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Abstract:  This paper introduces a multi-agent framework for comprehensive highway scene
understanding, designed around a mixture-of-experts strategy. In this framework, a large generic
vision-language model (VLM), such as GPT-40, is contextualized with domain knowledge to generate
task-specific chain-of-thought prompts. These fine-grained prompts are then used to guide a smaller,
efficient VLM in reasoning over short videos, along with complementary modalities as applicable. This
framework simultaneously addresses multiple critical perception tasks including weather classification,
pavement wetness assessment, and traffic congestion detection, which achieve robust multi-task
reasoning while balancing accuracy and computational efficiency. To support empirical validation,
we curated three specialized datasets aligned with these tasks. Notably, the pavement wetness dataset
is multimodal, combining video streams with road weather sensor data, highlighting the benefits of
multimodal reasoning. Experimental results consistently demonstrate the strong performance across
diverse traffic and environmental conditions. From a deployment perspective, the framework can
be readily integrated with existing traffic camera systems and strategically applied to high-risk rural
locations, such as sharp curves, flood-prone lowlands, and icy bridges. By continuously monitoring the
targeted sites, the system enhances situational awareness and delivers timely alerts, even in resource-
constrained environments.
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1. Introduction

Multimodal foundation models, particularly vision-language models (VLMs), have emerged as
powerful artificial intelligence (AI) agents capable of understanding and reasoning across diverse
data modalities such as images, video, audio, and text [1-3]. These models are typically built
on transformer-based architectures that integrate information from different modalities into a shared
embedding space, enabling the generation of semantically rich, multimodal representations. A
common design is to pair a visual encoder (e.g., Vision Transformer) with a language decoder or a
unified encoder-decoder architecture pretrained on large-scale image-text or video-text datasets [4, 5].
This large-scale pretraining endows VLMs with strong generalization capabilities across a wide range
of vision-and-language tasks such as image or video captioning, visual question answering, visual
entailment, scene retrieval, among others.

Importantly, the adoption of multimodal foundation models marks a paradigm shift in infrastructure
monitoring.  Traditional systems often rely on dedicated physical sensors such as weather
stations, embedded pavement sensors, or radar, which entail significant installation, calibration, and
maintenance costs. In contrast, the multimodal models can leverage the existing video camera
infrastructure (e.g., CCTV cameras) for robust visual reasoning [6]. These models are not only capable
of assessing environmental attributes (e.g., wet pavement, snow accumulation, and visibility reduction)
but also recognizing specific hazards such as fallen debris or stalled vehicles. Interactive frameworks
like SeeUnsafe exemplify this potential by using VLMs to identify safety-critical events in large-scale
traffic video data [7].

Moreover, recent research has explored the multi-task learning paradigms that unify diverse
downstream tasks within a shared modeling framework [3]. These foundation models learn the
transferable representations that span perception, prediction, and decision-making, enabling joint
optimization and reducing the need for extensive data annotation. By leveraging shared knowledge
across tasks, they offer a holistic and efficient approach to complex transportation scenarios. However,
deploying such models in time-critical transportation systems remains challenging due to their large
model size and computational overhead. To mitigate these constraints while preserving performance,
researchers are exploring strategies such as model distillation, sparse expert routing, and task-specific
chain-of-thought (CoT) prompting, each aiming to improve inference efficiency and adaptability in
resource-constrained environments. Recent studies use a large teacher VLM or large language model
(LLM) to enhance a smaller student model, typically through knowledge distillation or synthetic data
generation [8-10]. In these approaches, the teacher’s predictions or explanations are used to train a
compact model that can later run independently at inference time. Such methods are effective when
large labeled or teacher-annotated datasets can be constructed for each target task and when training
resources are available. In contrast, our work does not train a new student model; instead, we keep a
powerful VLM in the loop to generate domain-informed CoT prompts and then reuse these prompts to
guide a smaller, off-the-shelf VLM at inference time. This design avoids task-specific training while
still capturing some of the teacher’s reasoning pattern, and it is particularly suitable for transportation
agencies that may not have the capacity to retrain models but can benefit from orchestrating existing
large and small VLMs in a multi-agent manner.

While deep learning has enabled considerable progress in traffic scene understanding, most of the
existing approaches remain limited to single-task settings. This study aims to advance multi-task
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visual understanding for comprehensive scene interpretation in the transportation domain. Specifically,
we focus on both modeling and understanding of the road weather, pavement surface, and traffic
conditions, enabling a more holistic and robust perception of real-world transportation environments.

1.1. Road weather understanding

It is critical to accurately assess weather conditions from roadside or in-vehicle perspectives
for maintaining traffic safety and ensuring operational resilience. Conventional approaches are
grounded in numerical weather prediction (NWP), which relies on data assimilation of satellite,
radar, and in situ observations [11-15]. Recent advancements incorporate deep learning for localized
weather understanding: [16,17] used convolutional neural networks (CNNs) and conditional generative
adversarial networks (CGANSs) for weather classification from road images, while Qing et al. [18]
and Schmidt et al. [19] utilized long short-term memory (LSTM) and generative adversarial network
(GAN) models for short-term forecasting of solar irradiance and cloud patterns. On the language side,
foundation models such as ClimateBERT [20] and ClimateGPT [21] have been proposed for climate-
focused text understanding.

However, these approaches either focus exclusively on visual inputs or treat weather as a standalone
forecasting problem. They often lack real-time, road-level granularity or integration with traffic scene
contexts, limiting their utility for real-time hazard detection and warning. In contrast, VLMs offer the
ability to infer weather directly from traffic videos and reason about the impact on safety conditions
(e.g., reduced visibility and road surface conditions), thus closing the gap between meteorological
modeling and transportation decision-making.

1.2. Pavement wetness assessment

Timely detection of pavement wetness is essential for highway safety and operations, as surface
water significantly reduces tire—pavement friction and increases the likelihood of hydroplaning,
particularly at high speeds. These conditions not only elevate the crash risk but also complicate traffic
management and roadway maintenance decisions. Traditional approaches rely on embedded sensors
or road weather stations, which are accurate but sparse and expensive to maintain [22]. Modern deep
learning systems have applied CNNs and segmentation networks to RGB or infrared images to classify
wet, dry, snowy, or icy surfaces [23,24]. Acoustic sensing systems, such as those proposed by [25],
utilize tire-road interaction sounds to estimate surface wetness using support vector machines and
logistic regression models.

Recent webcam-based methods leverage pretrained CNNs (e.g., ResNet18) to identify pavement
conditions from roadside imagery [22]. Thermal imaging has also been explored to detect sub-
surface anomalies and transient wetness features [23]. Hybrid approaches like road Maintenance
systems using deep learning and climate adaptation (RMSDC) [26] fuse temporal sensor data using
convolutional LSTM (ConvLSTM) for robust interpretable predictions. Despite the progress, these
methods are typically static, infrastructure-specific, and short of adaptability across domains. They
often require extensive re-labeling or fine-tuning when deployed in new regions or under different
weather conditions.
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1.3. Congestion analysis

Traffic congestion detection is another domain where deep learning methods have gradually
replaced traditional models. Hybrid CNN-LSTM architectures [27] and encoder-based deep
networks [28] have been developed to model spatio-temporal traffic dynamics from loop detectors
and speed sensors. Vision-based methods have also been applied in enabling real-time congestion
classification directly from traffic video feeds [29].

