freezes the base network and adds trainable low-rank adapters to each transformer layer,
achieving near full-model performance with far fewer learnable parameters. LoRA makes it easy to
compress the model further, enabling affordable fine-tuning on commodity GPUs [6].

2.3. Reinforcement learning from human feedback (RLHF) and DPO

RLHF trains a reward model based on direct human judgments, allowing language models to be
optimized for human preference [5]. However, classical RLHF demands a distinct reward network as
well as a complex feedback loop. Stanford’s DPO avoids these costs by learning an implicit reward.
It compares the preferred and rejected answers, then updates the main model against a fixed reference
model using a binary-cross-entropy loss [21]. The updated conservative DPO (¢cDPO) reduces noisy or
contradicting annotations by providing a debiased loss optimized for imperfect preference labels [16].

3. Reinforced, explainable LLM classifier for BH analysis (RECAP)

Our framework allows us to continuously improve our LLMs by integrating data accumulation,
annotation, and deployment activities.

Figure 1 illustrates our Human-Al teaming workflow for behavioral health classification in police
systems. For each unlabeled report, the model provides two candidate predictions, which are batched
at moderate temperatures to probe the decision boundary and provide self-contained DPO preference
pairings. Figure 2 shows the candidates side by side. A single click accepts the response (green),
whereas a double-click rejects it (red). If both are refused, a manual entry box appears, and the
annotation is considered the “accepted” answer for the pair. This method lowers the need for ongoing
human oversight while still collecting high-quality feedback for DPO.

All runs use 4-bit BitsAndBytes quantization with QLoRA adapters and NEFTune (@ = 10) to
optimize instruction tuning and reduce synthetic-data overfitting [12]. We trained on 7600 SFT
examples and 1300 DPO pairs, with an 85/15 split. Additional parameters include cDPO label
smoothing, Adam optimizer, and 10 dropout.
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Figure 2. RECAP architecture. The model outputs two generations of the behavioral health
class, along with the rationale behind the classification.

4. Experimental setup and evaluation

In this section, we provide detailed information about the experimental setup, including the
description of the data, pre-processing, and the evaluation metrics employed to assess the performance
of the models.

Table 1 presents the behavioral health classes employed in this study, highlighting significant issues.
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Table 1. BH classes.

BH Class Example

Mental Health Involves an individual with a diagnosed mental disorder,
like schizophrenia or suicidal ideations.

Domestic/Social Involving multiple individuals in a home setting, like
husband/wife or parent/children domestic disputes.

Non-Domestic/Social Involving multiple individuals not in a home setting, like
committing crimes on those not related to the perpetrator.

Substance Abuse Individuals with persistent drug/alcohol abuse problems.

4.1. Data pre-processing, generation and augmentation

Our corpus contains 8900 police narrative incidents. These include 7600 instruction prompts
for supervised fine-tuning (SFT) and 1300 preference pairings for RLHF. The Gold Standard set is
maintained completely separate from training and is only used for benchmarking. We used the Mistral
model [14] to generate synthetic data from the annotated 1050 samples in a recursive manner. To avoid
repetition, each subsequent prompt incorporates the preceding generation’s results.

(1) Synthetic data: We generated 7000 instruction examples from the Gold Standard reports via the
pipeline in Figure 3.

(2) Human-AlI teaming data: An additional 600 instructions and 250 preference pairs were gathered
across successive Human-Al teaming rounds.

(3) Public narrative set: We also utilized a 1050 annotated samples that include classes and expert
rationales. In Figure 3, we replace the original “synthetic text generation” block with an informed
reasoning step, where prompts are augmented by expert annotations to strengthen the generated

rationales.
Instruction
Prompt
Generated Text Reasoning
Synthetic Text Generation ' Informed Re.?\soning Generation
) via LLM viaLLM
Synthetic Dataset
Police Narratives
(Gold Standard Dataset)
Prompt

Prompt
(Informed Reasoning)

Figure 3. Synthetic dataset generation. The first instance, the LLM is assigned a generation
task and the new sample is restricted by the bounds of the system prompt and the generation
prompt. Recursive generation is used to guarantee diversity.

