
https://www.aimspress.com/journal/aci

Applied Computing and Intelligence
5(2): 315–336.
DOI: 10.3934/aci.2025018
Received: 20 October 2025
Revised: 14 December 2025
Accepted: 15 December 2025
Published: 24 December 2025

Research article

Multi-agent visual-language reasoning for comprehensive highway scene
understanding

Yunxiang Yang, Ningning Xu and Jidong J. Yang∗

Smart Mobility and Infrastructure Lab, College of Engineering, University of Georgia, Athens,
GA 30602, USA

* Correspondence: Email: Jidong.Yang@uga.edu.

Academic Editor: Pasi Franti

Abstract: This paper introduces a multi-agent framework for comprehensive highway scene
understanding, designed around a mixture-of-experts strategy. In this framework, a large generic
vision-language model (VLM), such as GPT-4o, is contextualized with domain knowledge to generate
task-specific chain-of-thought prompts. These fine-grained prompts are then used to guide a smaller,
efficient VLM in reasoning over short videos, along with complementary modalities as applicable. This
framework simultaneously addresses multiple critical perception tasks including weather classification,
pavement wetness assessment, and traffic congestion detection, which achieve robust multi-task
reasoning while balancing accuracy and computational efficiency. To support empirical validation,
we curated three specialized datasets aligned with these tasks. Notably, the pavement wetness dataset
is multimodal, combining video streams with road weather sensor data, highlighting the benefits of
multimodal reasoning. Experimental results consistently demonstrate the strong performance across
diverse traffic and environmental conditions. From a deployment perspective, the framework can
be readily integrated with existing traffic camera systems and strategically applied to high-risk rural
locations, such as sharp curves, flood-prone lowlands, and icy bridges. By continuously monitoring the
targeted sites, the system enhances situational awareness and delivers timely alerts, even in resource-
constrained environments.
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1. Introduction

Multimodal foundation models, particularly vision-language models (VLMs), have emerged as
powerful artificial intelligence (AI) agents capable of understanding and reasoning across diverse
data modalities such as images, video, audio, and text [1–3]. These models are typically built
on transformer-based architectures that integrate information from different modalities into a shared
embedding space, enabling the generation of semantically rich, multimodal representations. A
common design is to pair a visual encoder (e.g., Vision Transformer) with a language decoder or a
unified encoder-decoder architecture pretrained on large-scale image-text or video-text datasets [4, 5].
This large-scale pretraining endows VLMs with strong generalization capabilities across a wide range
of vision-and-language tasks such as image or video captioning, visual question answering, visual
entailment, scene retrieval, among others.

Importantly, the adoption of multimodal foundation models marks a paradigm shift in infrastructure
monitoring. Traditional systems often rely on dedicated physical sensors such as weather
stations, embedded pavement sensors, or radar, which entail significant installation, calibration, and
maintenance costs. In contrast, the multimodal models can leverage the existing video camera
infrastructure (e.g., CCTV cameras) for robust visual reasoning [6]. These models are not only capable
of assessing environmental attributes (e.g., wet pavement, snow accumulation, and visibility reduction)
but also recognizing specific hazards such as fallen debris or stalled vehicles. Interactive frameworks
like SeeUnsafe exemplify this potential by using VLMs to identify safety-critical events in large-scale
traffic video data [7].

Moreover, recent research has explored the multi-task learning paradigms that unify diverse
downstream tasks within a shared modeling framework [3]. These foundation models learn the
transferable representations that span perception, prediction, and decision-making, enabling joint
optimization and reducing the need for extensive data annotation. By leveraging shared knowledge
across tasks, they offer a holistic and efficient approach to complex transportation scenarios. However,
deploying such models in time-critical transportation systems remains challenging due to their large
model size and computational overhead. To mitigate these constraints while preserving performance,
researchers are exploring strategies such as model distillation, sparse expert routing, and task-specific
chain-of-thought (CoT) prompting, each aiming to improve inference efficiency and adaptability in
resource-constrained environments. Recent studies use a large teacher VLM or large language model
(LLM) to enhance a smaller student model, typically through knowledge distillation or synthetic data
generation [8–10]. In these approaches, the teacher’s predictions or explanations are used to train a
compact model that can later run independently at inference time. Such methods are effective when
large labeled or teacher-annotated datasets can be constructed for each target task and when training
resources are available. In contrast, our work does not train a new student model; instead, we keep a
powerful VLM in the loop to generate domain-informed CoT prompts and then reuse these prompts to
guide a smaller, off-the-shelf VLM at inference time. This design avoids task-specific training while
still capturing some of the teacher’s reasoning pattern, and it is particularly suitable for transportation
agencies that may not have the capacity to retrain models but can benefit from orchestrating existing
large and small VLMs in a multi-agent manner.