However, most of these models operate as task-specific detectors trained on specific datasets.
They lack semantic understanding and struggle with context-sensitive reasoning (e.g., distinguishing
construction-induced slowdown from other congestion scenarios). Recent reviews [30] advocate for
more explainable and generalizable frameworks. Vision-language models have shown promise in
this direction, offering semantic alignment between scene content and user-defined queries, enabling
interpretable diagnostics and causality analysis of congestion [1,7].

1.4. Contributions

In summary, this paper makes the following key contributions:

(1) Unified VLM-Based Framework for Multi-Task Highway Scene Understanding. We propose
a VLM-driven framework that moves beyond task-specific models by jointly addressing three
critical highway perception tasks (weather classification, pavement wetness assessment, and
traffic congestion detection) within a single, unified system. This design improves adaptability
and reduces the need for frequent retraining when operating across diverse conditions.

(2) Mixture-of-Agents Reasoning with Domain-Informed CoT Prompts. We introduce a mixture-of-
agents strategy in which a large, general-purpose VLM is used to generate fine-grained, domain-
informed CoT prompts tailored to each task. These prompts are then used to guide a smaller,
computationally efficient VLM to reason over short video inputs, enabling scalable and edge-
friendly multi-task inference without task-specific model redesign.

(3) Multimodal, Real-World Datasets for Comprehensive Evaluation. To support rigorous evaluation,
we curate three task-aligned datasets collected from real-world deployments. In particular,
the pavement wetness dataset integrates traffic video with road weather station data, enabling
multimodal reasoning and providing a testbed that, to our knowledge, has not been previously
explored using VLM-based approaches.

(4) Empirical Validation of Collaborative VLM Agents. Through extensive experiments, we
demonstrate that the proposed collaborative VLM framework consistently outperforms simple
prompting strategies and is particularly effective in complex and ambiguous scenarios,
highlighting the potential of VLM agents as a practical foundation for comprehensive highway
scene understanding.

2. Dataset
We collected the publicly accessible traffic video data from the states of Georgia, Virginia, and
California. Camera locations were strategically chosen to cover urban, suburban, mountain, and coastal

regions, ensuring a diverse set of highway scenes.
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2.1. Category definition

For weather classification, we focused on three primary conditions: clear including sunny and
cloudy, with no precipitation, rainy, and snowy (refer to Figure 1). For pavement wetness level
assessment, we defined seven categories aligned with corresponding weather conditions: dry, rainy
fully wet, rainy partially wet, rainy flooded, snowy fully wet, snowy partially wet, and snowy wet with
icy warning. A detailed description of each category is provided in Table 1.

Clear Rainy Snowy
o 511.VDO"!

NW NORTH 13
ECHO- SUMMIT.
ED50-EB

AL pINE -MEADOWS
PIATISNE

Figure 1. Examples from the road weather classification dataset.

Table 1. Pavement wetness level definitions and visual cues.

Category Key visual and contextual cues

Rainy fully wet Uniformly dark and glossy surface with consistent reflections.
Tire sprays are visible across lanes; vehicles often leave moderate
water trails.

Rainy partially wet Mixed appearance with wet patches and dry zones. Water sprays
are intermittent or limited to certain lanes. Some vehicles show
water trails, others do not.

Rainy flooded Standing or pooling water is clearly visible. Vehicles generate
large water splashes and long, wide spray plumes. Water trails
are thick and persistent.

Dry Light-colored, matte surface with no visible moisture or
reflections. No tire sprays or water trails; vehicle movement is
clean and uninhibited.

Snowy fully wet Entire surface is dark and wet from melted snow. Slush may
appear near curbs or median dividers. Tire water spray may be
visible. No snow patches.

Snowy partially wet Uneven surface with a mix of wet, dry, or slushy zones. Residual
snow or damp spots are visible. Minimal and inconsistent water
sprays.

Snowy wet with icy warning Surface has a faint shine or frosty gloss, suggesting potential
black ice. This is often coupled with low temperature and high
humidity conditions. Sprays are minimal or absent. Vehicles may
move slowly with extra caution.
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For congestion detection, we grouped traffic flow conditions into two categories: congested and
unobstructed (refer to Figure 2). The detailed descriptions are given in Table 2. The distribution of
video clips across weather conditions is presented in Table 3.

Congested Unobstructed

Inbound

GDOT-0036:
I-85SPast SRA00
MM86.3 Fulton ;

ﬂﬁ mi’.&ijx.?u N_at StiNal

Figure 2. Examples from the congestion analysis dataset.

Table 2. Traffic flow condition definitions and visual cues.

Category Key visual and contextual cues

Congested Lanes are visibly full or nearly full of vehicles with minimal open space.
Vehicle spacing is tight, making lane changes difficult. Motion is uneven; cars
exhibit stop—go patterns, frequent surging and braking, or shock-wave movements.
Multiple vehicles display delayed following, indicating disrupted flow.

Unobstructed Traffic flows smoothly at or near posted speeds. Vehicles are evenly spaced. Motion
is steady with little to no deceleration. The road appears open with no apparent
disruptions to traffic flow.

Table 3. Summary of the weather video dataset.

Weather condition Total videos

Clear 66
Snowy 21
Rainy 73
Total 160

In addition to the video data, we collected information from the nearest road weather stations,
resulting in a multimodal dataset. Depending on the availability of sensor readings at the time of
data collection, we distinguished between partial and full multimodal data. Partial multi-modal data
includes date/time, current weather, weather precipitation, temperature high/low and elevation. In
contrast, full multimodal data provides more detailed environmental context, including date/time,
relative humidity, wind speed/direction, air/surface temperature, visibility, dew point temperature,
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surface condition, and precipitation. For our downstream tasks, we primarily leveraged this multimodal
data for pavement wetness assessment under snowy conditions, where the cross-modal reasoning
provides the greatest benefit. A detailed summary of this dataset is shown in Table 4, and some
examples are given in Figure 3.

Table 4. Summary of the pavement wetness video dataset.

Category Total videos Multi-modal data type
Rainy partially wet 51 46 Full, 5 Partial

Rainy fully wet 73 68 Full, 5 Partial

Rainy flooded 18 Full only

Snow partially wet 5 Partial only

Snow fully wet 9 Partial only

Snow wet with icy warning 21 Partial only

Sunny dry 66 Full only

Total 243

Figure 3. Examples from the pavement wetness assessment dataset. The leftmost column:
Ist and 2nd rows—rainy partially wet; 3rd row—snowy partially wet. The middle column:
Ist and 2nd rows—rainy fully wet; 3rd row—snowy fully wet. The rightmost column: Ist
and 2nd rows—rainy flooded; 3rd row—snowy wet with icy warning.

It is important to note that for congestion analysis, rather than assigning a single label (e.g.,
congested or unobstructed) to an entire road segment within a video, we explicitly specified the traffic
direction of the segment. This distinction accounts for the possibility of direction-dependent traffic
patterns. Specifically, inbound refers to vehicles moving toward the traffic camera, while outbound
refers to those moving away from it. The resulting dataset is summarized in Table 5.

Table 5. Summary of the traffic congestion video dataset.

