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Abstract: Human activity recognition (HAR) refers to the process of identifying human actions
and activities using data collected from sensors. Neural networks, such as convolutional neural
networks (CNNs), long short-term memory (LSTM) networks, convolutional LSTM, and their hybrid
combinations, have demonstrated exceptional performance in various research domains. Developing
a multilevel individual or hybrid model for HAR involves strategically integrating multiple networks
to capitalize on their complementary strengths. The structural arrangement of these components is a
critical factor influencing the overall performance. This study explored a novel framework of a two-
level network architecture with dual-stage feature fusion: late fusion, which combines the outputs
from the first network level, and intermediate fusion, which integrates the features from both the
first and second levels. We evaluated 15 different network architectures of CNNs, LSTMs, and
convolutional LSTMs, incorporating late fusion with and without intermediate fusion, to identify the
optimal configuration. Experimental evaluation on two public benchmark datasets demonstrated that
architectures incorporating both late and intermediate fusion achieve higher accuracy than those relying
on late fusion alone. Moreover, the optimal configuration outperformed baseline models, thereby
validating its effectiveness for HAR.

Keywords: human activity recognition; HAR; CNN; LSTM; convolutional LSTM; USC-HAD
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1. Introduction

Human activity recognition (HAR) plays a crucial role in numerous domains, including healthcare
monitoring, security systems, intelligent environments, and surveillance applications, where accurate
interpretation of human movements is critical [1,2]. In recent years, deep learning models have
significantly advanced the field by eliminating the need for manual feature engineering and achieving
high classification performance through the automatic extraction of complex, discriminative features
from raw sensor data. Despite the proliferation of various deep learning architectures for HAR, a
systematic and comprehensive evaluation of their comparative performance is often lacking [3, 4].
Such assessments are crucial for understanding the strengths and limitations of each model and their
generalizability, scalability, and applicability to different types of sensor data, activity categories, and
deployment environments in the real world. A thorough comparative analysis can guide researchers and
practitioners in selecting the most suitable models for specific HAR scenarios, ultimately contributing
to the advancement and practical implementation of robust systems.

Among deep learning models, convolutional neural network (CNN) and long short-term memory
(LSTM) architectures are the most widely used. Hybrid models are often designed to outperform
individual models by offering benefits such as reduced computation time and the capability to leverage
data from various sensor positions [5]. The ability of CNN-LSTM hybrid models to capture both spatial
and temporal dependencies is typically achieved by using CNN layers for feature extraction from the
input data, followed by LSTM layers for sequence modeling. The process of merging features from
different layers or modalities, known as feature fusion, has been explored in recent models and is
commonly implemented using operations such as addition or concatenation [6].

A comprehensive review of deep learning models used in smartphone and wearable sensor-based
recognition systems was provided in [5]. These include models such as CNNs, LSTMs, and various
hybrid architectures, each of which is discussed in terms of its unique characteristics, strengths, and
limitations. In [7], a heterogeneous convolution approach divides the kernels in a CNN into two groups:
one that recalibrates the other group. A dynamic CNN introduces dynamic kernels with attention that
adapt weights [8], and deep convolution constructs an ensemble stream employing late fusion [9].
In [10], the authors introduced multiscale hierarchical CNNs that incorporate adaptive feature fusion
and dynamic channel selection based on LSTM. Hybrid CNN-LSTM models, as proposed in [11, 12],
are designed to capture spatio-temporal dynamics across multiple sensors. These models can identify
key feature embeddings by incorporating self-attention mechanisms into their architecture.

