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Abstract: In this paper, we present the Enhanced Mountain Gazelle Optimizer (EnMGO), a new 

variant of the mountain gazelle optimizer developed to address the persistent challenge of balancing 

exploration and exploitation in high-dimensional optimization. While earlier modifications of the 

algorithm focused on reformulating the control F-parameter to improve stability, they remained limited 

in adaptability and convergence efficiency. The proposed EnMGO introduces two modifications: An 

inertia weight based on a chaotic random technique to improve global exploration, and an 

exponentially decreasing formulation of the F-parameter to enhance local exploitation. These 

mechanisms create a more adaptive search process capable of efficiently navigating complex solution 

spaces. The algorithm was evaluated on a set of standard benchmark functions and engineering design 

problems, and the results demonstrated that EnMGO consistently outperforms previous variants, 

achieving faster convergence and higher-quality solutions. It achieved better results in approximately 

86.96% of the total 23 benchmark functions considered in the study, thereby highlighting its robustness 

and effectiveness. Furthermore, in the application to engineering design optimization problems, the 

EnMGO consistently outperformed the comparative algorithms across both design cases, reaffirming 

its potential as a highly reliable and efficient optimization tool. Based on the performance, the potential 

of EnMGO can be explored for application in real engineering optimization problems. 
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1. Introduction 

Optimization constitutes a critical aspect of problem-solving across a broad spectrum of scientific, 

engineering, and industrial domains [1]. The main goal is to identify the most efficient, cost-effective, 
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or high-performing solution from a defined set of feasible alternatives, typically under the presence of 

multiple conflicting objectives and constraints [2]. Traditional mathematical optimization techniques, 

although foundational, often fall short of effectively addressing real-world problems that are non-linear, 

multi-modal, and high-dimensional in nature [3]. These challenges have led to the increasing adoption 

of metaheuristic algorithms, which are widely recognized for their robustness, adaptability, and 

capability to yield near-optimal solutions within reasonable computational timeframes [4]. 

Metaheuristic algorithms are generally inspired by natural phenomena, biological evolution, or 

collective intelligence observed in social or ecological systems [5]. Notable examples include genetic 

algorithms (GA), which draw from principles of natural selection and genetics [6]; particle swarm 

optimization (PSO), modeled on the collective motion of bird flocks and fish schools [7]; and grey 

wolf optimizer (GWO), which simulates the leadership hierarchy and cooperative hunting behavior of 

grey wolves [8]. Over the years, a myriad of such algorithms have been proposed [9], each attempting 

to address specific performance limitations associated with exploration, exploitation, convergence rate, 

or stagnation in local optima [10,11]. 

Among these, the mountain gazelle optimizer (MGO) has emerged as a recent addition, inspired 

by the behavioral ecology of mountain gazelles [12]. The MGO algorithm models critical aspects of 

gazelle behavior such as territorial defense, group dynamics, and foraging patterns. Although MGO 

demonstrated commendable potential in solving various optimization problems, several performance 

issues remain inherent in its original formulation [13]. These include an insufficient balance between 

global exploration and local exploitation, vulnerability to premature convergence, and suboptimal 

performance when applied to high-dimensional search spaces [14]. 

In response to these challenges, a modified version of the MGO— termed the improved f-

parameter mountain gazelle optimizer (IFMGO)—was introduced in a previous study [15]. The 

IFMGO replaced the original MGO's F-parameter with a new mathematical formulation that improved 

the dynamic balance between exploration and exploitation. Comprehensive testing on both high- and 

fixed-dimensional benchmark functions demonstrated that IFMGO significantly outperforms both the 

base MGO and PSO in terms of convergence accuracy, solution stability, and computational efficiency 

[15]. The enhancements introduced in IFMGO therefore laid a solid foundation for further 

developments in the MGO framework. 

Building upon the foundation established by IFMGO, we propose a more advanced variant of the 

MGO, herein referred to as the enhanced mountain gazelle optimizer (EnMGO). This enhancement 

introduces two key modifications to further elevate the algorithm’s global search performance and 

resilience against stagnation. The first is the incorporation of an adaptive inertia weight strategy, 

inspired by the PSO algorithm, which dynamically adjusts the momentum of search agents during the 

optimization process [16]. This mechanism facilitates a more effective trade-off between exploration 

and exploitation throughout the iterations, enabling the algorithm to escape local optima and converge 

more efficiently toward global solutions. 

The second enhancement involves the integration of chaotic mapping-based sequences into the 

position update mechanism. Chaotic maps, known for their deterministic yet unpredictable nature, are 

employed to introduce controlled randomness into the search process [17]. This increases population 

diversity and mitigates premature convergence by enabling the algorithm to more thoroughly explore 

the search space, particularly in high-dimensional and complex landscapes. 

Our primary objective of this research is to rigorously evaluate the effectiveness of these 

enhancements in improving the convergence behavior, solution accuracy, and robustness of the MGO 

framework. The performance of EnMGO is benchmarked against algorithms using a comprehensive 

set of standardized optimization functions. Through this investigation, we aim to contribute a more 
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scalable and generalizable optimization tool capable of addressing a wider class of real-world problems 

across domains. 