Congestion level Direction Total videos

Congested Inbound 10
Outbound 18

Unobstructed Inbound 20
Outbound 16

Total 64
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3. Methodology

This section introduces our proposed method, which leverages multiple agents to understand traffic
scenes including weather, pavement wetness, and congestion conditions. The process begins by
extracting sequential frames from a video input to retain temporal dynamics. An initial prompt,
incorporating relevant domain knowledge, is constructed and provided to a VLM, referred to as
Agent 1. In our experiment, we use GPT-40 [31] in this role. Agent 1 analyzes a scene based on the
initial prompt and generates a detailed CoT [4] prompt that systematically addresses multiple aspects
of the scene from the surrounding environment to vehicles. Depending on the downstream task, such
as pavement wetness assessment under snowy conditions, multimodal data can also be ingested to
enhance reasoning. Prompt tuning [5] is also applied to ensure accurate description of the scene is
aligned with human observations and domain knowledge. The refined CoT prompt is then passed
to Agent 2, which performs inference directly on video inputs and, if applicable, with associated
multi-modal data. For Agent 2, we use QWEN 2.5-VL-7B [32], an open-source 7B-scale vision—
language model that offers a trade-off between accuracy and computational cost on our target hardware
(e.g., a single high-end GPU or embedded edge platforms). QWEN 2.5-VL-7B performs CoT-guided
reasoning to generate the final output. This multi-agent framework is illustrated in Figure 4.

Chain-of-Thought Prompt

Domain Knowledge Q Agent 1 ? Scene contents
VLM ¢ Weather and atmosphere
Analyze the scene with % Roac.‘ surjface cof\dmc.m Prompt Tunin
domain knowledge to ¢® Vehicle interaction with water P 9
generate CoT prompts @ Water behavior

@ Traffic response
A\ Flood related hazards
Final inference/advice

First N sequential frames

ﬂ Q Agenf 2

Raw video

7 Tailored Final Response

Ny The scene reasonably depicts a hazardous wet condition on
lR@e o If Applicable the highway, likely due to recent or ongoing rainfall.
The reflective road surface, spray patterns from vehicles,
Multi-modal Data and cautious driving behavior all point to surface flooding.
Potential risks include: Hydroplaning, Poor visibility, Lane
drift (especially for larger vehicles). Drivers should exercise
extra caution and maintain a safe following distance.

Road Weather Stations

Figure 4. The multi-agent framework for highway scene understanding.

Although we instantiate the framework with QWEN 2.5-VL-7B as the small VLM, the overall
approach is not tied to a specific model. The only requirements for Agent 2 are (i) the ability to
accept visual inputs (sequential images or short clips) together with textual instructions and (ii) the
capability to follow CoT-style prompts. In principle, other lightweight VLMs (e.g., alternative 3—
8B multimodal models) could be substituted without modifying the multi-agent architecture; only the
prompt templates may require minor retuning. Therefore, the improvements observed for CoT-guided
reasoning over simple prompts are expected to be transferable to other small VLMs.
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3.1. CoT prompts design and generation

As introduced previously, the definitions used as part of the prompt for Agent 1 (GPT-40) integrate
human observations and transportation domain knowledge tailored to specific types of scenes. For
example, in the case of pavement wetness assessment under snowy conditions, these definitions are
combined with sequential video frames and multimodal data (e.g., temperature high/low, humidity,
wind speed/direction, dew-point temperature), and passed to Agent 1 to analyze the scene and acquire

the fine-grained CoT prompt. This process is illustrated in Figure 5.

Given several sequential images from a video captured by a
traffic camera, you are tasked to generate the Chain-of-
Thought (CoT) prompts for another vision-LLM or MLLM
agent to thoroughly analyze the scene and make the right
Jjudgement of the road pavement wetness level. Either dry,
partially wet, fully wet, or wet with icy warning. In the
meantime, you should also include the multimodal data (air
or surface temp, humidity, visibility, elevation, and etc.)
and human observations for the following cases: Snowy
partially wet: The roadside snow is colored (The roadside
snow has changed color because of the de-icing chemicals.)
Snowy fully wet: Roadside snow color changed with
headlight reflection on the road. Even water sprays behind
the vehicles and the driving speed at normal level.
Shadows of the vehicles and a lot of areas with snow

melting. Snowy wet with icy warning: Only the tire tracks
are visible on the road; the rest is covered with snow.

Incidents happen or emergency cars maybe on the scene.
Vehicle Hazard/emergency lights on. Extreme low speed.

Input images with human observations incorporated text prompt

QAgen‘r 1
VLM

Raw video

Q@ Agent 2 VLM
1hig-<] vi beg-at B¢

Road Weather Stations

Multi-modal Data

You are analyzing a traffic camera video to determine pavement wethess condition. Use both visual
evidence and the environmental data provided. Categories : Dry, Partially Wet, Fully Wet, or Wet
with Icy Warning
Think step-by-step:
1. Scene Context: Road type (highway, rural curve, summit pass)? How many lanes? Is traffic
bidirectional or divided? Are snowbanks, medians, guardrails, or snow poles visible? Is the camera
elevated, showing a wide road view?
2. Surface and Snow Clues: Is snow accumulating on roadsides, medians, or lanes? Are snow-covered
rooftops, treetops, or plowed shoulders visible? Are tire paths visible but surrounded by undisturbed
snow? Are lane markings missing, buried, or only partly visible?
3. Environmental Context:

- {sensor data from road weather stations}

- Be alert when: air or surface temp < 32°F, humidity > 85%, visibility < 1 mile, or elevation > 4000 ft.

- Even if the road appears "clear," these conditions signal high black ice risk.
4, Visual Surface Clues: Is any part of the pavement visible (asphalt, lane markings), or is it
completely buried under snow? Are vehicle headlights or taillights reflected on the road? Is the
pavement surface dark and glossy, or matte and snow-covered? Are there visible water sprays or
spray behind vehicles? If the pavement is completely covered by snow with no markings or asphalt
visible, this indicates a high risk of freezing or icy conditions and should be treated as Wet with Icy
Warning, not Dry
5. Vehicle Behavior: Are vehicles moving slowly, or following narrow clean tire paths? Are any stopped
or spaced further apart than normal? Are hazard lights on, or is there visual hesitation in movement?
Classification Hints:
* Dry: Pavement is matte and light-toned with no visible gloss, reflections, or surface moisture.
Surroundings show no active snow or wetness, and vehicles move normally without any signs of
water or caution.
Partially Wet: Some gloss or puddles, but large dry areas remain. Limited spray, with only partial
lane reflections.
Fully Wet: Pavement is dark and appears consistently glossy or damp across visible lanes. Water
sprays or spray may or may not be visible behind vehicles. Snow is visible on roadside, medians, or
environment, but pavement remains exposed. Surrounding snow suggests ongoing melt — especially
when air temp > 35°F, Road may look clear but reflect headlights or tires faintly, indicating
moisture. Precipitation might have just stopped, or snowmelt is contributing to water
accumulation.
Wet with Icy Warning: Snow along shoulders, trees, signs, or between lanes. Road appears “clear”
but no reflections or water spray. Tire paths visible, but vehicles drive slowly or cautiously. Temp
at or below freezing, often high elevation and low visibility. This includes potential black ice even
when the surface looks "safe.
Final Inference:
Based on the full video context and the provided environmental data, what is the most likely
pavement condition? Choose one: Dry, Partially Wet, Fully Wet, or Wet with Icy Warning. Briefly
Justify your decision using visual and environmental clues.