While deep learning has enabled considerable progress in traffic scene understanding, most of the
existing approaches remain limited to single-task settings. This study aims to advance multi-task
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visual understanding for comprehensive scene interpretation in the transportation domain. Specifically,
we focus on both modeling and understanding of the road weather, pavement surface, and traffic
conditions, enabling a more holistic and robust perception of real-world transportation environments.

1.1. Road weather understanding

It is critical to accurately assess weather conditions from roadside or in-vehicle perspectives
for maintaining traffic safety and ensuring operational resilience. Conventional approaches are
grounded in numerical weather prediction (NWP), which relies on data assimilation of satellite,
radar, and in situ observations [11–15]. Recent advancements incorporate deep learning for localized
weather understanding: [16,17] used convolutional neural networks (CNNs) and conditional generative
adversarial networks (CGANs) for weather classification from road images, while Qing et al. [18]
and Schmidt et al. [19] utilized long short-term memory (LSTM) and generative adversarial network
(GAN) models for short-term forecasting of solar irradiance and cloud patterns. On the language side,
foundation models such as ClimateBERT [20] and ClimateGPT [21] have been proposed for climate-
focused text understanding.

However, these approaches either focus exclusively on visual inputs or treat weather as a standalone
forecasting problem. They often lack real-time, road-level granularity or integration with traffic scene
contexts, limiting their utility for real-time hazard detection and warning. In contrast, VLMs offer the
ability to infer weather directly from traffic videos and reason about the impact on safety conditions
(e.g., reduced visibility and road surface conditions), thus closing the gap between meteorological
modeling and transportation decision-making.

1.2. Pavement wetness assessment

Timely detection of pavement wetness is essential for highway safety and operations, as surface
water significantly reduces tire–pavement friction and increases the likelihood of hydroplaning,
particularly at high speeds. These conditions not only elevate the crash risk but also complicate traffic
management and roadway maintenance decisions. Traditional approaches rely on embedded sensors
or road weather stations, which are accurate but sparse and expensive to maintain [22]. Modern deep
learning systems have applied CNNs and segmentation networks to RGB or infrared images to classify
wet, dry, snowy, or icy surfaces [23, 24]. Acoustic sensing systems, such as those proposed by [25],
utilize tire-road interaction sounds to estimate surface wetness using support vector machines and
logistic regression models.

Recent webcam-based methods leverage pretrained CNNs (e.g., ResNet18) to identify pavement
conditions from roadside imagery [22]. Thermal imaging has also been explored to detect sub-
surface anomalies and transient wetness features [23]. Hybrid approaches like road Maintenance
systems using deep learning and climate adaptation (RMSDC) [26] fuse temporal sensor data using
convolutional LSTM (ConvLSTM) for robust interpretable predictions. Despite the progress, these
methods are typically static, infrastructure-specific, and short of adaptability across domains. They
often require extensive re-labeling or fine-tuning when deployed in new regions or under different
weather conditions.
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1.3. Congestion analysis

Traffic congestion detection is another domain where deep learning methods have gradually
replaced traditional models. Hybrid CNN-LSTM architectures [27] and encoder-based deep
networks [28] have been developed to model spatio-temporal traffic dynamics from loop detectors
and speed sensors. Vision-based methods have also been applied in enabling real-time congestion
classification directly from traffic video feeds [29].

However, most of these models operate as task-specific detectors trained on specific datasets.
They lack semantic understanding and struggle with context-sensitive reasoning (e.g., distinguishing
construction-induced slowdown from other congestion scenarios). Recent reviews [30] advocate for
more explainable and generalizable frameworks. Vision-language models have shown promise in
this direction, offering semantic alignment between scene content and user-defined queries, enabling
interpretable diagnostics and causality analysis of congestion [1, 7].

