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Abstract: Fresh foods are essential products in the global food industry, offering consumers vital 

nutrients and health benefits worldwide. Despite advancements in freshness classification using image-

based data, the literature lacks exploration of quantitative data in this field. In this study, we collected 

a real-world sensor dataset for food freshness classification during runtime by monitoring and 

recording environmental and chemical variables that affect food quality, using bananas as a case study. 

The collected dataset was pre-processed and used to train and test six machine learning models: logistic 

regression, random forest, support vector machine, K-Nearest Neighbor, decision tree, and gradient 

boosting. These models were employed for the automatic classification of banana freshness into three 

health classes: fresh, ripening, and spoiled. The results revealed that the random forest model 

outperforms other models in predicting banana health class, achieving an average accuracy of 95%. 

Additionally, we critically analyzed the collected data and provided actionable insights for 

stakeholders and professionals in the food industry, enabling them to make informed decisions that 

maintain product quality and reduce food waste. 
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1. Introduction 

Fresh foods are vital products in the global food industry, providing essential nutrients and health 

benefits to consumers worldwide. As the global population continues to grow, preserving the freshness 

of perishable food items throughout the supply chain stages has become a significant issue [1]. The 
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freshness of perishable food items, such as dairy, fruits, vegetables, and meat, is crucial for ensuring 

their quality and safety. Food safety and public health have gained increasing attention and have 

attracted researchers and professionals from the food industry to develop effective and practical 

methods for food freshness monitoring and classification [2]. By accurately assessing food freshness, 

stakeholders can make informed decisions that extend shelf-life periods, reduce waste, and provide 

customers with safe and healthier products. 

Food freshness is crucial in reducing food waste at various supply chain stages. Food products 

are sensitive to changing environmental conditions that might deteriorate their quality during storage, 

transportation, and while on retailers’ shelves, leading to significant food waste [3]. Monitoring food 

quality in real time and employing appropriate approaches to classify freshness, determine remaining 

shelf life, and communicate this up-to-date information to all stakeholders significantly impacts 

maintaining quality and ensuring sustainability. Consequently, the field of food freshness monitoring 

and classification has received substantial attention in recent years [4,5]. 

Researchers have utilized machine learning (ML) and deep learning (DL) to detect and classify 

food freshness and quality. Specifically, these studies employed computer vision and image processing 

techniques combined with convolutional neural networks (CNNs) to classify food items based on their 

visual characteristics, such as color and shape [6–9]. For instance, Liu, Zhao [10] developed an 

integrated method utilizing the simple linear iterative clustering (SLIC) and support vector machine 

(SVM) classifier to detect the freshness of red apples using color and shape features. Ganeshan 

Mudaliar [11] utilized a CNN to develop a model for classifying tomatoes into ripe and rotten classes. 

Fu, Nguyen [12] proposed a hierarchical approach for grading fruit freshness utilizing computer vision 

and deep learning. A neural network You Only Look Once (YOLO) model was first employed to 

extract the region of interest from digital images. Then, the CNN used the extracted images for grading 

food freshness. Kazi and Panda [13] classified the freshness of three fruit types, including apples, 

oranges, and bananas, utilizing the CNN model's classical and residual architectures. Mukhiddinov, 

Muminov [14] proposed a deep-learning system utilizing the YOLOv4 model for classifying fruits and 

vegetables into two classes: fresh or rotten. While the proposed models effectively classified food 

items' freshness and achieved high accuracy, they relied on image-based datasets and required 

substantial computational power and resources to run the DL models. Additionally, most researchers 

have used offline images to classify food items, which limits their practical applicability in real-world 

scenarios. 