2. Mountain gazelle optimization 

In this study, we provide a new version of the MGO called the EnMGO. It is an improvement to 

the original MGO, which is inspired by the social life of the mountain gazelles in wildlife. Various 

modifications are proposed and integrated into the MGO to form the EnMGO. A comprehensive test 

on the EnMGO is done, and the performance is compared to the MGO and another version to justify 

the improved performance of the proposed EnMGO on standard benchmark test functions. 

The original MGO draws inspiration from the mountain gazelles [13]. They are a type of mammal 

that lives in the Arabian Peninsula and nearby territories [18]. Although they are spread across a wide 

coverage, they have a relatively low population density [10]. This species is commonly found in 

habitats where Robinia trees grow [19]. Mountain gazelles are highly territorial, maintaining territories 

at considerable distances from one another [19]. They typically form three (3) types of groups: The 

herds of mother gazelles and their young ones, the groups of young male gazelles, and the solitary 

adult male gazelles within their respective territories [10]. The male gazelles often engage in fights, 

primarily competing for resources than for mates [18]. In these encounters, younger males tend to use 

their horns more frequently than older or the dominant males do. These gazelles can migrate by 

traveling over 120 kilometers in search of good food [20]. They are also known for their exceptional 

speed, capable of running about 100 meters at an average speed of 80 km/h [18]. The social behavior 

of the mountain gazelles in the wild was mimicked to develop the original MGO. The key behavioral 

components were modeled mathematically to form the algorithm. The mathematical modeling is 

presented in the next section. 

Mathematical Model of MGO: The MGO algorithm is modeled considering the concept of the 

social behavior of mountain gazelles presented earlier, and their natural habitat [21]. It captures the 

major aspects of their grouping dynamics, which consist of the behavior of young male gazelles, the 

herds of mother gazelles and babies (maternity), the solitary and territorial nature of male gazelles, as 

well as the migration patterns to search for good food [13,22]. The mathematical framework is 

structured as follows. 

2.1. The Territorial Solitary Male (TSM) phase 

The male adults among the gazelles protect their prestigious territories against strange intruders 

who attempt to take over their territory or pose a possible danger to the members of the territory. This 

ideology is mathematically modeled in Eq (1) [13]. 

𝑇𝑆𝑀 = 𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 − |(𝑟𝑖1 × 𝐵𝐻 − 𝑟𝑖2 × 𝑋(𝑡)) × 𝐹| × 𝐶𝑜𝑓𝑟,     (1) 

where 𝑟𝑖1 and 𝑟𝑖2 are integers selected randomly to be either 1 or 2. 𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 is the position vector 

representing the function value of the best male gazelle. 

The determination of values of variables BH, F, and Cofr is based on Eqs (2)–(4), respectively. 

The BH parameter represents a young male herd coefficient vector, Cofr is a randomly selected 

coefficient vector (with the r signifying the randomness) updated in each iteration and used to increase 

the search capability, and 𝑋(𝑡) is the position of the gazelle vector. 

𝐵𝐻 = 𝑋𝑟𝑎 × 𝑟1 +𝑀𝑝𝑟 × 𝑟2,       𝑟𝑎 = {
𝑁

3
, … , 𝑁}.      (2) 
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Variable 𝑋𝑟𝑎 represents a randomly selected solution (young male) within the specified range ra, 

while 𝑀𝑝𝑟 denotes the average number of search agents. N refers to the total number of gazelles, 𝑟1and 

𝑟2 are randomly generated numbers in the range (0, 1) [18]. 

𝐹 = 𝑁1(𝐷) × (2 − 𝐼𝑡𝑒𝑟 × (
2

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)).        (3) 

Here, variable N1 consists of randomly generated values corresponding to the problem’s 

dimension (D). It is calculated based on a standard distribution approach. The terms Iter and MaxIter 

depict the current iteration and the maximum number of iterations, respectively [18]. 

𝐶𝑜𝑓𝑖 =

{
 
 

 
 (𝑎 + 1) + 𝑟3,

𝑎 × 𝑁2(𝐷),

𝑟4(𝐷),

𝑁3(𝐷) × 𝑁4(𝐷)
2 × cos((𝑟4. 2) × 𝑁3(𝐷)),

      (4) 

where 𝑟3  and 𝑟4  represent terms with random values (numbers) generated from the range (0, 1). 

Moreover, parameters 𝑁2, 𝑁3, and 𝑁4 are sets of random numbers having the size of the problem 

function. The i represents the iteration, while D retains its purpose as the problem dimension [18]. 

Variable a is a value that is determined using Eq (5) at every iteration [18]. 

𝑎 = −1 + 𝐼𝑡𝑒𝑟 × (
−1

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
).        (5) 

2.2. The Maternity Herd (MH) phase 

Just like other mammals in the wildlife, the mother gazelles have a protective instinct to keep 

their offspring safe. The mechanism applied by the mother gazelles in this context is expressed by 

employing mathematical modeling presented in Eq (6) [19]. 

𝑀𝐻 = (𝐵𝐻 + 𝐶𝑜𝑓1,𝑟) + (𝑟𝑖3 ×𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 − 𝑟𝑖4 × 𝑋𝑟𝑎𝑛𝑑) × 𝐶𝑜𝑓1,𝑟.    (6) 

In Eq (6), Xrand is the position of a function value of a randomly selected gazelle from the 

population expressed as a vector [19], and variables ri3 and ri4 are integers randomly selected as either 1 

or 2. The term 𝐶𝑜𝑓1,𝑟 is a coefficient randomly selected from the several formulations in Eq (4) during 

the first iteration, where subscript 1,r indicates the first iteration and randomness, respectively. The 

term introduces randomness and scaling to enhance diversity in the solution space. 