1.4. Contributions

In summary, this paper makes the following key contributions:

(1) Unified VLM-Based Framework for Multi-Task Highway Scene Understanding. We propose
a VLM-driven framework that moves beyond task-specific models by jointly addressing three
critical highway perception tasks (weather classification, pavement wetness assessment, and
traffic congestion detection) within a single, unified system. This design improves adaptability
and reduces the need for frequent retraining when operating across diverse conditions.

(2) Mixture-of-Agents Reasoning with Domain-Informed CoT Prompts. We introduce a mixture-of-
agents strategy in which a large, general-purpose VLM is used to generate fine-grained, domain-
informed CoT prompts tailored to each task. These prompts are then used to guide a smaller,
computationally efficient VLM to reason over short video inputs, enabling scalable and edge-
friendly multi-task inference without task-specific model redesign.

(3) Multimodal, Real-World Datasets for Comprehensive Evaluation. To support rigorous evaluation,
we curate three task-aligned datasets collected from real-world deployments. In particular,
the pavement wetness dataset integrates traffic video with road weather station data, enabling
multimodal reasoning and providing a testbed that, to our knowledge, has not been previously
explored using VLM-based approaches.

(4) Empirical Validation of Collaborative VLM Agents. Through extensive experiments, we
demonstrate that the proposed collaborative VLM framework consistently outperforms simple
prompting strategies and is particularly effective in complex and ambiguous scenarios,
highlighting the potential of VLM agents as a practical foundation for comprehensive highway
scene understanding.

2. Dataset

We collected the publicly accessible traffic video data from the states of Georgia, Virginia, and
California. Camera locations were strategically chosen to cover urban, suburban, mountain, and coastal
regions, ensuring a diverse set of highway scenes.
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2.1. Category definition

For weather classification, we focused on three primary conditions: clear including sunny and
cloudy, with no precipitation, rainy, and snowy (refer to Figure 1). For pavement wetness level
assessment, we defined seven categories aligned with corresponding weather conditions: dry, rainy
fully wet, rainy partially wet, rainy flooded, snowy fully wet, snowy partially wet, and snowy wet with
icy warning. A detailed description of each category is provided in Table 1.

Figure 1. Examples from the road weather classification dataset.

Table 1. Pavement wetness level definitions and visual cues.

Category Key visual and contextual cues
Rainy fully wet Uniformly dark and glossy surface with consistent reflections.

Tire sprays are visible across lanes; vehicles often leave moderate
water trails.

Rainy partially wet Mixed appearance with wet patches and dry zones. Water sprays
are intermittent or limited to certain lanes. Some vehicles show
water trails, others do not.

Rainy flooded Standing or pooling water is clearly visible. Vehicles generate
large water splashes and long, wide spray plumes. Water trails
are thick and persistent.

Dry Light-colored, matte surface with no visible moisture or
reflections. No tire sprays or water trails; vehicle movement is
clean and uninhibited.

Snowy fully wet Entire surface is dark and wet from melted snow. Slush may
appear near curbs or median dividers. Tire water spray may be
visible. No snow patches.

Snowy partially wet Uneven surface with a mix of wet, dry, or slushy zones. Residual
snow or damp spots are visible. Minimal and inconsistent water
sprays.

Snowy wet with icy warning Surface has a faint shine or frosty gloss, suggesting potential
black ice. This is often coupled with low temperature and high
humidity conditions. Sprays are minimal or absent. Vehicles may
move slowly with extra caution.
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For congestion detection, we grouped traffic flow conditions into two categories: congested and
unobstructed (refer to Figure 2). The detailed descriptions are given in Table 2. The distribution of
video clips across weather conditions is presented in Table 3.

Figure 2. Examples from the congestion analysis dataset.

Table 2. Traffic flow condition definitions and visual cues.

Category Key visual and contextual cues
Congested Lanes are visibly full or nearly full of vehicles with minimal open space.

Vehicle spacing is tight, making lane changes difficult. Motion is uneven; cars
exhibit stop–go patterns, frequent surging and braking, or shock-wave movements.
Multiple vehicles display delayed following, indicating disrupted flow.

Unobstructed Traffic flows smoothly at or near posted speeds. Vehicles are evenly spaced. Motion
is steady with little to no deceleration. The road appears open with no apparent
disruptions to traffic flow.