Some researchers have explored the potential of utilizing numerical data, such as sensor data, for 

food freshness classification. Leveraging the Internet of Things (IoT) sensors to monitor food quality 

and freshness is crucial in ensuring food safety and reducing waste [15]. The integration of IoT sensors 

enables the real-time collection of critical variables that affect food quality, such as temperature, 

humidity, and gas emissions [16,17]. For instance, selecting the appropriate temperature and humidity 

levels prevents deterioration by inhibiting the critical metabolic processes of fruit. Additionally, gas 

concentration is an essential indicator of the ripening stages of fresh foods, making it a crucial 

parameter for monitoring food freshness [18,19]. Feng, Zhang [20] proposed an IoT-enabled 

monitoring system to assess the freshness of salmon and detect nose spoilage under several cold 

storage conditions. Torres-Sanchez, Teresa Martinez-Zafra [21] developed a monitoring system to 

record the quality of lettuce under various temperature conditions during storage and transportation. 

The authors utilized the recorded temperature to develop a multiple non-linear regression (MNLR) 

model to predict optimal temperature conditions that extend lettuce shelf life. Huang, Wang [22] 

proposed a monitoring platform to record gas concentration parameters at various temperatures using 

IoT sensors. The authors then used the collected sensor data to develop prediction models based on a 
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BP neural network, a radial basis neural network (RBF), an SVM, and an extreme learning machine 

(ELM). 

Despite advances in integrating IoT sensor data, few researchers have used sensor-related 

parameters to classify food freshness. There is a need for real-time monitoring systems that record vital 

parameters during runtime and use the recorded data to support timely freshness classification and 

decision-making. We utilize a quantitative sensor-based real-world dataset for real-time food freshness 

monitoring and classification. Using real-time sensor data enables early detection of spoilage signs, 

giving an early warning to take actions that help reduce food waste. The real-world dataset is collected 

through real experiments performed on bananas to monitor their quality. It includes readings of 

environmental and chemical variables, as well as manually labeling their freshness (health classes). 

The dataset is thoroughly analyzed using several preprocessing approaches to derive critical insights 

and prepare for model training, which automatically classifies food freshness. However, given that the 

dataset is collected on a small scale, we further develop a synthetic dataset using the real one to address 

this limitation, maintaining the same statistical distribution while expanding its size. 

To bridge the research gaps and considering the lack of real-world validation, we adopt the 

following methodology: (1) Preprocessing and analyzing a dataset collected from real-world 

experiments within the food retailer sector to derive practical insights, (2) developing a synthetic 

dataset using the same distribution patterns as the real sensor-based dataset, (3) applying six machine 

learning models to classify the health class of bananas using the developed dataset, and (4) establishing 

a comparative analysis between the models to assess their performance in accurately predicting the 

health class using several evaluation metrics. Using the proposed approach, we aim to provide practical 

recommendations on the models for classifying food products. Additionally, we aim to provide 

actionable insights to professionals and stakeholders in the food industry to help them make informed 

decisions. 

The remainder of this paper is organized as follows: In Section 2, we present the research 

methodology. In Section 3, we provide and discuss the experimental results. Finally, in Section 4, we 

conclude the paper and recommend future directions. 

2. Research methodology 

In this section, we describe the methodology adopted in this study. The proposed methodology 

leverages a real-time environmental and chemical sensor dataset to classify food freshness, using 

bananas as a case study. Experiments are first conducted to record banana temperature, ethylene gas 

concentration, volatile organic compounds (VOCs), and humidity. Recording these critical parameters 

in real time enables early spoilage detection, facilitating timely, informed decisions. Bananas are 

manually inspected and labeled, providing reliable labeling for ML models’ training, testing, and 

further analysis. 

Section 2.1 describes the data, Section 2.2 explains the preprocessing steps applied to the data, 

and Section 2.3 presents the analysis and key findings. 