The hierarchical deep LSTM (H-LSTM) model introduced in [13] uses the characteristics of the
time-frequency domain for HAR. A multi-head CNN architecture was proposed in [14], where three
parallel CNNs processed data from different sensors. The outputs were concatenated and passed
through the LSTM and dense layers of the model. In [15], CNN and LSTM models were evaluated
for HAR applications. The raw signals were preprocessed using a Butterworth filter, and nine features
were extracted from a 128-sample window. The study in [16] proposed a CNN combined with LSTM
to extract features and capture temporal dependencies from accelerometer and gyroscope data. Finally,
in [17], a multilevel feature fusion strategy was introduced for multidimensional HAR. This approach
employed a multi-head CNN for visual input and a CNN-LSTM combination to extract temporal
features from multisensor time-series data. The architecture incorporates three CNN branches with
a channel attention module to enhance the representation of the channel and spatial characteristics.
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This study investigates two-level network architectures that employ a feature fusion strategy to
integrate features from the same or different network levels for HAR. The experiments explore
different combinations of CNN, LSTM, and convolutional LSTM (CLSTM) [18]. CLSTM differs
from conventional CNN-LSTM architectures by integrating convolutional operations directly into the
recurrent structure, thereby forming a unified spatio-temporal architecture. This study is the first to
apply CLSTM in individual and hybrid configurations for HAR applications.

2. Datasets

The rapid growth of wearable technology has allowed the development of various HAR datasets;
however, challenges in standardization, sharing, and accessibility often limit their reusability and
reproducibility [19]. Choosing an appropriate dataset for a given HAR task involves considering
multiple factors, such as the number of participants, the variety of activities, sensor modalities,
and the recording environment. To evaluate the performance of the different models and ensure
broad applicability and benchmark performance, we selected two well-established and widely used
datasets: the USC-HAD dataset [20] and the UCI-HAR dataset [21]. These datasets encompass daily
living activities and offer diverse activity labels and robust sensor configurations that are suitable for
evaluating deep models.

2.1. USC-HAD

The University of Southern California Human Activity Dataset (USC-HAD) is a resource for
research on human activity in the ubiquitous computing community [20]. This dataset includes 14
subjects and 12 daily activities, with sensor hardware attached to the right front hip of the subjects.
Sensor recordings are the most basic and common human activities, including walking, running,
jumping, sitting, sleeping, and using an elevator. To capture variations in activity, each subject was
asked to perform 5 trials for each activity on different days at various indoor and outdoor locations.
They used the so-called MotionNode to capture activity signals and build a dataset, which is a
multimodal sensor that integrates a three-axis accelerometer, three-axis gyroscope, and three-axis
magnetometer at a sampling rate of 100 Hz. The USC-HAD dataset provides a controlled yet diverse
representation of real-world activities, making it a valuable benchmark for evaluating HAR model
performance.

2.2. UCI-HAR

The University of California Irvine (UCI-HAR) collected this dataset from recordings of 30 subjects
performing 6 activities while carrying a smartphone mounted with embedded inertial sensors [21].
Each participant was instructed to follow an activity protocol while wearing a Samsung Galaxy S II
smartphone mounted on their waists. The six selected activities were standing, sitting, lying down,
walking, walking downstairs, and walking upstairs. They collected triaxial linear acceleration and
angular velocity signals using a phone accelerometer and gyroscope at a sampling rate of 50 Hz. The
time signals were sampled in sliding windows with a fixed width of 2.56 s and 50% overlap. A feature
vector consists of the mean, correlation, signal magnitude area, autoregression coefficients, energy of
different frequency bands, frequency skewness, and the angles between vectors. A total of 561 features
were extracted to describe each activity. Due to its structured design and rich feature set, the UCI-HAR
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dataset has become a widely used benchmark for evaluating the effectiveness of machine learning and
deep learning models in HAR research.

3. Proposed methodology

The block diagram presented in Figure 1 depicts the architecture of the proposed model, which
incorporates a feature fusion approach and preprocessing frequency filter. Initially, raw sensor data
undergo filtering and normalization to ensure that the model processes low-frequency signals with a
zero mean and unit norm. The normalized accelerometer signals, which consisted of three channels,
were fed into the first neural network. In parallel, the three-channel normalized gyroscope signals
follow a separate but identical processing path to feed another network. The outputs from these
two networks are then merged through concatenation to generate either a one- or two-dimensional
multichannel feature map. This fusion strategy enables the model to learn high-level representations
by integrating complementary information from both accelerometer and gyroscope data.
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Figure 1. Block diagram of the proposed network architecture.