Table 3. Summary of the weather video dataset.

Weather condition Total videos
Clear 66
Snowy 21
Rainy 73
Total 160

In addition to the video data, we collected information from the nearest road weather stations,
resulting in a multimodal dataset. Depending on the availability of sensor readings at the time of
data collection, we distinguished between partial and full multimodal data. Partial multi-modal data
includes date/time, current weather, weather precipitation, temperature high/low and elevation. In
contrast, full multimodal data provides more detailed environmental context, including date/time,
relative humidity, wind speed/direction, air/surface temperature, visibility, dew point temperature,
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surface condition, and precipitation. For our downstream tasks, we primarily leveraged this multimodal
data for pavement wetness assessment under snowy conditions, where the cross-modal reasoning
provides the greatest benefit. A detailed summary of this dataset is shown in Table 4, and some
examples are given in Figure 3.

Table 4. Summary of the pavement wetness video dataset.

Category Total videos Multi-modal data type
Rainy partially wet 51 46 Full, 5 Partial
Rainy fully wet 73 68 Full, 5 Partial
Rainy flooded 18 Full only
Snow partially wet 5 Partial only
Snow fully wet 9 Partial only
Snow wet with icy warning 21 Partial only
Sunny dry 66 Full only
Total 243

Figure 3. Examples from the pavement wetness assessment dataset. The leftmost column:
1st and 2nd rows—rainy partially wet; 3rd row—snowy partially wet. The middle column:
1st and 2nd rows—rainy fully wet; 3rd row—snowy fully wet. The rightmost column: 1st
and 2nd rows—rainy flooded; 3rd row—snowy wet with icy warning.

It is important to note that for congestion analysis, rather than assigning a single label (e.g.,
congested or unobstructed) to an entire road segment within a video, we explicitly specified the traffic
direction of the segment. This distinction accounts for the possibility of direction-dependent traffic
patterns. Specifically, inbound refers to vehicles moving toward the traffic camera, while outbound
refers to those moving away from it. The resulting dataset is summarized in Table 5.

Table 5. Summary of the traffic congestion video dataset.

Congestion level Direction Total videos
Congested Inbound 10

Outbound 18
Unobstructed Inbound 20

Outbound 16
Total 64
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3. Methodology

This section introduces our proposed method, which leverages multiple agents to understand traffic
scenes including weather, pavement wetness, and congestion conditions. The process begins by
extracting sequential frames from a video input to retain temporal dynamics. An initial prompt,
incorporating relevant domain knowledge, is constructed and provided to a VLM, referred to as
Agent 1. In our experiment, we use GPT-4o [31] in this role. Agent 1 analyzes a scene based on the
initial prompt and generates a detailed CoT [4] prompt that systematically addresses multiple aspects
of the scene from the surrounding environment to vehicles. Depending on the downstream task, such
as pavement wetness assessment under snowy conditions, multimodal data can also be ingested to
enhance reasoning. Prompt tuning [5] is also applied to ensure accurate description of the scene is
aligned with human observations and domain knowledge. The refined CoT prompt is then passed
to Agent 2, which performs inference directly on video inputs and, if applicable, with associated
multi-modal data. For Agent 2, we use QWEN 2.5-VL-7B [32], an open-source 7B-scale vision–
language model that offers a trade-off between accuracy and computational cost on our target hardware
(e.g., a single high-end GPU or embedded edge platforms). QWEN 2.5-VL-7B performs CoT-guided
reasoning to generate the final output. This multi-agent framework is illustrated in Figure 4.

Figure 4. The multi-agent framework for highway scene understanding.

Although we instantiate the framework with QWEN 2.5-VL-7B as the small VLM, the overall
approach is not tied to a specific model. The only requirements for Agent 2 are (i) the ability to
accept visual inputs (sequential images or short clips) together with textual instructions and (ii) the
capability to follow CoT-style prompts. In principle, other lightweight VLMs (e.g., alternative 3–
8B multimodal models) could be substituted without modifying the multi-agent architecture; only the
prompt templates may require minor retuning. Therefore, the improvements observed for CoT-guided
reasoning over simple prompts are expected to be transferable to other small VLMs.
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3.1. CoT prompts design and generation

As introduced previously, the definitions used as part of the prompt for Agent 1 (GPT-4o) integrate
human observations and transportation domain knowledge tailored to specific types of scenes. For
example, in the case of pavement wetness assessment under snowy conditions, these definitions are
combined with sequential video frames and multimodal data (e.g., temperature high/low, humidity,
wind speed/direction, dew-point temperature), and passed to Agent 1 to analyze the scene and acquire
the fine-grained CoT prompt. This process is illustrated in Figure 5.