Figure 5. Example of CoT prompt generation for pavement wetness level assessment under

snowy conditions.

Following a similar process, we generated CoT prompts for different downstream tasks.

Specifically, Figures 6-8 show the generated CoT prompts by Agent 1 (GPT-40) for road weather
understanding, pavement wetness level assessment, and congestion analysis, respectively. To improve
classification accuracy for pavement wetness levels, we introduced a threshold for identifying “fully
wet” surface condition, which is defined as over 80% of vehicles per frame consistently have water
sprays, mist, or strong reflections, which helps the model better distinguish between partially wet and
fully wet.

We prioritized the “flooded” condition whenever clear visual cues are present (see Figure 7) and
explicitly instructed the model: “If uncertain between fully wet and flooded, always choose flooded
to reflect the potential real-world hazard.” This safety-oriented directive biases the model toward
conservative decision-making, helping ensure reliable detection of flooded scenes.

For congestion analysis, we designed tailored strategies to address the following challenges: (1)
For inference efficiency, all video clips have a short length of 4—7 seconds; the acute signs of traffic
congestion may not be obvious within a short video clip. (2) Each traffic camera has a different height
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and angle, which brings different visual perspectives on traffic flow. (3) During normal peak hours
(i.e., without accidents or road closures), the space headway can be short, but vehicles can still move
relatively fast. (4) VLMs show a limited ability to accurately assess traffic flow speed or other related
dynamic features, especially in such short video clips. Our proposed solution introduces a two-variable
gating logic that incorporates visual pressure and flow slow, with the initial flow impression serving as
a soft flag to provide contextual bias (e.g., “The flow appears smooth, but let me verify”). This design
reduces over-reliance on visual cues alone for congestion detection. We further define three levels
of visual pressure (strong, moderate, and weak) based on the number of visual congestion features
identified. In parallel, the flow slow variable is evaluated as a Boolean flag (true or false) depending on
evidence of flow disruption. The CoT prompt implementing this gating logic is illustrated in Figure 8.

You are analyzing a traffic camera video to determine the weather condition. Use both visual
evidence and environmental clues to classify the scene. Categories: Clear (includes sunny or cloudy
with no active precipitation), Rainy, Snowy
Think step-by-step:
1. Scene Context:
- Is the camera elevated?
- How much of the sky and surroundings are visible?
- Are buildings, roadsides, or vegetation affected by weather (e.g., snow-covered, wet
surfaces)? Does the scene show open highway, urban roads, or rural settings?
2. Sky and Atmosphere:
- What does the sky look like — bright, blue, gray, or dark?
- Are there visible clouds or signs of overcast conditions?
- Is there fog, haze, or low visibility in the background?
- Do shadows or sunlight reflections suggest clear conditions?
3.  Active Precipitation:
- Are rain streaks or snowflakes visible falling through the air?
- Are there droplets on the lens or spray kicked up by vehicles?
- Do headlights reflect off falling precipitation?
4. Ground and Surroundings:
- Is the pavement dry, wet, glossy, snowy, or slushy?
- Are rooftops, tree branches, or sidewalks covered with snow or ice?
- Is snow accumulated on medians or roadsides?
- Are there puddles, mud, or icy patches?
5.  Vehicle Behavior and Clues:
- Are headlights used during daylight, suggesting low visibility?
- Are windshield wipers visibly in motion?
- Is there spray or mist behind tires (common in rain or melting snow)?
- Are vehicles moving more cautiously, as seen in snow or fog?
Classification Hints:
+  Clear: Sky is blue, bright, or overcast without rain or snow. Pavement is dry or slightly reflective
with no mist or spray. Vehicles move normally without using headlights or wipers.
*  Rainy: Active rain visible, or visual cues like mist, tire spray, wipers, or wet pavement. Sky often
appears dark gray or hazy. No snow or ice is present.
*  Snowy: Falling snow, snow-covered surfaces, slushy or muddy pavement. Snow visible on vehicles,
signs, or roadsides. Visibility may be reduced, and vehicles behave cautiously.
Final Inference: Based on the full video context and visible environmental clues, what is the most
likely weather condition? Choose one: Clear, Rainy, or Snowy. Briefly justify your decision using
specific visual and environmental evidence. Refer to the relevant classification hints.

Figure 6. Generated CoT prompt for road weather understanding.
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You are analyzing a traffic camera video to determine the pavement wetness level. Use both visual
evidence and environmental clues to classify the scene. Categories: Dry, Partially Wet, Fully Wet, or
Flooded.

Think step-by-step:

1. Scene Context:

- What type of road is shown (e.g., freeway, arterial)?
- How many lanes are visible in each direction?
- Are there overhead signs, guardrails, medians, vegetation, or entrance ramps present?
- Is the camera angle elevated, and how much of the road and surroundings are visible?
2. Weather and Lighting Conditions:
- Does the sky appear overcast, rainy, foggy, or dim?
- Are there signs of active precipitation, such as rain streaks or visible raindrops?
- Is visibility reduced in the distance due to weather conditions?
- What time of day might it be, based on lighting and shadows?
3. Road Surface Condition:
- Is the pavement highly reflective or glossy, suggesting water accumulation?
- Are lane markings visible or partially obscured by water or glare?
- Is there visual evidence of sheeting or pooling water on the surface?
- Are there areas where standing water distorts reflections or textures?
4. Vehicle and Surface Interaction:
- Do tires disturb shallow water or create visible splashes or spray?
- Are spray trails consistent across multiple vehicles or lanes?
- Do large trucks generate heavy mist, bow waves, or long water sprays?
- Do any tires appear partially submerged?
- Is there evidence of wake-like displacement or turbulent splashes from deeper water?

5. Driver Behavior:

- Are vehicles reducing speed, increasing following distance, or changing lanes to avoid certain
areas?

- Are brake lights or hazard lights frequently activated?

- Is there any erratic driving or lane drift suggesting poor traction or caution due to road
conditions?

Classification Hints:

+ Partially Wet: Pavement shows a mix of wet and dry patches with irregular surface glossiness.
Spray is weak or limited to a few vehicles; reflections are intermittent. Lane markings remain
mostly visible.

 Fully Wet: Pavement appears uniformly glossy across all visible lanes. Water sprays, mist, or strong
reflections are observed consistently (these visual cues present over 80% of all frames). Lane
markings are partially or fully obscured. Persistent mist or splash patterns are evident across
multiple vehicles.

* Flooded (prioritize classification if any of the following are observed): Long, wide, and persistent
water sprays behind vehicles — especially if spray lingers or extends across the lane. Standing or
pooling water visibly present on lanes. Tires appear partially submerged, even briefly. Large trucks
create bow waves, heavy splashes, or wake-like movement. Reflections appear distorted or
refracted due to uneven water depth. Drivers slow down, activate hazard lights, or change lanes to
avoid water.

Final Inference: Follow this strict rule-based decision process: If any Flooded indicators are clearly

observed, classify the condition as Flooded, even if direct standing water isn't visible due to camera

angle. If there is high risk of surface flooding, classify as Flooded. Only classify as Fully Wet if water
is evenly distributed across the lanes, causing strong reflections and mist — but no flooding behavior.