Subsequently, the feature maps are processed by a second neural network, which introduces an
additional abstraction layer into the learned features. To further refine the extracted features, global
average pooling is applied to the outputs of both the first and second networks. This operation produces
compact yet informative representations by summarizing spatial information. The resulting pooled
features are then combined in a concatenation layer to form a unified one-dimensional feature vector
that integrates information from both network stages. Finally, the feature vector is processed by a dense
layer, followed by a classification softmax layer, to enable effective and nuanced activity recognition.

To optimize the architecture selection, we systematically evaluated multiple configurations for both
the first and second networks, selected from the CNN, LSTM, and convolutional LSTM architectures,
each implemented in one- and two-dimensional forms. In addition, we investigated the impact of
internal feature fusion strategies by comparing models that employed single- or dual-stage fusion
mechanisms. This comprehensive evaluation was designed to identify the most effective neural
network configuration for optimizing feature integration and improving the ability of the model to
accurately recognize HAR based on raw sensor data.

Deep neural networks have emerged as powerful models for learning representations from complex
data. Each architecture exhibits unique characteristics tailored to specific tasks, from foundational
feedforward networks to more sophisticated CNNs and RNNs, such as LSTM. CNNs excel at
extracting spatial hierarchies from images, whereas LSTMs capture the temporal dependencies in
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sequential data. In addition, novel architectures have pushed the boundaries of representation learning
to structured and relational data. The design of each architecture, including the layer types, activation
functions, and connectivity patterns, profoundly affects its expressivity and computational efficiency.

3.1. Convolutional neural networks (CNNs)

Despite challenges such as limited data on group activities, high computational resource demands,
data privacy concerns, and edge computing limitations, CNN-based models remain suitable for
accurate and efficient HAR system applications [22]. CNNs can learn highly abstracted object features
and are suitable for image analysis and recognition [23]. However, the CNN model also has a
layer that can learn the features of sequential data with multiple variables. A typical CNN model
comprises a convolutional layer followed by a smoothing rectified linear unit (ReLLU), pooling, and
batch normalization layers. The convolutional layer is the main component of the CNN, which operates
on the principle of sliding windows to reduce computational complexity. In this layer, a kernel filter
is used to extract features from the input data. For a given 2D single-channel input matrix ¥ and 2D
convolutional filter H, the output of the convolution operation at position (i, j) is

Hy—1 W1

ZG,jy= Y > Y(i+m,j+nHmn)+b, (1)

m=0 n=0

where Y (i, j) denotes the input feature map, H(m, n) is the convolutional filter, and b is the bias. For an
input Y of size H;, X Wi, X Ci, and a filter H of size Hy X Wy X C; with stride Sy X S w and padding P,
the output Z is of the size given by
Hi, — H; + 2P Win — We + 2P
Hoy = —————+ 1, Woy = —————+ 1, and Coy = Ct. 2)
Su Sw
The next layer is the pooling layer, which is designed to reduce the size of the feature map and
extract dominant features for efficient model training. Several types of pooling operations exist,
including max-pooling and average pooling. The batch normalization layers apply a transformation
that maintains the output mean close to 0 and a standard deviation close to 1.