2.3. The Bachelor Male Herds (BMH) phase 

Young male gazelles create their new territories and try to win over some female gazelles to join 

them in the newly created territories [19]. The strategy of creating new territories by these young adult 

male gazelles is modeled in Eq (7). 

𝐵𝑀𝐻 = (𝑋(𝑡) − 𝐷) + (𝑟𝑖5 ×𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 − 𝑟𝑖6 × 𝐵𝐻) × 𝐶𝑜𝑓𝑟     .    (7) 

In Eq (7), variable X(t) represents the values in vector form of the gazelle in the current iteration. 

Variables 𝑟𝑖5 and 𝑟𝑖6 are random values chosen randomly from (1, 2). The 𝑟6 denotes a value randomly 

chosen from the range (0, 1). Cofr is a randomly selected coefficient vector updated in each iteration 

and used to increase the search capability. Finally, the value of variable 𝐷 is calculated using Eq (8). 

𝐷 = (|𝑋(𝑡)| + |𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒|) × (2. 𝑟6 − 6).      (8) 
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2.4. The Migration in Search of Food (MSF) phase 

This phase involves the habit of roaming randomly in search of nutritious food varieties by the 

mountain gazelles, especially during periods of the year when food is relatively scarce. This 

mechanism of searching by a random movement is modeled in Eq (9) [19]. This model generates 

values randomly within the search space. 

𝑀𝑆𝐹 = (𝑢𝑏 − 𝑙𝑏) × 𝑟7 + 𝑙𝑏.        (9) 

Parameters lb and ub indicate the search space or range, with the first variable representing the 

lower search bound, while the second variable represents the upper or maximum search bound. The 

variable 𝑟7 represents a random number chosen such that its maximum cannot be greater than 1 and its 

possible smallest value cannot be less than 0 [19]. 

3. Enhanced mountain gazelle optimization 

In this section, we present the modifications carried out for selected parts of the MGO algorithm 

that led to the development of the EnMGO algorithm. 

3.1. The proposed modification 

The proposed EnMGO is an improved version of the original MGO. It takes the same inspiration 

from the gazelles’ social lifestyle, modeled mathematically in Equations from (1) to (9), with some 

modifications introduced to effectively boost its performance. The proposed modifications introduced 

are comprehensively presented below. 

The TSM phase plays a major role in the population update operators of the algorithm. The 

mathematical representation is presented as in Eq (1) [13]. This update phase is one of the keys to 

determining the performance of the MGO algorithm. Hence, positive amendments in this phase can 

lead to enhanced performance. 

Two major amendments are proposed in this modification to improve the TSM phase for better 

global performance. They include an alternative approach for determining the values of the factor F 

parameter in Eq (1) to improve the exploitation, and an introduction of an adaptive inertia weight to 

improve the exploration quality of the algorithm. 

3.1.1. Alternative F parameter 

In the original MGO algorithm, the value of the F parameter is determined using Eq (3) [13]. The 

values produced by this equation start with 7.3743 and exponentially decrease to the lowest value of 1. 

The decreasing characteristics of the value of the F parameter are illustrated below in Figure 1. 

The values of the F parameter presented in Figure 1 greatly influence the convergence process of 

the MGO algorithm. It generates exponentially decreasing factors that significantly determine the 

amount of deduction that needs to be done on the best solution obtained so far for a possible better 

solution. 
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Figure 1. The original varying characteristics of the F parameter. 

The range of the F parameter values indicates substantial deductions during the algorithm’s 

execution [15]. However, it has been established that smaller update changes in the best solutions give 

better chances of obtaining the global solution to the optimization problems, but with slow 

convergence speed [20]. While larger update changes lead to faster convergence but very high 

tendency to skip the global solution of the optimization problem. The set of values for the F parameter, 

as presented in Figure 1, shows that the original MGO algorithm has larger update changes, which 

cause it to struggle to produce results very close to the global solutions. 

An alternative approach for the determination of the F parameter values is proposed. This 

approach is based on the natural exponent inertia weight (NEIW) strategy [16]. The proposition leads 

to a new way of determining the value of the F parameter at each iteration, which is given in Eq (10). 

𝐹 = 𝑤1 + (𝑤2 −𝑤1) × 𝑒
−(

𝐼𝑡𝑒𝑟

(
𝑀𝑎𝑥𝐼𝑡𝑒𝑟

10 )
)

,       (10) 

where the values of 𝑤1, and 𝑤2 are given as 0.00009 and 0.9, representing the possible lowest and 

highest that could be produced by the equation, respectively. The maximum iterations and the iteration 

count are also represented as MaxIter and Iter, respectively. The characteristics indicating how the 

value changes with respect to the iterations are illustrated below for 500 iterations in Figure 2. 