2.1. Data description 

In this section, we describe the dataset collected through real-world experiments. The experiments 

are conducted to monitor the conditions of bananas stored on retailers’ shelves by collecting critical 

variables from environmental and chemical sensors in real time. The collected data is processed, and 

features are generated and fed to several ML models to classify health classes into fresh, ripening, and 

spoiled. 
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Several real experiments are conducted to monitor the freshness of bananas placed in boxes on 

retailers' shelves, which experience complete spoilage with visible rot. Inside each box, two types of 

sensors are installed. The first type, environmental sensors, monitors and collects essential data on 

environmental conditions, including temperature and humidity. The second type includes chemical 

sensors that track and record voltage readings of the Ethylene gas, providing critical insights into their 

concentration. The MQ3 alcohol sensor measures ethylene gas concentration, while the BME280 

sensor measures temperature and humidity, both of which are critical factors in monitoring the 

condition of stored fruits. Sensor data are recorded every 10 minutes, and the bananas are visually 

inspected to assess their freshness and labeled with a health class score. The health score ranges from 1 

to 3, as follows: Class 1 (Fresh), Class 2 (Ripening), and Class 3 (Spoiled). 

The dataset comprises 8158 observations from five experiments, corresponding to five banana 

boxes. Each observation reflects sensor readings of the parameters recorded every 10 minutes for each 

box included in the dataset. Table 1 describes the included variables. 

Table 1. Description of variables. 

Variable name  Description 

Box ID The current banana box ID 

Timestamp The current time of the observation 

Index A 10-minute period of observation 

Temperature  The recorded temperature for each box 

Humidity The recorded humidity for each box 

Alc-voltage An alcohol voltage level for each box 

VOC The volatile organic compounds measured for each box 

Box health-class The health class of the tested box 

2.2. Data pre-processing 

Visual data preprocessing is crucial to preparing the dataset for modeling. It involves several 

iterative steps, including understanding data characteristics and variable distributions, identifying 

potential anomalies, detecting outliers, checking for missing values, applying the appropriate 

transformations, creating additional features, and determining the correlation between variables [23]. 

Several preprocessing approaches are utilized to clean and prepare the sensor-based datasets 

collected for each banana box. The individual experiments are then merged into a single 

comprehensive file, indicating a dataset that captures readings from the five boxes. Dataset variables 

are checked for missing values and anomalies, and statistical analysis indicates potential outliers in 

some VOC values. After carefully examining the detected outliers, some values are retained because 

they represent real observations, while the unnecessary outliers are removed using the Z-score 

trimming method. Additionally, the logarithmic transformation is applied to variables with positive 

skew, while the Box-Cox transformation is used for those with negative skew. Finally, numeric 

variables such as humidity, temperature, and alcohol voltage are normalized and scaled using the Min-

Max normalization method to a common range between 0 and 1. 

After cleaning and processing the real sensor-based datasets, we use them to generate synthetic 

samples by employing Gaussian noise, increasing the volume and diversity of the data while preserving 

the underlying distribution patterns. This approach is utilized to reduce overfitting and enhance 

generalization when working with limited sensor-based datasets. Figure 1 illustrates the distribution 

of the target variable using the developed dataset. As shown, the synthetic dataset maintains the same 
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overall distribution as the real dataset, confirming that the applied Gaussian noise expands the dataset 

size without altering the underlying data characteristics. 

 

Figure 1. Distribution of health classes across the tested banana boxes. 

To visualize relationships among features and to facilitate feature selection before model training, 

a correlation heatmap is generated in Figure 2. The heatmap reveals a strong positive relationship 

between the variables (alc-voltage and index) and the target variable (health class), indicating that the 

most impactful variables are alc-voltage and index, with correlation measures of 0.77 and 0.61, 

respectively. Conversely, a weak relationship is observed between the target variable and other 

variables such as humidity, temperature, and VOC. Although factors such as temperature are generally 

considered major contributors to food deterioration, their impact is not reflected in the results. This is 

mainly due to the controlled experimental conditions, which result in a stable temperature throughout 

the monitoring period and prevent the model from capturing the expected correlation between 

temperature and perishability. 