3.2. Long short-term memory (LSTM) network

LSTM is a special type of RNN that was developed to overcome the weakness of RNN, which
cannot learn long-term dependence [24]. LSTM consists of memory blocks called cells, which have
two states: cell and hidden states. Cells in LSTM are used to make decisions by storing or ignoring
information regarding the forget, input, and output gates of the model. The LSTM operates in three
stages: In the first stage, the network works with the forget gate to determine the information that must
be ignored or stored in the cell states. The calculation starts by considering the input at the current time
step X; and the previous value of the hidden state H,_; using the sigmoid function o, such as

Jfi = o(WilX,, H_1] + by), 3)

where W, and b, denote the weight and bias of the forget gate, respectively. In the second phase,
the network converts the old cell state C,_; into the new cell state C,. This process selects new
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information in the long-term memory (cell state). To obtain the new cell state value, the calculation
process considers the reference values from the forget, input, and cell update gates, as follows:

i, = o(WilX,, H_11 + b)), “4)

C; = fioCi_y +i; o tanh(W.[X;, H,_1] + b.), (5)

where i,, W;, and b; denote the output, weight, and bias of the input gate, respectively. W, and b. denote
the weights and biases of the cell states, respectively. The symbol o denotes a point product operation.
Once the cell status update is completed, the final step is to determine the value of the hidden state H,.
This process aims for the hidden state to act as a memory, containing information about previous data,
and to be used for making predictions. To determine the value of the hidden state, the calculation must
have the reference value of the new cell state C, and the output gate o, in terms of the weights W, and
the bias b, of the output gate, such as

0, = o(W,[X;, Hi_1] + b,), (6)

H, = o0, o tanh(C,). (N

3.3. Convolutional LSTM (CLSTM)

Building upon the recurrent framework of LSTM, convolutional LSTM (CLSTM) distinguishes
itself by employing convolution operations instead of internal matrix multiplications [18]. This
architectural shift enables the CLSTM to process data while preserving its spatial dimensions (as
illustrated in Figure 2), avoiding the reduction to a flat feature vector that is characteristic of the
standard LSTM. This spatial retention is particularly advantageous for tasks involving grid-like data,
such as images and video frames. Formally,

fi= oW = [X,, H_] + by), &)
i, = oW, = [X,,H_]+ b)), )
C,=fioC,_y +i;otanh(W, = [X,, H,_] + b.), (10)
0, =0(W, = [X;, H_1] + b,), (11)
H, = o0, o tanh(C,), (12)

where * denotes the convolution operator. Integrating convolutional operations within the memory cell
and gate computations in a neural network is a significant advancement in its ability to autonomously
capture spatial hierarchies and patterns in the input data. This architectural enhancement enables
the network to learn local patterns and correlations within the data, thereby fostering a nuanced
understanding of spatial context. Convolutional operations within a memory cell facilitate the
extraction of spatial features at different scales, thereby allowing the model to discern both fine-
and coarse-grained spatial hierarchies. Additionally, the use of convolutional structures in gate
computations helps the model selectively focus on relevant spatial information, promoting more
effective and context-aware learning.
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Figure 2. Block diagram of the convolutional LSTM network.

3.4. Global average pooling

Global average pooling (GAP) is a pooling operation used in convolutional neural networks (CNNs)
that reduces the spatial dimensions of feature maps to a single value per channel. Unlike traditional
pooling methods, such as max or average pooling, which partially reduce dimensionality, global
average pooling collapses each feature map into a single number by taking the average of all elements
in the feature map. Suppose we have a feature map tensor of shape (H;,, W;,, C), where H,, is the height
of the input feature map, W, is the width of the input feature map, and C is the number of channels. For
each channel ¢ € {1, 2, ..., C}, GAP computes the average value across the spatial dimensions H;, X W;,.
The output for each channel is given by

H in Win

> xG, j.e), (13)

i=1 j=1

B 1
Ve = Hin ' Win
where x(i, j, ¢) is the value at the position (i, j) in channel ¢, and y, is the resulting average scalar for
channel c. After applying GAP, the spatial dimensions are reduced to 1 X 1, and the output tensor has
the shape (1, 1, C), which can be interpreted as a vector of size C. This operation typically aggregates
spatial information to reduce the number of model parameters and prevent overfitting.