Use Partially Wet only when spray and reflections are weak, surface coverage is inconsistent, and no

clear hazard is seen. If the pavement shows no signs of moisture, classify as Dry. Important: If

uncertain between Fully Wet and Flooded, always choose Flooded to reflect potential real-world
hazard.

Figure 7. Generated CoT prompt for pavement wetness level assessment under rainy
conditions.
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You are a highway traffic engineer. Your task is to analyze a short traffic camera video (3-5 seconds)
and classify the traffic in the INBOUND direction (vehicles moving toward the camera) as either:
Congested or Unobstructed.

Congestion must involve both strong visual signs of traffic pressure (tight spacing, full lanes, low
maneuverability) and observable disruption in movement. Do not classify as Congested if traffic is
moving smoothly — even if spacing is tight.

Step O: Initial Flow Impression (Not Final Decision)

Make a preliminary judgment based on first-glance impression:

- Does the traffic appear uniform, fluid, and consistent across multiple lanes?

- Is there no visible braking, hesitation, or pulsing in any direction?

- If both are true, mark " initial_flow_smooth = True®, but continue to Step 1 and 2 for confirmation.
If either is unclear, set "initial_flow_smooth = False®

Step 1: Evaluate Visual Congestion Features (Stricter)

Mark whether each of the following is clearly visible:

- Most or all lanes are filled and appear at capacity — minimal gaps, dense pattern

- Vehicle spacing is tight across multiple lanes, nearly bumper-to-bumper for > 1s

- Clusters of vehicles hold shape — packs of cars stay together without internal shifts

- No lane change attempts — vehicles appear boxed in across front/back/sides

- The road is full of vehicles all the way to the distance — no visible gaps or empty road ahead

If all 5 are true — " visual_pressure = Strong® ; If 3-4, — " visual_pressure = Moderate’ ; Fewer than
3 — "visual_pressure = False®

Step 2: Evaluate Flow Disruption

Mark whether 3 or more of the following are true:

- Vehicles clearly move under 30 mph

- Heavy traffic moving and stopping in waves

- Braking or hesitation appears across multiple lanes

- Flow compresses in wave-like pulses along lanes

If 3+ signs set * flow_slow = True'; Otherwise, set * flow_slow = False®

Step 3: Final Classification Logic

- If ‘visual_pressure = Strong®, classify as Congested

- If ‘visual_pressure = Moderate® and * flow_slow = True', classify as Congested

- Else, classify as Unobstructed

> Do not use Step O alone for final classification. It only guides your impression — verification
depends on Step 1 and 2.

Final Classification:
Choose one and justify: Congested, Unobstructed

Figure 8. Generated CoT prompt for congestion analysis.

4. Experimental results

We conducted extensive experiments to compare the performance of simple prompts (see Figure 9)
versus CoT prompts presented in the preceding section. Exemplar results are shown in Figures 10-16.
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Simple Prompt for Road Weather Classification
Given the video from the traffic camera, please make a judgement of the weather condition in the
scene, then pick one from the following categories as your answer and justify: clear, rainy, or snowy.

Simple Prompt for Pavement Wetness Assessment without Multi-modal Data

Given the video from the traffic camera, please make a judgement of the road pavement wetness
level, then pick one from the following categories as your answer and justify: dry, partially wet, fully
wet, flooded or wet with icy warning.

Simple Prompt for Pavement Wetness Assessment with Multi-modal Data

Given the video from the traffic camera and the following weather conditions: {env_summary},
please make a judgment of the road pavement wetness level. Choose one from the following mutually
exclusive categories as your answer:

- Dry

- Partially Wet

- Fully Wet

- Wet with Icy Warning

You may consider visual features such as reflections, spray, snow coverage, tire paths, and vehicle
behavior,

along with temperature, humidity, elevation, and other environmental cues when making your decision.

Simple Prompt for Congestion Level Classification

You are analyzing a traffic camera video to determine the traffic flow speed in the
{outbound/inbound} direction:

Return one of the following categories with high confidence:

- Congested

- Unobstructed

Figure 9. Simple prompts.

Results of CoT Prompt

Based on the analysis of the video:

1. Scene Context: The camera angle is elevated, showing a wide view of the highway and some
surrounding areas. There are no visible buildings, roadsides, or vegetation that show signs of
weather effects.

2. Sky and Atmosphere: The sky appears overcast and gray, indicating an overcast condition
rather than clear skies. There is no direct sunlight or bright patches, and the overall lighting
suggests diffuse light typical of overcast weather.

Raw Video 3. Active Precipitation: There are no visible rain streaks or mist. However, the presence of snow
" on the roadside and the reduced visibility suggest active precipitation.

4. 6round and Surroundings: The pavement has a layer of snow, and the roadside is covered with
snow. There is no indication of wet or slushy surfaces, and the road appears to be clear of water
or slush.

5. Vehicle Behavior and Clues: Vehicles have their headlights on, which could indicate reduced
visibility due to overcast conditions or snow. There are no visible spray trails or tire mist
suggesting rain.

6. Judgment Criteria: The sky is overcast, and the ground is covered with snow. The reduced
visibility and the presence of snow on the roadside and vegetation align with the criteria for a
snowy weather condition.

Final Inference: Based on the evidence of snow on the ground, the overcast sky, and the reduced
visibility, the weather condition affecting the scene is Snowy

P4
Results of Simple Prompt

The weather condition in the scene is snowy. The road appears to be covered with snow, and there is a visible accumulation on the sides of the highway.
The vehicles are driving cautiously, which is typical behavior when roads are slippery due to snow. The overall visibility seems reduced, which is common
during snowy conditions. Therefore, the category that best describes the weather condition in this scene is "snowy."

Figure 10. Results of road weather classification via CoT prompt.

4.1. Road weather classification

As shown in Table 6, road weather classification is relatively straightforward using either simple or
CoT prompts, as VLMs can effectively leverage the abundant visual cues present in most conditions.
For clear and snowy weather, performance differed only slightly: the model achieved over 90%
accuracy for clear conditions and perfect accuracy for snowy conditions, where the visual evidence
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of snow is highly distinctive. In contrast, the performance declined under rainy conditions, with some
rainy scenes misclassified as clear when the visual cues were insufficiently pronounced.

Table 6. Accuracy comparison between simple and CoT prompts for weather understanding
using QWEN 2.5-VL 7B model.

Weather Condition Simple Prompt (%) CoT Prompt (%)

Clear 92.42 95.45 (13.03)
Snowy 100.00 100.00 (—)
Rainy 73.24 71.23 (12.01)

4.2. Pavement wetness level classification

Prompting the model via CoT or simple prompt can result in significantly different results and
accuracies. A simple case in Figure 11 shows the prediction results under a flooded condition. The
simple prompt appears to make a judgment based on the first glance without careful attention. In
contrast, The CoT prompt instructs the model to look through several aspects, from the scene to road
surface, weather, vehicle and driver behaviors, particularly to inspect the existence of standing water.
Eventually the model tags the video as flooded with the evidence of persistent tire splash-and-spray
effects behind vehicles.