 

Figure 2. Heatmap of Pearson's correlation. 
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2.3. Data analysis and key findings 

Data analysis is conducted on the clean final dataset, which contains observations from five real 

boxes, as they reflect realistic conditions and facilitate the extraction of meaningful insights. First, the 

data analysis reveals that higher humidity is associated with lower VOC levels across observations 

from the 5 boxes. This leads to the derived hypothesis: 

“There is a strong negative correlation between humidity and VOC readings, where an increase 

in humidity readings leads to a decrease in VOC values”. 

This hypothesis is supported and proven based on the conducted data analysis, as follows: 

1) From the heatmap in Figure 2, the correlation between the two variables is calculated as -0.79, 

indicating a strong negative relationship. 

2) From plotting the two variables using line graphs, Figure 3 reveals a strong relationship between 

the two variables. 

Additionally, it is revealed that the progression of bananas’ health class over time, from fresh to 

ripening to spoilage, is primarily related to the alcohol gas voltage (alc-voltage) variable. This 

observation suggests that the alc-voltage variable significantly impacts the health class readings. Based 

on that, we hypothesize that: 

“The voltage readings of alcohol gas are directly impacting and leading to the decrease of the 

products’ freshness level from fresh to ripening to spoilage”. 

This hypothesis is supported and proven based on the conducted data analysis, as follows: 

1) From the heatmap in Figure 2, the correlation between the two variables is calculated as 0.77, 

indicating a strong positive relationship. 

2) The relation between the two variables is plotted using line graphs in Figure 4. The results confirm 

a strong positive correlation, indicating an increase in alc-voltage with some fluctuations over time. 

From the data analysis, it is revealed that bananas remain in the fresh class for a longer period 

compared to other classes, as illustrated in Figure 4. However, once bananas start to ripen, their 

freshness deteriorates much more rapidly. It is further observed that bananas take approximately 12 

to 13 days to spoil from being fresh, with visible signs of rot. These findings suggest proposing a time 

window for bananas’ shelf life, as shown in Figure 5. 

 

Figure 3. Correlation between humidity and VOC variables for the five banana boxes. 
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Figure 4. Correlation between alc-voltage and health class variables for the five banana boxes. 

 

Figure 5. Time window of bananas' shelf life. 

According to the proposed time window of bananas’ shelf life, we recommend the following 

observations: 

1) Bananas remain fresh for up to 7 days. 

2) Bananas are observed in the ripening stage for 2 days. 

3) Bananas typically take 3 to 4 days to spoil. This period represents the spoilage timeline from the 

initial signs of spoilage until it becomes unsuitable for sale or consumption due to visible rot. 

To maintain the proposed timeline for bananas' shelf life, storing them at a controlled temperature 

between 24 °C and 27 °C and a humidity level between 65% and 80% is recommended. Additionally, 

a trigger action should be initiated on the first day of the spoilage stage, and action should be taken by 

the second day. This strategy enables informed decisions that reduce waste, such as optimizing product 

processing, offering discounts, and implementing labels for expedited delivery. 

3. Experimental results 

A comparative analysis is conducted to assess the performance of six ML models, including 

logistic regression (LR), support vector machine (SVM), random forest (RF), K-Nearest Neighbor 

(KNN), decision tree (DT), and gradient boosting (GB), for the classification of banana freshness into 

three classes: fresh, ripening, and spoiled. The processed dataset, which combines real and synthetic 

records, is split into training and testing sets using the implemented grid search cross-validation 

approach to ensure reliable model validation and testing. 

A nested cross-validation approach is employed, consisting of an outer loop and an inner loop. 

The outer loop employs a group 5-fold cross-validation to split the dataset into training and testing sets 
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based on the Box ID variable (presented in Table 2), ensuring readings of the same group are included 

in the training or the testing sets. For each dataset split, another 10-fold cross-validation with grid 

search is employed within the training dataset to optimize hyperparameters, validate models, and select 

the best models. During the validation stage, the accuracy of the applied models is computed ten times 

and averaged, and the models with the highest accuracy are selected as the best models. The 

regularization strength (C) and the optimization algorithm (Solver) parameters are optimized for the 

LR model. For the RF, we fine-tune the maximum depth of decision trees (max_depth) and the number 

of trees (n_estimators). The number of nearest neighbors (n_neighbors) and the maximum depth of 

decision trees (max_depth) are optimized for the KNN and DT models, respectively. For the SVM, we 

optimize the regularization parameter (C) and the kernel function (kernel). The learning rate 

(learning_rate) and the number of boosted trees (n_estimators) parameters are optimized for the GB 

model. Table 3 presents all parameter settings of the tested models for each dataset split. 