4. Experimental setup

The primary objective of this experimental analysis is to conduct a comprehensive ablation study to
identify the optimal configurations for the initial and secondary networks. This evaluation is performed
under late feature fusion settings, with and without the incorporation of intermediate feature fusion.
The investigation involves exhaustively evaluating various architectural combinations, including
CNN, LSTM, and CLSTM, while effectively ablating two key design choices: core architectural
components and fusion strategies. Concurrently, training hyperparameters must be carefully tuned,
as both architectural and parametric choices substantially influence classification performance. To
provide a robust evaluation, the performance is assessed using metrics such as accuracy, enabling a
comprehensive understanding of how different configurations behave under various conditions and
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datasets. Finally, the optimal model derived from this ablation study is benchmarked against state-of-
the-art methods to validate its effectiveness.

4.1. Network implementation

Table 1 lists the key parameters governing the configuration of each network, providing essential
insights into the critical choices required for effective optimization. These parameters directly influence
the training dynamics and final model performance. Specifically, the table lists the optimization
algorithm (ADAM), which controls how weights are updated during learning; the loss function
(categorical cross-entropy), which is essential for quantifying the error between the predicted and true
labels in classification tasks; and the batch size, which determines the number of samples processed
before each internal model update. Understanding these settings is fundamental for reproducing and
interpreting network behavior.

Table 1. Network implementation.

Parameter Value

Raw sensor readings for USC-HAD 2 1024 x 3
Raw sensor readings for UCI-HAR 2 128 x 3
Input feature vector for UCI-HAR 1 561 x 1
1D CNN & 1D CLSTM:

no. filters 128

Filter length 16

Filter stride 8

Activation RelU

2D CNN & 2D CLSTM:

no. filters 128

Filter length 2x8

Filter stride 2x4

Activation RelU

LSTM:

no. units 128

Training:

Optimizer ADAM

Loss categorical cross-entropy
Batch size no. training examples/32
no. epochs 500

4.2. Evaluation metrics

Two types of errors can arise: false negatives (FNs), when activities belonging to a specific class are
incorrectly classified as belonging to other classes, and false positives (FPs), when activities from other
classes are incorrectly identified as belonging to a specific class. True positives (TPs) are activities
correctly identified as belonging to the intended class, whereas true negatives (TNs) are activities
correctly classified as not belonging to that class. These values are crucial for calculating various
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classification metrics such as the accuracy [25], i.e.,

TP+TN

Accuracy = %.
TP+TN+FP+FN

(14)

5. Experiments and results

We used a 5-fold data split, a widely adopted approach that balances computational efficiency with
reliable performance estimates. The USC-HAD dataset was partitioned into five subsets, and the model
was trained and evaluated five times, each time using a different subset as the test set and the remaining
four as the training sets. With 14 subjects and 12 activities, this splitting produced 672 (80%) data
recordings for model training and 168 (20%) for testing. Each data recording comprised three vectors
representing the measurements from the three-axis accelerometer and three vectors from the three-axis
gyroscopes. The vector length is standardized to 1024 samples, which is achieved by truncating long
vectors or replicating samples for shorter vectors. Figures 3 and 4 depict the average accuracy achieved
by different network combinations evaluated with and without the intermediate feature fusion strategy.

95 - ‘lllD CcNNIn2D eNNIn1D cLsTMEn2D CLSTMBNLSTM \*
94.294.2

Accuracy (%)

1D CNN LSTM 1D CLSTM
First network

Figure 3. Accuracy of different architectures on the raw sensor readings of the dataset USC-
HAD with late feature fusion.

| [In1D cNNE#2D CNNI1D cLSTMIn2D CLSTMERLSTM | |
94.5 -94.4 94.3

Accuracy (%)