Figure 5. Example of CoT prompt generation for pavement wetness level assessment under
snowy conditions.

Following a similar process, we generated CoT prompts for different downstream tasks.
Specifically, Figures 6–8 show the generated CoT prompts by Agent 1 (GPT-4o) for road weather
understanding, pavement wetness level assessment, and congestion analysis, respectively. To improve
classification accuracy for pavement wetness levels, we introduced a threshold for identifying “fully
wet” surface condition, which is defined as over 80% of vehicles per frame consistently have water
sprays, mist, or strong reflections, which helps the model better distinguish between partially wet and
fully wet.

We prioritized the “flooded” condition whenever clear visual cues are present (see Figure 7) and
explicitly instructed the model: “If uncertain between fully wet and flooded, always choose flooded
to reflect the potential real-world hazard.” This safety-oriented directive biases the model toward
conservative decision-making, helping ensure reliable detection of flooded scenes.

For congestion analysis, we designed tailored strategies to address the following challenges: (1)
For inference efficiency, all video clips have a short length of 4–7 seconds; the acute signs of traffic
congestion may not be obvious within a short video clip. (2) Each traffic camera has a different height
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and angle, which brings different visual perspectives on traffic flow. (3) During normal peak hours
(i.e., without accidents or road closures), the space headway can be short, but vehicles can still move
relatively fast. (4) VLMs show a limited ability to accurately assess traffic flow speed or other related
dynamic features, especially in such short video clips. Our proposed solution introduces a two-variable
gating logic that incorporates visual pressure and flow slow, with the initial flow impression serving as
a soft flag to provide contextual bias (e.g., “The flow appears smooth, but let me verify”). This design
reduces over-reliance on visual cues alone for congestion detection. We further define three levels
of visual pressure (strong, moderate, and weak) based on the number of visual congestion features
identified. In parallel, the flow slow variable is evaluated as a Boolean flag (true or false) depending on
evidence of flow disruption. The CoT prompt implementing this gating logic is illustrated in Figure 8.

Figure 6. Generated CoT prompt for road weather understanding.
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Figure 7. Generated CoT prompt for pavement wetness level assessment under rainy
conditions.
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Figure 8. Generated CoT prompt for congestion analysis.

4. Experimental results

We conducted extensive experiments to compare the performance of simple prompts (see Figure 9)
versus CoT prompts presented in the preceding section. Exemplar results are shown in Figures 10–16.
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Figure 9. Simple prompts.

Figure 10. Results of road weather classification via CoT prompt.

4.1. Road weather classification

As shown in Table 6, road weather classification is relatively straightforward using either simple or
CoT prompts, as VLMs can effectively leverage the abundant visual cues present in most conditions.
For clear and snowy weather, performance differed only slightly: the model achieved over 90%
accuracy for clear conditions and perfect accuracy for snowy conditions, where the visual evidence
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of snow is highly distinctive. In contrast, the performance declined under rainy conditions, with some
rainy scenes misclassified as clear when the visual cues were insufficiently pronounced.

Table 6. Accuracy comparison between simple and CoT prompts for weather understanding
using QWEN 2.5-VL 7B model.

Weather Condition Simple Prompt (%) CoT Prompt (%)
Clear 92.42 95.45 (↑3.03)
Snowy 100.00 100.00 (—)
Rainy 73.24 71.23 (↓2.01)

4.2. Pavement wetness level classification

Prompting the model via CoT or simple prompt can result in significantly different results and
accuracies. A simple case in Figure 11 shows the prediction results under a flooded condition. The
simple prompt appears to make a judgment based on the first glance without careful attention. In
contrast, The CoT prompt instructs the model to look through several aspects, from the scene to road
surface, weather, vehicle and driver behaviors, particularly to inspect the existence of standing water.
Eventually the model tags the video as flooded with the evidence of persistent tire splash-and-spray
effects behind vehicles.