 

Figure 2. Varying characteristics of the proposed F parameter. 
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As shown in Figure 2, the proposed values range from a maximum of 0.9 and decrease 

exponentially to closer to 0. This ensures that a smaller magnitude of difference is made for the best 

result at every iteration to enhance the chances of obtaining global solutions. Hence, the exploitation 

by the algorithm is improved. 

3.1.2. Introduction of Inertia Weight 

The first modification proposed above enhances the algorithm’s ability to obtain global solutions 

for optimization problems. However, it has the possibility of reducing the convergence speed, which 

means the exploration quality is poor. In this second modification, a chaotic random inertia weight 

(CRIW) is proposed to augment this possible negative impact of the first modification by introducing 

a chaotic random search [16]. The weight 𝜔 is integrated into Eq (1) and it modifies into Eq (11) below: 

𝑇𝑆𝑀 = 𝜔 ×𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 − |(𝑟𝑖1 × 𝐵𝐻 − 𝑟𝑖2 × 𝑋(𝑡)) × 𝐹| × 𝐶𝑜𝑓𝑟,    (11) 

where F is determined at every iteration based on Eq (10), and the value of 𝜔 is calculated based on 

the CRIW function given below in Eq (12). All other notations retain their meaning defined before. 

𝜔(𝑡) = 0.5 × 𝑟𝑎𝑛𝑑 + 0.5𝑧,        (12) 

where 𝜔(𝑡) is the weight at iteration 𝑡 , 𝑟𝑎𝑛𝑑 is a randomly generated value within the range of 0 to 1, 

and 𝑧 is a constant integer. 

By considering the value of 𝑧 to be 1, and varying values of the proposed weight (𝜔), values for 

the 500 iterations are illustrated in Figure 3. 

 

Figure 3. Varying characteristics of 𝜔. 

As illustrated in Figure 3, the proposed weight value changes randomly within a range of 0.5 to 1, 

ensuring a possible jump from one value to another. This improves the algorithm’s exploration 

capability. 

The two proposed modifications improve the algorithm’s exploitation and exploration techniques, 

respectively, greatly enhancing its ability to solve different optimization problems [16]. The 

implementation guide/procedure of the EnMGO is presented in Figure 4 as a flowchart. 

Figure 4 presents the systematic steps showing a comprehensive procedure for the 

implementation of the proposed EnMGO algorithm. Following these steps in any appropriate coding 

language will give the expected outcome. 
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Figure 4. Implementation flowchart of the EnMGO algorithm. 

3.2. Testing on standard benchmark functions 

To demonstrate the enhanced performance of the EnMGO, it is tested using 23 standard 

benchmark test functions that were employed in the literature of the original MGO algorithm [23]. 

These functions are a reliable basis for assessing the algorithm’s efficiency across optimization 

challenges. The first 7 test functions (F1–F7) are high-dimensional unimodal optimization problems. 

These functions are particularly useful for evaluating an algorithm’s exploitation capability and its 

ability to scale effectively in problems with a single global optimum. The ability to efficiently converge 

to the best solution is a crucial aspect of optimization algorithms, and these functions provide insights 

into the EnMGO algorithm’s strength in this regard. 

The second category includes 6 benchmark test functions (F8–F13), which represent high-

dimensional multimodal optimization problems. These test functions contain multiple local optimum 

solutions and are designed to assess how well an optimization algorithm can maintain a favorable 

exploration and exploitation balance [13]. An efficient algorithm should not only search broadly across 
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the solution space but in addition also refine its search to converge toward the best possible solution. 

By evaluating EnMGO with these functions, its ability to avoid premature convergence and explore 

diverse regions of the search space can be examined. 

The final category consists of 10 fixed-dimensional benchmark test functions (F14–F23), which 

are suitable for testing an algorithm’s exploration ability and its capacity to handle problems with 

multiple local optima solutions [13]. These test functions are essential for analyzing the diversity of 

solutions generated by the EnMGO algorithm and determining its effectiveness in overcoming 

complex optimization challenges. 

By considering all three categories of standard benchmark test functions, we provide a 

comprehensive assessment of the EnMGO’s performance as compared to that of the original MGO 

algorithm and an existing variant. 

The proposed EnMGO algorithm is implemented by coding and executed in a MATLAB 

environment using an HP Pavilion laptop (HP EliteBook). The implementation involves coding and 

running simulation tests on the standard benchmark test functions to evaluate the algorithm’s 

performance on each of the functions. On each standard benchmark test function, the algorithm is 

tested 30 times independently. The specific parameter settings of the pre-requisite variables used for 

the simulations are detailed in Table 1 for effective comprehension. 

Table 1. Settings of parameters 

Parameter Value 

Size of population 30 

Maximum number of 

Iterations 

500 

Number of Simulations 30 

The detailed information on the standard benchmark test functions used in the test is accurately 

presented in Table 2 [13]. It presents the mathematical expressions of the functions for clarity. The 

range is also presented to indicate the numerical values search space within which the algorithm 

operates to find optimal solutions for the test functions. The dimensions are also captured accordingly 

to show the problem dimensions under each function, which can be interpreted as the number of 

variables in the given optimization problem. Finally, the global solutions (Fmin) of the various test 

functions are determined. They are the best possible solutions for the test functions, and they are the 

benchmark for assessing any solution produced by an algorithm on the said test function. The relatively 

closer the results produced by the algorithm are to the global solution, the better the performance. 