Results of CoT Prompt
Based on the analysis provided:
1. Scene Context:
. - The scene shows a multi-lane highway (I-75 N at US280 MM 100.5).
Raw Video - There are multiple lanes in both directions, with visible overhead signs, guardrails, and vegetation.
Jeoer-1173¢ 175 W at US200 w8 100 S (Crim)

- The camera angle is elevated, providing a clear view of the road and surroundings.
2. Weather and Lighting Conditions:

- The sky appears overcast, indicating possible recent or ongoing rain.

- There are visible rain streaks on the windshield, suggesting active precipitation.

- Visibility is reduced in the distance, which is typical for rainy conditions.
3. Road Surface Condition:

- The pavement is highly reflective, indicating water accumulation.

- Lane markings are partially obscured by water, creating a glossy appearance.

- There are visible water sprays behind vehicles, suggesting that water is being displaced by moving
vehicles.
4. Vehicle and Surface Interaction:

- Spray trails are consistent across multiple vehicles, indicating that water is being disturbed by the
tires.

- Large trucks are generating heavy mist, bow waves, or long water sprays, which are strong visual
evidence of surface flooding.
5. Driver Behavior:

- Vehicles are reducing speed, increasing following distance, and some are changing lanes to avoid certain

Results of Simple Prompt

areas.
Based on the video provided by the traffic - Brake lights are frequently activated, indicating cautious driving due to the wet conditions.
camera, the road pavement appears to be fully 6. Judgment Criteria:
wet. The presence of water on the road % - The presence of long, wide, and persistent water sprays behind vehicles, along with the heavy mist
surface and the reduced visibility suggest that generated by large trucks, strongly indicates surface flooding.
the road is wet due to recent rainfall or - The pavement is not uniformly glossy across all visible lanes; instead, it shows a mix of wet and dry
ongoing precipitation. patches with irregular surface glossiness.

- Lane markings are partially obscured, and there is evidence of sheeting or pooling water on the surface.

Given these observations, the final inference is: Flooded. The presence of long, wide, and persistent water
sprays behind vehicles, along with the heavy mist generated by large trucks, clearly indicates surface
flooding. This prioritizes safety and erring on the side of caution, even though standing water may not be
directly visible due to the camera angle or lighting.

Figure 11. Results of pavement wetness level classification via CoT prompt and simple
prompt under flooded condition.

Snowy partially wet condition presents a particularly challenging and ambiguous case because it
can easily be misinterpreted as fully wet or icy, even by human observers without careful inspection.
This is where the CoT approach outperforms a simple prompt. As shown in Figure 12, the model
guided by a well-crafted CoT prompt arrived at the correct assessment by systematically examining
multiple wetness indicators and ruling out conditions that did not meet the criteria.
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Raw Vldeo

Results of
Slmfle Prompt

Based on the video
provided, the road
pavement appears to be
covered with snow and ice,
which suggests that it is
likely icy. Therefore, the
most appropriate category
for the road pavement
wetness level is wet with
icy warning.

Results of CoT Prompt
Step-by-Step Analysis:
1. Scene Context:
- Type of Road: The road appears to be a highway given its width and the presence of multiple lanes.
- Number of Lcmes and Dlrecnon of Travel There are two visible lanes, both in the same direction (northbound).
ildings, Traffic Signs: Snowbanks are visible along the roadside, but no sidewalks, buildings, or traffic
sngns are clearly visible in this frame.
- Camera Position and View The camera is elevated, providing a clear view of the entire northbound lane.
2. Snow Coverage and Roadside Conditions:
- Snow Accumulation There is significant snow accumulation along the roadside, particularly on the embankments.
- Cleanliness of Snow The snow appears clean and white, without any discoloration that would suggest chemical treatment.
- Surroundings Trees and the surrounding landscape are covered in snow, indicating recent heavy snowfall.
- Current Snowfall It seems that the snowfall has recently stopped as the snow looks settled rather than actively falling.
3. Visual Conditions and Lighting:
- Vehicle Headlights/Taillights: There are no visible reflections from vehicle headlights or taillights across the pavement.
- Water Sprays: There are no consistent water sprays visible behind the vehicles, which suggests that the road is not fully wet.
- Surface Uniformity The surface does not appear uniformly glossy, indicating that the road is not fully wet.
- Lighting and Fog: The lighting is adequate, and there is no evidence of fog or snow blur affecting visibility.
4. Vehicle Behavior and Surface Interaction:
- Vehicle Speed: Vehicles are traveling at a normal speed, as indicated by their position and spacing.
- Water Sprays: There are no persistent water sprays behind the vehicles, which further suggests that the road is not fully wet.
- Tire Tracks: Tire tracks are visible, but they do not cover the entire lane, indicating that the road is not icy.
- Hazard Lights/Other Activity: There are no emergency vehicles, hazard lights, or skidding visible in the image.
5. Classification Criteria:
- Snowy Partially Wet Indicators: The pavement shows some dry patches, and there are no consistent water sprays or reflections
across the lanes.
- Snowy Fully Wet Indicators: The pavement does not appear uniformly dark and glossy, and there are no reflections from vehicle
lights across multiple lanes.
- Snowy Icy Indicators: The road is not covered in ice, and there are visible tire tracks, ruling out an icy condition.
Final Inference:
The most likely pavement condition is Partially Wet. This conclusion is based on the following observations:
- The road shows some dry patches and inconsistent surface tone.
- There are no reflections or water sprays across the lanes.

- The snow appears clean and settled, and the road is not uniformly glossy.
- Vehicle movement is normal, and there are no signs of hazardous conditions like ice or skidding.
Therefore, the pavement condition is best classified as Partially Wet.

Figure 12. Results of pavement wetness level classification via CoT prompt and simple
prompt under snowy partially wet condition.

4.3. Congestion level classification

Figure 13 illustrates that even when the initial flow appears smooth, the model can still identify
congestion by leveraging the values of visual pressure and flow slow. This two-variable gating logic,
combined with an initial soft flag, significantly enhances accuracy by striking a balance between the
VLM model’s strengths, such as identifying visual congestion features, and its limitations, particularly
in estimating traffic flow speed. In contrast, the simple prompt relies on the initial impression of traffic
flow without further verification, leading to an incorrect judgment.

Results of CoT Prompt

Step 0: Initial Flow Impression

- The traffic appears uniform, fluid, and consistent across multiple lanes.
- There is no visible braking, hesnanon or pulsing in any direction.

** Yinitial_flow_smooth = True'*

Raw Video

Step 1: Evaluate Visual Congestion Features
- Most or all lanes are filled and appear at capacity.
- Vehicle spacing is tight across multiple lanes, nearly bumper-to-bumper for >1s.
- Clusters of vehicles hold shape.
- No lane change attempts.
- No open road ahead.
* " visual_pressure = "Strong"* **

Step 2: Evaluate Flow Disruption
- Vehicles clearly move under 30 mph.
- Cars surge and pause in waves.
- Braking or hesitation appears across multiple lanes.
- Flow compresses in wave-like pulses along lanes.
** flow_slow = True'**

Step 3: Final Classification Logic

- visual_pressure = Strong’ .

- flow_slow = True'.