The best models from the grid search are tested on unseen data in the test dataset. We assess and 

compare model performance across dataset splits using the common classification metrics, including 

accuracy, recall, precision, and F1-score. 

Accuracy is calculated as the proportion of correct predictions to the full sample size, as in Eq 

(1). Precision measures the proportion of true positives among all instances that have been predicted 

as positive, as in Eq (2). Recall measures the correctly predicted positive instances from all actual 

positive samples, as in Eq (3). F1-Score measures the harmonic mean of the precision and recall, as in 

Eq (4). 

Accuracy =
TP+TN

TS
,                                                                (1) 

Precision =
TP

TP+FP
,                                                               (2) 

Recall =
TP

TP+FN
,                                                                 (3) 

F1 − Score = 2 ×
Precision×Recall

Precision+Recall
,                                                  (4) 

where 𝑇𝑆 is the total samples, 𝑇𝑃 (true positive) indicates the correctly predicted positive samples, 𝑇𝑁 

(true negative) indicates the correctly predicted negative samples, 𝐹𝑃 (false positive) refers to the 

incorrectly predicted positive samples, and FN (false negative) indicates the incorrectly predicted 

negative samples. 

Table 4 presents the evaluation metrics returned by each model for the five dataset splits. Among 

the six included models, RF achieved the best performance with the first, third, and fourth dataset splits, 

while DT performed best with the second and fifth datasets. However, LR returned the poorest 

performance when tested using the five dataset splits. Figure 6 plots the evaluation metrics for the 

models that achieved high performance on each dataset split, highlighting their relative performance. 

Additionally, Figure 7 plots the confusion matrix for the best-performing model on each dataset 

split. The confusion matrix is an effective tool for evaluating the performance of the best models. It 

plots the distribution of true and predicted values for each class, reflecting the model's accuracy in 

predicting each class. 

From Figure 7, it is observed that the RF model correctly predicted 97.8% of class 1, 90% of 

class 2, and 97.2% of class 3 observations for the first dataset split. When tested on the second dataset 

split, the DT model achieved the best performance, correctly predicting 99.4% of class 1, 76.5% of 

class 2, and 83% of class 3 observations. The RF model achieved the highest performance for the third 

dataset split (correctly predicting 97.8% of class 1, 95.4% of class 2, and 96.9% of class 3) and for the 

fourth dataset split (correctly predicting 96.9% of class 1, 90.1% of class 2, and 98% of class 3). The 
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DT model achieved the highest performance when tested on the fifth dataset split, correctly predicting 

99% of class 1, 72.8% of class 2, and 84.5% of class 3. 

Table 2. Dataset splits from Group 5-fold cross-validation. 
Dataset splits Boxes included in the training and validation sets Boxes included in the testing set 

Dataset 1 2,3,5,6,8,9,10,11,13,15,16,17,18,19,20 1,4,7,12,14 

Dataset 2 1,2,4,5,6,7,9,10,11,12,14,15,16,18,19 3,8,13,17,20 

Dataset 3 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 1,2,3,4,5 

Dataset 4 1,2,6,4,5,7,8,12,13,14,15,17,18,19,20 3, 9, 10, 11, 16 

Dataset 5 1,2,3,4,5,6,9,10,11,12,14,15,16,17,20 7,8,13,18, 19 

Table 3. Parameter settings. 