(Text Generation - Narratives x N times)
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4.2. Prompt engineering workflow

A single system prompt is shared across tasks. It contains (i) a header, (i1) the BH taxonomy, and
(ii1) explicit instructions for how to tag cases with multiple classes. We have additional prompts to
guide the models through each task. These are:

(1) Classification prompt: casts the model as a high-stakes triage aide, requests a class label, and then
a one-line rationale.

(2) Informed-reasoning prompt: mirrors the classification prompt but centers on why the tag fits,
supporting synthetic-data creation and expert-label conversion.

(3) Generation prompt: runs at high temperature, edits only mutable text, preserves the original tag,
forbids out-of-scope additions, and never admits the sample is synthetic.

4.3. Evaluation

Our assessment combines conventional classification metrics with a blinded human-subject study
that probes the quality of the rationales for the models.

(1) Teaming cycles and hold-out set (Round 1): the base Mistral-7B model labels every Gold-
Standard record; two experts fix any errors. From Round 2 onward, these items are frozen as
a test set, while newly generated or corrected samples are added to the training pool. We report
accuracy, macro-F1, and weighted-F1 on the held-out set after each snapshot.

(2) Data-flow control: a lightweight CLI drives RECAP. Each narrative carries a persistent ID logged
to disk, ensuring that no example is revisited in later teaming sessions.

(3) Iterative RLHF fine-tuning: four DPO rounds are run, each adding 50 new preference pairs.
Training always resumes from the previous checkpoint; DPO uses no separate validation split.

(4) Blinded subjectivity test: two experts independently (i) assign a class after reading raw text and
(i1) judge whether a model’s rationale is plausible, even if its label differs. The protocol is applied
to Mistral-7B, Llama-3-8B, and TinyLlama, providing qualitative insight alongside the automatic
metrics.

5. Results

In this section, we will discuss the results of the LLMs in the RECAP framework and evaluate
the effectiveness of the framework on Mistral-7B after 4 rounds of teaming, BH class, and binary
classification, and a model alignment test.

5.1. Model-wise performance

Tables 2-5 show the performance of the models in different settings for BH classification and
evaluation.

Tables 3 and 4 show that our models perform strongly on BH classification from police narratives,
with Mistral-7B exceeding Llama-3 by 4 percentage points in overall binary BH classification. For
clarity, we define the positive class as non-BH cases, and the negative class as BH cases (i.e., true
positives = non-BH, true negatives = BH). DPO achieves accuracy comparable to SFT with 84% fewer
labeled samples. Both QLoRA and DPO improve accuracy and F1 over their base models.
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Table 2. TinyLlama BH classification results.

Model Accuracy Precision Recall F1-score
TinyLlama-QLoRA  68.0% 48.0% 85.0% 48.0%
TinyLlama-DPO 76.0% 51.0% 62.0% 51.0%
TinyLlama-RECAP 77.0% 53.0% 64.0% 52.0%
Table 3. Mistral BH classification results.
Model Accuracy Precision Recall F1-score
Mistral-7B-Pretrained 82.0% 72.0% 78.0% 75.0%
Mistral-7B-QLoRA 88.0% 82.0% 81.0% 82.0%
Mistral-7B-DPO 88.0% 85.0% 79.0% 82.0%
Mistral-7B-RECAP  90.0% 90.0% 79.0% 84.0%
Table 4. Llama-3-8B BH classification results.
Model Accuracy Precision Recall F1-score
Llama-3-8B-Instruct  82.0% 66.0% 96.0% 78.0%
Llama-3-8B-QLoRA  87.5% 80.0% 85.0% 82.0%
Llama-3-8B-DPO 84.0% 68.0% 97.0% 80.0%
Llama-3-8B-RECAP 86.0% 71.0% 97.0% 82.0%
Table 5. RECAP compared to other models.
Model Accuracy F1-score
CNN-LSTM [4] 86.7% 82.0%
CNN-LSTM+Query [2] 92.0% 91.1%
Mixtral-8x7B (0-shot) 80.1% 74.2%
Mistral-7B-RECAP (Ours) 90.0% 84.0%
Llama-3-8B-RECAP (Ours) 87.5% 82.0%