Figure 11. Results of pavement wetness level classification via CoT prompt and simple
prompt under flooded condition.

Snowy partially wet condition presents a particularly challenging and ambiguous case because it
can easily be misinterpreted as fully wet or icy, even by human observers without careful inspection.
This is where the CoT approach outperforms a simple prompt. As shown in Figure 12, the model
guided by a well-crafted CoT prompt arrived at the correct assessment by systematically examining
multiple wetness indicators and ruling out conditions that did not meet the criteria.
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Figure 12. Results of pavement wetness level classification via CoT prompt and simple
prompt under snowy partially wet condition.

4.3. Congestion level classification

Figure 13 illustrates that even when the initial flow appears smooth, the model can still identify
congestion by leveraging the values of visual pressure and flow slow. This two-variable gating logic,
combined with an initial soft flag, significantly enhances accuracy by striking a balance between the
VLM model’s strengths, such as identifying visual congestion features, and its limitations, particularly
in estimating traffic flow speed. In contrast, the simple prompt relies on the initial impression of traffic
flow without further verification, leading to an incorrect judgment.

Figure 13. Results of congestion level classification via CoT prompt and simple prompt
under congested condition.
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Table 7 presents improved performance for different directions and cases after implementing our
carefully designed CoT prompt.

Table 7. Accuracy comparison between simple and CoT prompts for congestion analysis
using QWEN 2.5-VL 7B model.

Congestion level Direction Simple prompt (%) CoT prompt (%)
Congested Inbound 40.00 100.00 (↑60.00)

Outbound 72.22 100.00 (↑27.78)
Unobstructed Inbound 60.00 80.00 (↑20.00)

Outbound 81.25 100.00 (↑18.75)

4.4. Multimodal reasoning

We utilized the multimodal pavement condition dataset to highlight the benefits of multimodal
reasoning. As shown in Figures 14 and 15, while the model can perform basic scene analysis based
on snow coverage and other apparent visual cues, the inclusion of additional modalities substantially
improves its ability to generate more comprehensive and accurate assessments. By incorporating data
such as temperature, dew point, and humidity, the model is able to successfully identify icy conditions,
a capability particularly valuable for transportation safety applications.

Figure 14. Pavement wetness level classification via CoT prompt without multimodal data
under snowy fully wet condition.
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Figure 15. Pavement wetness level classification via CoT prompt with multimodal data
under snowy fully wet condition.

We also evaluated the performance of multimodal reasoning on additional icy scenarios using the
simple prompt. Surprisingly, even when the model could accurately infer conditions using only video
data, the simple prompt sometimes produced incorrect results (see Figure 16). This suggests that
while simple prompts may suffice in cases with strong and unambiguous visual cues, they fail when
handling multimodal inputs, particularly when visual information is incomplete or ambiguous. Our
results indicate that CoT prompting is essential for robust performance with multimodal data (as
shown in Table 8); otherwise, the model may struggle when processing environmental parameters
without sufficient visual context. For instance, the model misclassified “snowy fully wet” scenes as
“partially wet,” and similar mistakes were observed for rainy conditions. These errors may stem from
the model’s over-reliance on explicit visual cues (e.g., reflections, water spray, and road gloss) that
are often subtle, inconsistent, or missing due to environmental and data limitations. In snowy scenes,
slush and snow accumulation can obscure pavement texture, leading to misclassification of fully wet
surfaces. Likewise, icy conditions can visually resemble fully wet roads, increasing the likelihood of
false positives. In rainy scenarios, diminished sprays or weak headlight reflections may also cause false
negatives. These findings highlight the challenges of relying solely on visual cues and underscore the
importance of complementary modalities and thought-provoking prompt design for robust multimodal
reasoning.

These challenges are further exacerbated by two key factors: (1) the short duration of the video clips,
ranging from only 4 to 7 seconds, which limits the availability of temporal cues such as sustained water
trails or subtle vehicle motion dynamics, and (2) the varying video resolution, with many clips being of
lowresolution, hinders the model’s ability to detect fine-grained visual features essential for accurately
reasoning about pavement surface conditions.
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Figure 16. Comparison of pavement wetness level classification via simple prompt
with/without multi-modal data under snowy wet with icy warning condition.