Table 2. Details of benchmark functions. 

No. Equations Range/Dimension Fmin 

 High-dimensional unimodal benchmark functions 

F1 
𝑓(𝑥) =∑𝑥𝑖

2

𝑑

𝑖=1

 
[-100, 100]/ 30 0 

F2 
𝑓(𝑥) =∑|𝑥𝑖| +∏|𝑥𝑖|

𝑑

𝑖=1

𝑑

𝑖=1

 
[-10, 10]/ 30 0 

F3 

𝑓(𝑥) =∑(∑𝑥𝑗

𝑖

𝑗=1

)

𝑑

𝑖=1

2

 

[-100, 100]/ 30 0 

F4 𝑓(𝑥) = 𝑚𝑎𝑥𝑖{|𝑥𝑖|,1 ≤ 𝑖 ≤ 𝑑} [-100, 100]/ 30 0 

Continued on next page 
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No. Equations Range/Dimension Fmin 

F5 
𝑓(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖

2)2 + (𝑥𝑖 − 1)
2]

𝑑−1

𝑖=1

 
[-30, 30]/ 30 0 

F6 
𝑓(𝑥) =∑(|𝑥𝑖 + 0.5|)

2

𝑑

𝑖=1

 
[-100, 100]/ 30 0 

F7 
𝑓(𝑥) =∑(𝑖𝑥𝑖

4

𝑑

𝑖=1

+ 𝑟𝑎𝑛𝑑𝑜𝑚0,1) 
[-1.28, 1.28]/ 30 0 

 High-dimensional multimodal benchmark functions 

F8 
𝑓(𝑥) = −∑(𝑥𝑖 𝑠𝑖𝑛(√|𝑥𝑖|))

𝑑

𝑖=1

 
[-500, 500]/ 30 -12,569 

F9 
𝑓(𝑥) = 10𝑑 +∑[𝑥𝑖

𝑑 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖)]

𝑑

𝑖=1

 
[-5.12, 5.12]/ 30 0 

F10 

𝑓(𝑥) = −20 𝑒𝑥𝑝

(

 −0.2√
1

𝑑
∑𝑥𝑖

2

𝑑

𝑖=1
)

 − 𝑒𝑥𝑝(
1

𝑑
∑𝑐𝑜𝑠 2𝜋𝑥𝑖

𝑑

𝑖=1

) + 20 + 𝑒 

[-32, 32]/ 30 0 

F11 
𝑓(𝑥) =

1

4000
∑𝑥𝑖

2 −∏𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
) + 1

𝑑

𝑖=1

𝑑

𝑖=1

 
[-600, 600]/ 30 0 

F12 
𝑓(𝑥) =

𝜋

𝑑
{10 𝑠𝑖𝑛(𝜋𝑦1) +∑(𝑦𝑖 − 1)

2[1 + 10 𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] + (𝑦𝑑 − 1)
2

𝑑−1

𝑖=1

} 

𝑦𝑖 = 1 +
𝑥𝑖 + 1

4
 

𝑈(𝑥𝑖 , 𝑎, 𝑘,𝑚) = {

𝑘(𝑥𝑖 − 𝑎)
𝑚, 𝑥𝑖 > 𝑎

0,−𝑎 < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)
𝑚, 𝑥 < −𝑎

 

[-50, 50]/ 30 0 

F13 
𝑓(𝑥) = 0.1 {𝑠𝑖𝑛2(3𝜋𝑥𝑖) +∑(𝑥𝑖 − 1)

2[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)] + (𝑥𝑑 − 1)
2

𝑑

𝑖=1

}

+∑𝑈(𝑥𝑖 , 5,100,4)

𝑑

𝑖=1

 

[-50, 50]/ 30 0 

 Fixed-dimensional multimodal benchmark functions 

F14 
𝑓(𝑥) = [

1

500
+∑

1

𝑖 + ∑ (𝑥𝑗 − 𝑎𝑗,𝑖)
62

𝑗=1

25

𝑖=1

]

−1

 
[-65.53, 65.53]/ 2 0.998 

F15 
𝑓(𝑥) =∑[𝑎𝑖 −

𝑥1(𝑏𝑖
2 + 𝑏𝑖𝑥2)

𝑏𝑖
2 + 𝑏𝑖𝑥3 + 𝑥4

]

2𝑑

𝑖=1

 
[-5, 5]/ 4 0.00030 

F16 𝑓(𝑥) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1
6 + 𝑥1𝑥2 − 4𝑥2

2 + 4𝑥2
4 [-5, 5]/ 2 -1.0316 

F17 
𝑓(𝑥) = (𝑥2 −

5.1

4𝜋2
𝑥2 +

5

𝜋
𝑥1 − 6)

2

+ 10 (1 −
1

8𝜋
) 𝑐𝑜𝑠 𝑥1 + 10 

[-5, 0] [10, 15]/ 2 0.398 

F18 𝑓(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)
2(19 − 14𝑥1 + 3𝑥1

2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2
2)]. 