Based on the combined logic, the traffic in the INBOUND direction is classified as Congested.
Results of Simple Prompt ’ I
Based on the video provided, the traffic appears to be Final Classification: " X X o . .
flowing smoothly without any visible congestion or Eg Congested: The traffic exhibits strong visual signs of congestion with tight vehicle spacing,
obstructions. The vehicles are maintaining a consistent clusters holding shape, and no lane changes. Additionally, the flow is disrupted with vehicles
distance from each other and there is no sign of heavy moving under 30 mph, surging and pausing in waves, and compressing in wave-like pulses, meeting
traffic buildup. the criteria for a congested condition.

Category: Unobstructed
Figure 13. Results of congestion level classification via CoT prompt and simple prompt
under congested condition.
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Table 7 presents improved performance for different directions and cases after implementing our
carefully designed CoT prompt.

Table 7. Accuracy comparison between simple and CoT prompts for congestion analysis
using QWEN 2.5-VL 7B model.

Congestion level Direction Simple prompt (%) CoT prompt (%)

Congested Inbound  40.00 100.00 (1760.00)
Outbound 72.22 100.00 (127.78)

Unobstructed Inbound  60.00 80.00 (720.00)
Outbound 81.25 100.00 (718.75)

4.4. Multimodal reasoning

We utilized the multimodal pavement condition dataset to highlight the benefits of multimodal
reasoning. As shown in Figures 14 and 15, while the model can perform basic scene analysis based
on snow coverage and other apparent visual cues, the inclusion of additional modalities substantially
improves its ability to generate more comprehensive and accurate assessments. By incorporating data
such as temperature, dew point, and humidity, the model is able to successfully identify icy conditions,
a capability particularly valuable for transportation safety applications.

Results of CoT Prompt with Video Alone

Step-by-Step Analysis:

1. Scene Context:

- Type of Road: The image shows a multi-lane highway.

- Number of Lanes: There are at least three visible lanes, with two lanes in each direction.

- Direction of Travel: Vehicles are traveling in both directions.

- Roadside Conditions: Snowbanks are visible along the sides of the road, and there are no clear sidewalks, buildings, or traffic
signs in the frame.

2. Snow Coverage and Roadside Conditions:

- Snow Accumulation: There is a significant amount of snow covering the roadside and median.

- Cleanliness of Snow: The snow appears relatively clean and white, without signs of chemical treatment or significant melting.
- Surroundings: Rooftops and trees in the background are also covered in snow, indicating recent snowfall.

- Current Snowfall: It does not appear that snowfall is currently active, as the snow looks undisturbed and settled.

3. Visual Conditions and Lighting:

- Vehicle Headlights/Taillights: There are no visible reflections of headlights or taillights across the pavement.

- Water Sprays: There are no distinct water sprays visible behind the vehicles.

- Pavement Surface & Lighting Conditions : The pavement appears predominantly white/snow-covered, with no uniform glossy film
or dark wet patches visible. The lighting seems adequate, allowing for clear visibility of the road conditions.

4. Vehicle Behavior and Surface Interaction:

- Vehicle Speeds & Tire Tracks & Hazard Lights : Vehicles appear to be traveling at a normal speed for snowy conditions, which
suggests that the road is not fully icy. Tire tracks are visible, but they are primarily indentations in the snow/ice layer, indicating
that the road is not uniformly wet. Hazard Lights: There are no visible hazard lights activated by vehicles.

- Overall Movement: Vehicle movement is not excessively cautious or slow, which further supports the idea that the road is not
fully icy.

5. Classification Criteria:

- Snowy Partially Wet Indicators: There are no clear visual evidence of wet patches or glossy surfaces across the entire road.
The presence of tire tracks and the lack of water sprays suggest that the road is not fully wet.

- Snowy Fully Wet Indicators: The road does not exhibit a uniform dark and glossy appearance, nor are there consistent water
sprays behind vehicles.

- Snowy Icy Indicators: The road is predominantly snow-covered, with minimal bare pavement visible. However, the tire tracks
are primarily indentations in the snow/ice layer, and there is no significant evidence of liquid water or widespread gloss.

Final Inference:

The most likely pavement condition is Partially Wet. This is because while there is snow coverage, the road does not exhibit the
characteristics of a fully wet or icy surface. The presence of tire tracks and the lack of water sprays indicate that the road is
not uniformly wet, and the overall appearance suggests a mix of snow and some areas where the road is partially exposed.
Therefore, the road is best classified as Partially Wet.

Raw Video

Figure 14. Pavement wetness level classification via CoT prompt without multimodal data
under snowy fully wet condition.
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Results of CoT Prompt with Multimodal Data

Final Inference:
The most likely pavement condition is Wet with Icy Warning.
Justification:
1. Scene Context:
- The road appears fo be a highway with multiple lanes, and the camera provides a wide view.
- There are snowbanks visible on the sides of the road, indicating recent snowfall or ongoing
snow accumulation.
- The guardrails and medians are visible, suggesting a maintained roadway.
2. Surface and Snow Clues:
- The road surface is partially covered with snow, but some areas appear darker, possibly
indicating wet patches.
- Tire tracks are visible, but they are not uniform across the entire lane, suggesting that the
road is not fully covered in snow.
- There are no visible lane markings, which could indicate that the snow has obscured them.
3. Environmental Context:
- The air temperature is 29°F, which is below freezing.
- The dew point is also 29°F, and the humidity is 100%, indicating very high moisture levels.
- The wind speed is O mph, and the visibility is not specified but can be assumed to be good
given the clarity of the camera footage.

Raw Video

Road Weather Data - The timestamp suggests the video was taken during daylight hours, which might affect the
perception of wetness due to sunlight.

"station": "I-81 @ US-11 (Exit 213)", 4. Visual Surface Clues:
"air_temperature(°F)": "29", - The road surface shows some areas that are darker and appear to have a glossy sheen, which
"relative_humidity(%)": "100", could indicate wetness. There are no visible water sprays or spray behind vehicles, but the
"wind_speed(mph)": "0", presence of tire tracks suggests that the road is not completely dry.
"wind_direction": "48", - The lack of clear lane markings and the presence of snowbanks suggest that the road may be
"dewpoint_temperature(°F)": "29", transitioning from dry to wet conditions.
"surface_temperature(°F)": "30", 5. Vehicle Behavior: ) )
“timestamp": "2025-02-11T14:45:00Z" - Vehicles are moving at a moderate speed, and their headlights do not reflect off the road

surface, indicating that the road is not fully wet.

- There are no visible hazard lights on, and the vehicles are maintaining a consistent distance,
suggesting cautious driving rather than extreme caution.
Given the combination of the snow-covered road, the low temperatures, and the presence of tire
tracks, the road is likely to be wet with a high risk of icy conditions. Therefore, the most
appropriate classification is Wet with Icy Warning.

Figure 15. Pavement wetness level classification via CoT prompt with multimodal data
under snowy fully wet condition.