Table 8. Accuracy comparison between simple and CoT prompts across input modalities
(Video alone versus multimodal data) using Agent 2 (QWEN 2.5-VL-7B model).

Input Type Condition Simple prompt (%) CoT prompt (%)
Video alone Rainy partially wet 37.25 58.82 (↑21.57)

Rainy fully wet 23.29 57.33 (↑34.04)
Rainy flooded 0.00 57.89 (↑57.89)
Snowy partially wet 20.00 100.00 (↑80.00)
Snowy fully wet 55.56 0.00 (↓55.56)
Snowy wet with icy warning 76.19 14.29 (↓61.90)
Sunny dry 83.33 95.45 (↑12.12)

Multimodal (Video and Sensor Data) Snowy fully wet 10.00 100.00 (↑90.00)
Snowy wet with icy warning 14.29 100.00 (↑85.71)

5. Conclusions and future work

In this work, we proposed a general multi-agent framework for comprehensive highway scene
understanding. The framework leverages a large VLM to generate CoT prompts enriched with domain
knowledge, which are then used to guide a smaller, efficient VLM in reasoning over video inputs, with
complementary modalities as applicable. This design enables robust performance across multiple core
perception tasks including weather classification, pavement wetness assessment, and traffic congestion
detection.

To evaluate the effectiveness of the proposed framework, we curated three datasets. For the
pavement wetness assessment task in particular, we constructed a multimodal dataset to demonstrate
the benefits of multimodal reasoning. By leveraging carefully designed CoT prompts, the framework
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achieves significantly improved reasoning performance and substantial gains in overall accuracy. This
zero-shot, multi-agent approach leverages domain knowledge through a large VLM and unlocks the
potential of small VLMs, offering a scalable and cost-effective solution for diverse transportation
applications. Our framework can be readily integrated with the abundant network of existing traffic
cameras, enabling large-scale deployment. In rural areas, where traditional sensor coverage is sparse,
our method supports strategic monitoring by focusing on high-risk locations such as sharp curves,
flood-prone lowlands, or icy bridges. By continuously analyzing scene conditions at these targeted
sites, the system enhances situational awareness and provides timely alerts even in disconnected
environments. Additionally, the ability to automatically detect congestion and road hazards allows
transportation agencies to efficiently screen regional or statewide traffic camera feeds and quickly
identify problem areas without intensive manual review.

Nonetheless, there remains a substantial room for improvement. Another direction is to distill or
design a more compact VLM tailored to the target tasks. Such a lightweight model would be well-
suited for edge deployment, facilitating the integration of advanced AI capabilities into existing traffic
camera networks and enabling scalable and real-time intelligent scene understanding.

Despite these promising results, we acknowledge this study has several limitations. First, the
datasets used here are relatively small, especially for congestion analysis, and cover a limited set
of geographical regions and camera configurations. Second, the video clips are short (4–7 seconds)
and most are lowresolution, which restricts the temporal cues and fine-grained visual details available
to the VLMs. This constraint is representative of current practice in many deployments but may
underestimate the potential of the proposed framework under higher-quality data. Third, we instantiate
the small VLM (QWEN 2.5-VL-7B) and focus on accuracy as the primary metric in a fixed-split
evaluation. A broader comparison across alternative lightweight VLMs, richer metric design, and
more extensive statistical analyses is needed for assessing its reliability in real-world settings.

Future work can therefore focus on several directions. On the data side, we plan to expand
the datasets to include additional states, roadway types, and seasonal patterns, as well as longer
video segments that capture incident evolution and recovery. This will enable more comprehensive
training and evaluation, including cross-location generalization and domain adaptation studies. On
the modeling side, another avenue is to distill or design more compact VLMs tailored to highway
scene understanding with explicit safety-aware objectives so that real-time inference can be reliably
supported on edge devices. It will also be valuable to benchmark the proposed framework against
a wider range of task-specific baselines and alternative small VLMs and to investigate streaming
or event-triggered processing strategies for continuous camera feeds. Finally, future deployment-
oriented work should consider formal risk analysis, human-in-the-loop monitoring, and integration
with existing traffic management workflows to better understand how multi-agent VLM reasoning can
support human-AI collaborative operational decision-making at scale.
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