[30 + (2𝑥1 − 3𝑥2)
2. (18 − 32𝑥1 + 12𝑥1

2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2)] 

[-5, 5]/ 2 3 

F20 
𝑓(𝑥) = −∑𝑎𝑖 𝑒𝑥𝑝(−∑𝑏𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)

2
6

𝑗=1

)

4

𝑖=1

 
[0, 1]/ 6 -3.32 

Continued on next page 
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No. Equations Range/Dimension Fmin 

F21 
𝑓(𝑥) = −∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)

𝑇 + 𝑐𝑖]
−1

5

𝑖=1

 
[0, 10]/ 4 -10.1532 

F22 
𝑓(𝑥) = −∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)

𝑇 + 𝑐𝑖]
−1

7

𝑖=1

 
[0, 10]/ 4 -10.4028 

F23 
𝑓(𝑥) = −∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)

𝑇 + 𝑐𝑖]
−1

10

𝑖=1

 
[0, 10]/ 4 -10.5363 

3.3. Testing on engineering design problems 

The EnMGO is tested on some engineering design problems, and the performances on these 

problems are compared to the performance of the original MGO and IFMGO reported in [19] to further 

establish the effectiveness of the EnMGO in solving real-world optimization problems. The 

engineering designs include: The pressure vessel design problem (PVDP) and the three-bar truss 

design problem (TTDP). 

3.3.1. The pressure vessel design problem (PVDP) 

The pressure vessel design problem is a widely used benchmark for testing optimization 

algorithms, aiming to minimize the manufacturing cost of a cylindrical pressure vessel with 

hemispherical heads. This involves optimizing four key design variables: The discrete thicknesses of 

the shell (x1) and head (x2), and the continuous inner radius (x3) and cylindrical length (x4). The 

problem is challenging due to its non-linear objective function and constraints (related to stress, 

minimum thickness, volume, and length), mixed discrete and continuous variables, and the presence 

of multiple local optima, making it an excellent test for an algorithm's ability to handle complexity, 

constraints, and find a globally optimal solution in a practical engineering context. The optimization 

problem is expressed mathematically in (13). 

𝑓(𝑥) = 0.622𝑥1𝑥3𝑥4 + 1.778𝑥2𝑥3
2 + 3.1661𝑥1

2𝑥4 + 19.84𝑥1
2𝑥3,    (13) 

where 𝑥1, 𝑥2, 𝑥3, and 𝑥4 represent the design variables. 

Constraints: 

{
 
 

 
 

𝑔1(𝑥) = −𝑥1 + 0.0193𝑥3 ≤ 0,

𝑔2(𝑥) = −𝑥2 + 0.00954𝑥3 ≤ 0,

𝑔3(𝑥) = −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3 + 1296000 ≤ 0,

𝑔
4
(𝑥) = 𝑥4 − 240 ≤ 0.

      (14) 

Variables bound: 

{
0.0625 ≤ 𝑥1, 𝑥2 ≤ 6.1875,

10 ≤ 𝑥3, 𝑥4 ≤ 200.
        (15)  

3.3.2. The three-bar truss design problem (TTDP) 

The three-bar truss design problem involves minimizing the total weight or volume of a simple 

three-bar truss (Figure 5) by optimizing the cross-sectional areas of its bars while adhering to critical 

constraints like maximum allowable stress in each bar and potential displacement limits. This problem 
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is popular because its continuous, constrained, and often non-linear nature provides a realistic yet well-

understood challenge for evaluating the effectiveness of metaheuristics in finding optimal solutions 

within a complex search space. The objective function is given in Eq (16) below: 

Minimize 𝑓(𝑥) = (2√2𝑥1 + 𝑥). 𝑙.        (16) 

Constraints: 

{
 
 

 
 𝑔1(𝑥) =

√2𝑥1+𝑥2

√2𝑥1
2+2𝑥1𝑥2

𝑃 − 𝜎 ≤ 0,

𝑔2(𝑥) =
𝑥2

√2𝑥1
2+2𝑥1𝑥2

𝑃 − 𝜎 ≤ 0,

𝑔31(𝑥) =
1

√2𝑥2+𝑥1
𝑃 − 𝜎 ≤ 0,

        (17) 

where 0 ≤ 𝑥1, 𝑥2 ≤ 1, 𝑙 = 100𝑐𝑚, 𝑃 = 2𝐾𝑁𝑐𝑚−2, 𝜎 = 2𝐾𝑁𝑐𝑚−2. 

 

Figure 5. The three-bar truss design. 

4. Results and discussion 

4.1.  Performance on standard benchmark test functions 

The EnMGO was executed 30 times for each of the 23 test functions, and key statistical metrics 

(best, mean, worst, and standard deviation (STD)) were recorded [18]. The performances of the 

EnMGO on the benchmark functions are compared with those of two other algorithms reported in the 

literature [13]. The comparative analysis of EnMGO, MGO, and IFMGO is presented based on various 

types of test functions. 

For the performance on high-dimensional unimodal functions, the simulation outcome of the 

proposed EnMGO is compared to the original MGO [13] and another variant of the MGO called the 

IFMGO [15] on the unimodal high-dimensional functions in Table 3. The comparison is presented in 

Table 4, where the best result under each function for the various statistical indicators is bolded. 