1D CNN LSTM 1D CLSTM
First network

Figure 4. Accuracy of different architectures on the raw sensor readings of the dataset USC-
HAD with late and intermediate feature fusion.
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We conducted experiments using either raw sensor readings or commonly used feature vectors
from the UCI-HAR dataset to characterize individual activities. The dataset, which contained six
distinct activity classes, was partitioned into training and testing sets, resulting in 7352 data samples
(either raw sensor readings or feature vectors) used for training the model and 2947 samples reserved
for testing. Figures 5 and 6 present the test accuracy obtained using raw sensor readings across
various combinations of network architectures evaluated using the two fusion strategies. They
provide a visual comparison of how the integration of information at different processing stages
affects overall classification performance. Table 2 summarizes the detailed accuracy results for each
network combination on commonly used feature vectors, allowing for a more granular analysis of the
configurations that yield the best recognition rates for the UCI-HAR dataset.

g0 |- {111D CNNE#2D CNNIH1D CLSTMIN2D CLSTMERLSTM | |

Accuracy (%)

1D CNN LSTM 1D CLSTM
First network

Figure 5. Accuracy of different architectures on the raw sensor readings of the dataset UCI-
HAR with late feature fusion.
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Figure 6. Accuracy of different architectures on the raw sensor readings of the dataset UCI-
HAR with late and intermediate feature fusion.
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Table 2. Accuracy (%) on features of the dataset UCI-HAR.

First Net Second Net No intermediate With intermediate

1D CNN 1D CNN 96.30 96.75
1D CNN LSTM 94.52 94.65
1D CNN ID CLSTM 95.76 95.81
LSTM LSTM 89.40 87.36
LSTM 1D CNN 92.45 92.00
LSTM 1D CLSTM 93.80 92.90
1D CLSTM 1D CLSTM 95.75 95.54
ID CLSTM 1D CNN 95.33 95.15
1D CLSTM LSTM 93.61 92.91

5.1. Discussion

Figures 3 and 4 show the accuracy of various architectures on the raw sensor readings of the
USC-HAD dataset, highlighting the effectiveness of two-stage individual or hybrid networks with or
without intermediate feature fusion. In general, fusion improves the accuracy for most network stage
pairings; however, some combinations show only marginal improvements or even slight decreases in
accuracy when fusion is applied. The highest accuracy of 94.40% is attained when both the first and
second network stages are composed of 1D CNNs with intermediate fusion. The second- and third-
highest accuracies are achieved by architectures using individual 1D CLSTMs or a hybrid combination
of LSTM and 1D CNN, both with fusion. Comparable accuracy is observed for models based on
individual 1D CNNs, as well as hybrid combinations of 1D and 2D CNNs or LSTM with 2D CNN
with no fusion.

Notably, architectures based on 1D operations (1D CNN, 1D CLSTM) consistently outperformed
their 2D counterparts. This indicates that for the inertial measurement unit (IMU) data used in this
study, which is fundamentally a one-dimensional temporal signal, 1D convolutions are more effective
at extracting discriminative features. Although 2D architectures can learn intersensor correlations, they
introduce additional complexity without a commensurate performance gain. This trade-off underscores
the advantages of 1D models, which provide superior efficiency and accuracy for the target task.

Figures 5 and 6 show the accuracy of various models on the raw sensor readings of the UCI-
HAR dataset, comparing the models with and without intermediate fusion. The results indicate that
network architectures without fusion achieve accuracies ranging from 83% to 89%, with the highest
performance observed for a hybrid combination of LSTM and 2D CNN. Models that incorporate
intermediate fusion generally exhibit enhanced accuracy compared to their non-fused counterparts,
underscoring the advantages of combining complementary features extracted by different networks.
The top-performing models achieve accuracies of 88.90% and 88.50%, realized through the integration
of LSTM with 2D CNN and 1D CNN with 2D CNN, respectively, using intermediate fusion.

Table 2 presents the accuracies of the different network architectures on the feature vectors of
the UCI-HAR dataset. The highest overall accuracy of 96.75% is achieved when using a 1D
CNN, followed by another 1D CNN with the intermediate layer enabled. In general, configurations
involving 1D CNNs tend to outperform those involving LSTM or 1D CLSTM as the second stage,
suggesting that the convolutional layers are more effective in capturing spatial features in this context.
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Additionally, the use of intermediate fusion slightly improves the accuracy across most configurations,
except in cases involving LSTM as the second network, where it often leads to a reduced improvement.
These results highlight the importance of network architecture and feature fusion in achieving optimal
accuracy.