We also evaluated the performance of multimodal reasoning on additional icy scenarios using the
simple prompt. Surprisingly, even when the model could accurately infer conditions using only video
data, the simple prompt sometimes produced incorrect results (see Figure 16). This suggests that
while simple prompts may suffice in cases with strong and unambiguous visual cues, they fail when
handling multimodal inputs, particularly when visual information is incomplete or ambiguous. Our
results indicate that CoT prompting is essential for robust performance with multimodal data (as
shown in Table 8); otherwise, the model may struggle when processing environmental parameters
without sufficient visual context. For instance, the model misclassified “snowy fully wet” scenes as
“partially wet,” and similar mistakes were observed for rainy conditions. These errors may stem from
the model’s over-reliance on explicit visual cues (e.g., reflections, water spray, and road gloss) that
are often subtle, inconsistent, or missing due to environmental and data limitations. In snowy scenes,
slush and snow accumulation can obscure pavement texture, leading to misclassification of fully wet
surfaces. Likewise, icy conditions can visually resemble fully wet roads, increasing the likelihood of
false positives. In rainy scenarios, diminished sprays or weak headlight reflections may also cause false
negatives. These findings highlight the challenges of relying solely on visual cues and underscore the
importance of complementary modalities and thought-provoking prompt design for robust multimodal
reasoning.

These challenges are further exacerbated by two key factors: (1) the short duration of the video clips,
ranging from only 4 to 7 seconds, which limits the availability of temporal cues such as sustained water
trails or subtle vehicle motion dynamics, and (2) the varying video resolution, with many clips being of
lowresolution, hinders the model’s ability to detect fine-grained visual features essential for accurately
reasoning about pavement surface conditions.
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Results of Simple Prompt with Multimodal Data

Based on the provided weather conditions and the visual features observed in the traffic camera

image:
Raw Video - Air Temperature: 26°F (below freezing)
i - Dew Point: 24°F (close to the freezing point)
ALPINE-WEADOMS) i ‘ - Humidity: 92% (high moisture content)
R o AR O ; g

- Visibility: 0.7 miles (poor visibility due to snow)

snowfall or ongoing snowfall.
- Tire Paths: Not clearly visible due to the snow cover.

conditions.

- Wind Speed: Not specified, but likely low given the snow coverage and visibility.

- Snow Coverage: The road appears to have a layer of snow covering it, which suggests recent

- Vehicle Behavior: Vehicles appear to be driving cautiously, which could indicate slippery

Considering these factors, especially the air temperature being below freezing and the presence
of snow, the road pavement is most likely covered with a layer of snow that has not fully melted.

This suggests that the road is partially wet due to the melting snow, but not fully wet enough to
be considered icy. Therefore, the most appropriate category for the road pavement wetness level

Road Weather Data BRI

"air_temperature(°F)": "26", 2'2
"relative_humidity(%)": "92",
"wind_speed(mph)": “None",
“visibility": “0.7 mils",
"dewpoint_temperature(°F)": "24",

Results of Simple Prompt without Multimodal Data

"timestamp": "2025-02-14,08:16:00 PST" Based on the video provided, the road pavement appears to be covered in snow and there is no
visible standing water or flooding. The vehicles are driving cautiously, which might suggest that
the road surface could be slippery due to the snow. However, without more specific information
about the conditions such as ice warnings or the presence of slush, it's difficult to definitively

categorize the wetness level.

Given the options provided, the most appropriate category would be "wet with icy warning" This
suggests that while the road is not fully wet, the presence of snow and the cautious driving

behavior indicate potential icy conditions.

Figure 16. Comparison of pavement wetness level classification via simple prompt

with/without multi-modal data under snowy wet with icy warning condition.

Table 8. Accuracy comparison between simple and CoT prompts across input modalities
(Video alone versus multimodal data) using Agent 2 (QWEN 2.5-VL-7B model).

Input Type Condition Simple prompt (%) CoT prompt (%)

Video alone Rainy partially wet 37.25 58.82 (121.57)
Rainy fully wet 23.29 57.33 (134.04)
Rainy flooded 0.00 57.89 (157.89)
Snowy partially wet 20.00 100.00 (780.00)
Snowy fully wet 55.56 0.00 (/55.56)
Snowy wet with icy warning 76.19 14.29 (161.90)
Sunny dry 83.33 95.45 (112.12)

Multimodal (Video and Sensor Data) Snowy fully wet 10.00 100.00 (790.00)
Snowy wet with icy warning 14.29 100.00 (185.71)

5. Conclusions and future work

In this work, we proposed a general multi-agent framework for comprehensive highway scene
understanding. The framework leverages a large VLM to generate CoT prompts enriched with domain
knowledge, which are then used to guide a smaller, efficient VLM in reasoning over video inputs, with
complementary modalities as applicable. This design enables robust performance across multiple core
perception tasks including weather classification, pavement wetness assessment, and traffic congestion

detection.

To evaluate the effectiveness of the proposed framework, we curated three datasets.

For the

pavement wetness assessment task in particular, we constructed a multimodal dataset to demonstrate
the benefits of multimodal reasoning. By leveraging carefully designed CoT prompts, the framework

Applied Computing and Intelligence Volume 5, Issue 2, 315-336.



333

achieves significantly improved reasoning performance and substantial gains in overall accuracy. This
zero-shot, multi-agent approach leverages domain knowledge through a large VLM and unlocks the
potential of small VLMs, offering a scalable and cost-effective solution for diverse transportation
applications. Our framework can be readily integrated with the abundant network of existing traffic
cameras, enabling large-scale deployment. In rural areas, where traditional sensor coverage is sparse,
our method supports strategic monitoring by focusing on high-risk locations such as sharp curves,
flood-prone lowlands, or icy bridges. By continuously analyzing scene conditions at these targeted
sites, the system enhances situational awareness and provides timely alerts even in disconnected
environments. Additionally, the ability to automatically detect congestion and road hazards allows
transportation agencies to efficiently screen regional or statewide traffic camera feeds and quickly
identify problem areas without intensive manual review.

Nonetheless, there remains a substantial room for improvement. Another direction is to distill or
design a more compact VLM tailored to the target tasks. Such a lightweight model would be well-
suited for edge deployment, facilitating the integration of advanced Al capabilities into existing traffic
camera networks and enabling scalable and real-time intelligent scene understanding.

Despite these promising results, we acknowledge this study has several limitations. First, the
datasets used here are relatively small, especially for congestion analysis, and cover a limited set
of geographical regions and camera configurations. Second, the video clips are short (4—7 seconds)
and most are lowresolution, which restricts the temporal cues and fine-grained visual details available
to the VLMs. This constraint is representative of current practice in many deployments but may
underestimate the potential of the proposed framework under higher-quality data. Third, we instantiate
the small VLM (QWEN 2.5-VL-7B) and focus on accuracy as the primary metric in a fixed-split
evaluation. A broader comparison across alternative lightweight VLMs, richer metric design, and
more extensive statistical analyses is needed for assessing its reliability in real-world settings.

Future work can therefore focus on several directions. On the data side, we plan to expand
the datasets to include additional states, roadway types, and seasonal patterns, as well as longer
video segments that capture incident evolution and recovery. This will enable more comprehensive
training and evaluation, including cross-location generalization and domain adaptation studies. On
the modeling side, another avenue is to distill or design more compact VLMs tailored to highway
scene understanding with explicit safety-aware objectives so that real-time inference can be reliably
supported on edge devices. It will also be valuable to benchmark the proposed framework against
a wider range of task-specific baselines and alternative small VLMs and to investigate streaming
or event-triggered processing strategies for continuous camera feeds. Finally, future deployment-
oriented work should consider formal risk analysis, human-in-the-loop monitoring, and integration
with existing traffic management workflows to better understand how multi-agent VLM reasoning can
support human-Al collaborative operational decision-making at scale.
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