The results presented in Table 3 indicate that the proposed EnMGO outperformed the MGO and 

the IFMGO exceptionally by producing the global optimal solutions on F1–F4. It also performed better 

than the MGO and the IFMGO for function F7. However, the IFMGO produced better results for 

functions F5 and F6 by outperforming the MGO and the proposed EnMGO. The proposed EnMGO 

performed relatively better by outperforming the other algorithms for five (5) benchmark functions of 

the seven (7) tested, representing about 71.4% good performance. This justifies the proposed 

EnMGO’s exploitation power in solving optimization problems with one global solution. 
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Table 3. Results on unimodal functions. 

Function Parameter EnMGO MGO [13] IFMGO 15] 

 

F1 

Best 

Worst 

Mean 

STD 

0 

0 

0 

0 

2.415E-81 

4.949E-71 

4.7455E-72 

1.340E-71 

5.567E-273 

4.268E-236 

1.429E-237 

0 

 

F2 

Best 

Worst 

Mean 

STD 

0 

0 

0 

0 

1.676E-46 

6.078E-41 

3.907E-42 

1.189E-41 

2.379E-154 

1.628E-136 

5.426E-138 

2.972E-137 

 

F3 

Best 

Worst 

Mean 

STD 

0 

0 

0 

0 

3.531E-14 

1.637E-7 

6.822E-9 

2.979E-8 

3.993E-67 

2.079E-37 

6.958E-39 

3.795E-38 

 

F4 

Best 

Worst 

Mean 

STD 

0 

0 

0 

0 

5.25E-30 

4.142E-22 

1.591E-23 

7.543E-23 

2.287E-117 

5.137E-93 

1.722E-94 

9.378E-94 

 

F5 

Best 

Worst 

Mean 

STD 

2.4386E-9 

2.2368E-6 

1.8680E-7 

4.1333E-7 

0 

2.556E-22 

1.195E-23 

4.959E-23 

0 

3.212E-29 

2.718E-30 

7.541E-30 

 

F6 

Best 

Worst 

Mean 

STD 

1.0672E-7 

3.7268E-3 

2.8979E-4 

7.1283E-4 

4.809E-12 

3.510E-8 

4.540E-9 

7.654E-9 

1.243E-13 

3.170E-10 

2.135E-11 

6.922E-9 

 

F7 

Best 

Worst 

Mean 

STD 

3.7252E-6 

3.6953E-4 

1.1618E-4 

9.8718E-5 

3.245E-5 

1.534E-3 

5.596E-4 

3.889E-4 

3.239E-5 

9.906E-4 

2.379E-4 

2.164E-4 

The convergence characteristics of the EnMGO, MGO, and IFMGO are presented in the 

following curves (Figures 6–12) to illustrate the convergence processes. 

 

Figure 6. Convergence characteristics of function F1. 
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Figure 7. Convergence characteristics of function F2. 

 

Figure 8. Convergence characteristics of function F3. 

 

Figure 9. Convergence characteristics of function F4. 
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Figure 10. Convergence characteristics of function F5. 

 

Figure 11. Convergence characteristics of function F6. 

 

Figure 12. Convergence characteristics of function F7. 

The convergence characteristics presented above in F1–F4, and F7 show the superior performance 

of the EnMGO, where it converges effectively towards the global solutions. In F5 and F6, the MGO 

shows better convergence characteristics, which agree with the results presented in Table 3. 

4.1.1. Performance on high-dimensional multimodal functions 

Table 4 presents the performance comparison of the proposed EnMGO, the original MGO, and 

the IFMGO on the high-dimensional multimodal test functions. This shows the algorithms’ capabilities 
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of solving optimization problems that require effective balancing of the exploration and exploitation 

mechanisms. 

The simulation outcomes of the three (3) algorithms for the multimodal functions presented in 

Table 4 indicate very competitive performances among the algorithms. In the case of F8, the EnMGO, 

MGO, and IFMGO all produced the global solution with the best results. However, the EnMGO 

slightly outperformed the MGO and the IFMGO in terms of the standard deviation (STD). All the 

algorithms produced the global solutions in the cases of F9 and F11, while in F10 and F13, the EnMGO 

outperformed the MGO and the IFMGO by exhibiting better performances. In the case of F12, the 

IFMGO outperformed the EnMGO and the original MGO. In all, the proposed EnMGO has shown 

good performance on all the functions but F12, indicating its potential in solving high-dimensional 

multimodal optimization problems. It is relevant to acknowledge that the MGO and IFMGO also 

produced very competitive results across the 6 multimodal functions. 

Table 4. Results on multimodal functions (high-dimensional). 

Function Parameter EnMGO MGO [13] IFMGO [15] 

 

F8 

Best 

Worst 

Mean 

STD 

-12570 

-12570 

-12570 

1.0984E-11 

-12570 

-12570 

-12570 

3.9992E-8 

-12570 

-12570 

-12570 

1.7527E-8 

 

F9 

Best 

Worst 

Mean 

STD 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

 

F10 

Best 

Worst 

Mean 

STD 

8.882E-16 

8.882E-16 

8.882E-16 

0 

8.882E-16 

4.441E-15 

1.717E-15 

1.528E-15 

8.882E-16 

4.441E-15 

1.007E-15 

6.486E-16 

 

F11 

Best 

Worst 

Mean 

STD 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

 

F12 

Best 

Worst 

Mean 

STD 

1.7480E-32 

7.3642E-27 

3.6821E-27 

2.0407E-37 

1.571E-32 

2.196E-25 

1.697E-26 

4.538E-26 

1.5705E-32 

1.6916E-32 

1.6313E-32 

4.417E-34 

 