 Model Parameter settings 

Dataset 1 SVM 'C': 10, 'kernel': 'rbf' 

 K-Nearest Neighbors 'n_neighbors': 5 

 Decision Tree 'max_depth': 10 

 Gradient Boosting 'learning_rate': 0.1, 'n_estimators': 100 

 Logistic Regression 'C': 10, 'solver': 'liblinear' 

 Random Forest 'max_depth': 10, 'n_estimators': 100 

Dataset 2 SVM 'C': 10, 'kernel': 'rbf' 

 K-Nearest Neighbors 'n_neighbors': 7 

 Decision Tree 'max_depth': 10 

 Gradient Boosting 'learning_rate': 0.5, 'n_estimators': 50 

 Logistic Regression 'C': 10, 'solver': 'liblinear' 

 Random Forest 'max_depth': 10, 'n_estimators': 100 

Dataset 3 SVM 'C': 10, 'kernel': 'rbf' 

 K-Nearest Neighbors 'n_neighbors': 7 

 Decision Tree 'max_depth': 10 

 Gradient Boosting 'learning_rate': 0.5, 'n_estimators': 50 

 Logistic Regression 'C': 1, 'solver': 'liblinear' 

 Random Forest 'max_depth': 10, 'n_estimators': 100 

Dataset 4 SVM 'C': 10, 'kernel': 'rbf' 

 K-Nearest Neighbors 'n_neighbors': 7 

 Decision Tree 'max_depth': 10 

 Gradient Boosting 'learning_rate': 0.5, 'n_estimators': 50 

 Logistic Regression 'C': 10, 'solver': 'liblinear' 

 Random Forest 'max_depth': None, 'n_estimators': 100 

Dataset 5 SVM 'C': 10, 'kernel': 'rbf' 

 K-Nearest Neighbors 'n_neighbors': 7 

 Decision Tree 'max_depth': 10 

 Gradient Boosting 'learning_rate': 0.5, 'n_estimators': 50 

 Logistic Regression 'C': 10, 'solver': 'liblinear' 

 Random Forest 'max_depth': 10, 'n_estimators': 100 
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Table 4. Evaluation of Models. 

  Accuracy Precision Recall F1 Score 

Dataset 1 

Logistic Regression 0.93 0.93 0.93 0.92 

Random Forest 0.97 0.97 0.97 0.97 

SVM 0.94 0.94 0.93 0.94 

K-Nearest Neighbors 0.88 0.90 0.88 0.89 

Decision Tree 0.95 0.95 0.95 0.95 

Gradient Boosting 0.96 0.96 0.96 0.96 

Dataset 2 

Logistic Regression 0.86 0.87 0.86 0.85 

Random Forest 0.91 0.91 0.91 0.91 

SVM 0.87 0.89 0.87 0.88 

K-Nearest Neighbors 0.90 0.91 0.90 0.91 

Decision Tree 0.92 0.93 0.92 0.92 

Gradient Boosting 0.91 0.91 0.91 0.91 

Dataset 3 

Logistic Regression 0.90 0.90 0.90 0.89 

Random Forest 0.98 0.98 0.98 0.97 

SVM 0.94 0.94 0.94 0.94 

K-Nearest Neighbors 0.96 0.96 0.96 0.95 

Decision Tree 0.97 0.97 0.97 0.97 

Gradient Boosting 0.97 0.97 0.97 0.97 

Dataset 4 

Logistic Regression 0.90 0.89 0.90 0.89 

Random Forest 0.97 0.96 0.97 0.97 

SVM 0.93 0.93 0.93 0.93 

K-Nearest Neighbors 0.94 0.93 0.94 0.93 

Decision Tree 0.95 0.95 0.95 0.95 

Gradient Boosting 0.96 0.96 0.96 0.96 

Dataset 5 

Logistic Regression 0.86 0.87 0.86 0.85 

Random Forest 0.90 0.91 0.90 0.90 

SVM 0.87 0.89 0.87 0.88 

K-Nearest Neighbors 0.90 0.91 0.90 0.91 

Decision Tree 0.92 0.92 0.92 0.92 

Gradient Boosting 0.90 0.91 0.90 0.90 

 

Figure 6. Best models using the tested datasets. 