5.2. Comparison with state-of-the-art methods

To benchmark the performance of the proposed dual-stage fusion architecture, we compared it
with several established and recent state-of-the-art (SOTA) methods from the literature on the two
benchmark datasets. This comparison is crucial for validating the effectiveness and competitiveness of
the proposed approach. Table 3 presents the classification accuracies of the different deep models.

The table includes performance results from a heterogeneous CNN (CNN+HC) that uses
grouped kernels for recalibration [7], a hierarchical LSTM (H-LSTM) designed for time-frequency
characteristics [13], and standard CNN-LSTM models that combine spatial and temporal feature
extractors [11, 12, 15]. Furthermore, we compare against a more complex multi-head CNN-LSTM
variant [14], which uses parallel CNNs for different sensors before temporal modeling, representing a
strong and sophisticated baseline.

On the USC-HAD dataset, our proposed approach (a dual-stage 1D CNN with intermediate fusion)
achieves the highest reported accuracy of 94.40%, outperforming all existing methods, including the
complex CNN+HC and various CNN-LSTM implementations. Similarly, for the UCI-HAR dataset,
our model reaches an impressive accuracy of 96.75%, surpassing not only H-LSTM and standard
CNN-LSTM architectures but also the more advanced multi-head CNN-LSTM variant.

Notably, many of the compared methods only report results on one of the two datasets, whereas
our model demonstrates consistent and superior performance across both. This underscores its strong
generalization capability and robustness, validating the effectiveness of the proposed dual-stage feature
fusion architecture against a range of SOTA benchmarks.

Table 3. Accuracy (%) comparison.

Method USC-HAD UCI-HAR
CNN+HC [7] 90.67 -
H-LSTM [13] - 91.65

CNN-LSTM [12] 90.88  [15] 92.83
[11]90.91 [14]95.76
Proposed 94.40 96.75

6. Conclusions and future work

This study systematically explored a human activity recognition (HAR) system that employs late
and intermediate feature fusion within individual and hybrid deep neural network models. Through
a comprehensive ablation study, we evaluated the impact of architectural components (CNN, LSTM,
CLSTM) and fusion strategies across 15 different network configurations. By integrating multimodal
data from multiple sensors and combining features across different network levels, the proposed
methodology investigates the structures of various architectures. The experimental results on the two
benchmark HAR datasets demonstrated the superiority of convolutional modeling using CNNs and
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convolutional LSTMs over linear modeling using LSTMs. Moreover, our comprehensive evaluation
revealed that 1D architectural components (1D CNN and 1D CLSTM) were consistently more
effective than 2D components for processing the inherent temporal structure of IMU sensor data,
achieving the highest accuracy with greater parameter efficiency. Furthermore, the ablation study
conclusively demonstrated that fusing features at an intermediate stage consistently enhanced the
classification accuracy over using late fusion alone. Finally, benchmarking against state-of-the-art
methods confirmed that our optimal model (dual 1D CNNs with intermediate fusion) achieved superior
performance on both datasets, highlighting its effectiveness and generalizability.

This study established a strong baseline using concatenation for its simplicity and effectiveness in
our architectural investigation. Future research will explore more sophisticated, adaptive feature fusion
mechanisms, such as attention-based fusion, to dynamically weight the contributions from different
sensors and network levels, potentially further boosting performance and robustness. Furthermore,
although the proposed dual-stage architecture demonstrates high accuracy, its computational
complexity presents a challenge for deployment on low-power edge computing devices. Therefore,
future work will focus on optimizing this framework using techniques such as model pruning,
quantization, and neural architecture search to reduce its memory footprint and latency, facilitating
its application in real-time HAR systems.
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