Precision-recall characteristics vary between backbones. Mistral-7B outperforms Llama-3 (71%)
in predicting the BH class with 90% accuracy. Mistral’s false-negative rate (1 - recall) is 21%, whereas
Llama-3’s is 3%. This suggests that Llama-3 rarely misses BH instances, but is less exact when it does.

Mistakes rarely escape the BH classification. Both models frequently switch one class for another
as depicted in Table 6. Mistral’s main weakness is the domestic-social class, where accuracy suffers.
The majority of these errors occur in narratives with no personal or family ties, such as neighbor
disagreements or store fights, implying that the model relies too heavily on relationship cues. C-Miss
(confusion miss) indicates the most common incorrect label assigned by the model to each true class,
as well as how frequently it happens (for example, “Other (4/4)” meaning all four were misclassified
as Other). Adjusted Accuracy is the accuracy after using predefined assessment rules (for example,
validator acceptability or equivalence mappings) to count operationally acceptable near-misses as

accurate.

Applied Computing and Intelligence
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Table 6. Class analysis for two models.

Mistral-7B Llama-3
Class Samples Acc. C-Miss Adj. Acc. Ace. C-Miss Adj. Acc.
Other 196 91.3% — — 91.3% — —
Domestic Social 62 62.0% — — 95.8% — 95.8%
Non-Domestic Social 4 4.0% Other (4/4) — 4.0% Other (4/4) —

Additionally, subsequent RLHF fine-tuning after SFT results in models that perform better, but
similarly to RLHF alone. This indicates that RLHF adds value to the fine-tuning process, enhancing
model performance. Overall, these results suggest that both QLoRA SFT and DPO are effective
methods for improving BH classification in police reports, with Mistral-7B showing the highest overall
performance, but to detect the highest percentage of BH cases, Llama-3-8B should be used.

5.2. Class subjective agreement analysis

The experiments were conducted on our last fine-tuning checkpoint for all models. Twenty-five
samples are generated randomly from a dataset of unseen samples, and annotators are not exposed to
the classification output until after they have selected a class.

Figure 4 shows the agreement between annotator and model for classification and explanation.

[ Both validators agree [ At least one validator agrees [l Neither validator agrees

Classifier Reasoning
100 —i ] 100— 100 —d 1 100
AV an
[AYA) 36 [AYA)
Q4 7Y oA oxe) AV 88
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£
!
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0— - 0— .
Mistral TinyLlama Llama-3 Mistral TinyLlama Llama-3

Figure 4. Agreement for the Classifier (left) and Reasoning (right) evaluations.

6. Limitations, future work, and conclusions

BH labels remain partly subjective. Even with formal definitions, experts can disagree, so the gold
standard set may understate true model skill. Second, our DPO loop is model-specific: we replace
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the backbone (for example, Mistral-7B - Llama-3-8B), the stored preference pairs still mirror the old
model’s style, leaving the newcomer at a short-term disadvantage until new feedback accrues and
prompts are retuned. The improvement could be:

e Prompt maintenance. An architecture that either (i) refreshes training data (with human

inputs) with updated system prompts or (ii) mixes legacy and new prompts to encourage more
generalizable learning.

e Full-precision models. Phase out heavy quantization to recover reasoning accuracy, accepting

higher memory and latency costs; full-precision weights also eliminate the need to de-quantize
during training, resulting in a marginal speedup of updates.

e Synthetic-data pipeline. Automate duplicate removal and decontamination, apply low-rank RLHF

to curb tag leakage, and run additional synthesis rounds to balance underrepresented behavioral
health classes.

Mistral’s accuracy is good and also excels at rationale generation, reaching 92% inter-annotator
and 96% intra-annotator agreement in our subjectivity test.
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