311 
 

Applied Computing and Intelligence                                                                 Volume 5, Issue 2, 301–314. 

 

 
Figure 7. Confusion matrix for the five dataset splits. 

When comparing the evaluated models, we found that the RF model achieved the highest overall 

performance. Achieving an average accuracy of 95% compared to 89% for LR, 91% for SVM, 91.6% 

for KNN, 94.2% for DT, and 94% for GB. Additionally, the RF model demonstrated a good balance 

between precision and recall, achieving an F1-score of 94.4%. These results revealed the effectiveness 

of the RF model in accurately predicting the correct class, reducing false positives and false negatives. 

Overall, our findings of this research present significant implications for the fresh food industry. 

Using the remaining shelf-life and health-class classifications can be effectively leveraged and 

integrated into demand forecasting and inventory management, which are key applications in food 

supply chain decision-support systems. This integration enables the development of dynamic systems 

capable of adapting to changing conditions and proactively taking informed decisions to sustain food 

systems. For instance, by integrating up-to-date information on the shelf-life of stocks into demand 

forecasting, food retailers can make more precise predictions about the quantities needed. Additionally, 

by managing inventory and closely monitoring self-life, decision-makers can prioritize selling 

products approaching their expiration dates, ensuring fresh offerings and minimizing waste. This 

approach not only accounts for the inventory state but also significantly enhances efficiency, 

minimizes waste, and supports sustainable practices. In future work, we will extend the proposed work 

by modeling shelf-life predictions and food freshness status in more time-steps, enabling more realistic 

and proactive interventions, such as environmental adjustments, to further prevent waste. 

6. Conclusions 

In this study, we explored the potential of utilizing a sensor-based dataset collected from real-

world experiments to automatically classify food freshness, using bananas as a case study. Parameters 

such as temperature, humidity, VOCs, and alcohol levels in ethylene gas were first collected from 

environmental and chemical sensors to monitor the freshness and quality of bananas over time. Several 

preprocessing approaches were applied to the real-world dataset to clean and prepare it for automatic 

classification of food freshness into three classes: fresh, ripening, and spoiled. Additionally, to address 

the limitation of the real-world dataset size, we developed a synthetic dataset by applying Gaussian 

noise to the real dataset, resulting in a larger dataset with a similar distribution to the real one. Utilizing 

the prepared dataset, we further assessed the performance of the LR, RF, SVM, KNN, DT, and GB 
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models to classify the freshness of bananas into three classes: fresh, ripening, and spoiled. To prevent 

overfitting and to ensure the models’ generalization, hyperparameter tuning was conducted using a 

grid search with group 10-fold cross-validation. The comparative analysis revealed that the RF model 

outperformed others on the first, third, and fourth dataset splits, while the DT model outperformed 

others on the second and fifth dataset splits. The results further revealed that the RF model 

outperformed the others, achieving an average accuracy of 95% and a weighted F1-score of 94.4%. 

This study provides a real-world benchmark dataset that can be updated and scaled for fruit 

freshness classification. Using a sensor-based dataset enables stakeholders to detect fruit spoilage early 

and continuously monitor critical parameters over time. This proactive approach not only enhances 

food quality but also reduces waste, making it a crucial tool in preserving freshness. Additionally, 

through intensive analysis of real-world data, we provide practical, actionable insights that help 

professionals in the food industry make informed decisions. 

Despite the importance of integrating information on food freshness and quality to predict future 

demand, researchers have not addressed this issue. Subsequent research linking the freshness of food 

items to food demand predictions is crucial for reducing waste and enhancing resilience, making it a 

promising research direction. In addition, future research on developing freshness classification 

models that combine sensor and image data is a promising direction. Moreover, future research under 

different temperature conditions would enhance the accuracy of context-dependent variables and 

provide a more generalized understanding of their role in food freshness quality. 
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