F13 

Best 

Worst 

Mean 

STD 

1.3498E-32 

1.3175E-32 

1.3531E-32 

7.3617E-35 

1.3498E-32 

6.403E-32 

1.814E-32 

9.954E-33 

1.3498E-32 

3.569E-32 

1.562E-32 

5.319E-33 

The three algorithms (EnMGO, MGO, and IFMGO) are further compared in terms of their 

convergence processes in the following curves (Figures 13–18), illustrated. The maximum iteration is 

set to 5000 to provide enough room for the algorithms to converge towards the global solutions of the 

benchmark functions (F8 to F13). 
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Figure 13. Convergence characteristics of function F8. 

 

Figure 14. Convergence characteristics of function F9. 

 

Figure 15. Convergence characteristics of function F10. 
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Figure 16. Convergence characteristics of function F11. 

 

Figure 17. Convergence characteristics of function F12. 

 

Figure 18. Convergence characteristics of function F13. 

All the algorithms showed very close convergence characteristics, almost 100% the same, leading 

to overlapping curves in F8. In F9–F13, the EnMGO and IFMGO algorithms exhibit a closer 

convergence process than that of the MGO. However, all three algorithms converged to the global 

solutions within reasonable iterations. 



231 
 

Applied Computing and Intelligence                                                                 Volume 5, Issue 2, 213–235. 

 

4.1.2. Performance on fixed-dimensional multimodal functions 

In this section, we present the performance of the proposed EnMGO, MGO, and IFMGO in 

Table 5. These algorithms are tested on 10 standard fixed-high-dimensional multimodal functions, and 

their simulation results are compared. 

Table 5. Results on multimodal functions (fixed-dimensional). 

Function Parameter EnMGO MGO [13] IFMGO [15] 

 

F14 

Best 

Worst 

Mean 

STD 

0.998 

0.998 

0.998 

2.4236E-22 

0.998 

0.998 

0.998 

1.8440E-16 

0.998 

0.998 

0.998 

5.9168E-17 

 

F15 

Best 

Worst 

Mean 

STD 

3.0561E-4 

7.1565E-4 

3.7585E-4 

1.2405E-4 

3.0749E-4 

1.2232E-3 

3.7059E-4 

2.3182E-4 

3.0605E-4 

1.2343E-3 

3.0779E-4 

1.9014E-4 

 

F16 

Best 

Worst 

Mean 

STD 

-1.03160 

-1.03160 

-1.03160 

1.2211E-18 

-1.03160 

-1.03160 

-1.03160 

4.7908E-16 

-1.03160 

-1.03160 

-1.03160 

6.9914E-17 

 

F17 

Best 

Worst 

Mean 

STD 

0.3980 

0.3980 

0.3980 

0 

0.39789 

0.39789 

0.39789 

0 

0.39789 

0.39789 

0.39789 

0 

  

F18 

Best 

Worst 

Mean 

STD 

3 

3 

3 

1.7973E-25 

3 

3 

3 

1.4092E-15 

3 

3 

3 

1.1019E-15 

 

F19 

Best 

Worst 

Mean 

STD 

-3.8621 

-3.8615 

-3.8627 

1.8912E-24 

-3.8628 

-3.8628 

-3.8628 

2.2584E-15 

-3.8628 

-3.8628 

-3.8628 

1.8436E-15 

 

F20 

Best 

Worst 

Mean 

STD 

-3.3218 

-3.1824 

-3.2417 

5.9552E-2 

-3.3220 

-3.3220 

-3.3220 

6.033E-2 

-3.3220 

-3.3220 

-3.3220 

0 

 

F21 

Best 

Worst 

Mean 

STD 

-10.15 

-10.15 

-10.15 

0 

-10.15 

-10.15 

-10.15 

0 

-10.15 

-10.15 

-10.15 

0 

 

F22 

Best 

Worst 

Mean 

STD 

-1.04028E+01 

-1.04027E+01 

-1.04028E+01 

3.9324E-5 

-10.403 

-10.403 

-10.403 

0 

-10.403 

-10.403 

-10.403 

0 

 

F23 

Best 

Worst 

Mean 

STD 

-1.05363E+1 

-1.05361E+01 

-1.05363E+01 

4.7387E-05 

-10.536 

-10.536 

-10.536 

0 

-10.536 

-10.536 

-10.536 

0 
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The results for functions F14, F16–F18, and F22 show that all the algorithms produced global 

solutions, which indicates that can solve optimization problems with similar characteristics to the 

functions. However, in the cases of functions F15, F19, F20, and F22, none of the algorithms produced 

the global solutions, but the proposed EnMGO produced relatively better results compared to the MGO 

and IFMGO. The EnMGO further exhibited superiority by producing the global solution of function 

F23. It is worth noting that though EnMGO generally outperformed the other algorithms, they all 

performed closely with very competitive results. The EnMGO has generally produced very good 

performance on all 10 fixed-dimensional multimodal test functions. 

The convergence characteristics of the EnMGO, MGO, and IFMGO for F14–F23 exhibited very 

close convergence behavior toward the global solutions, producing overlapping curves. Hence, it was 

impossible to display them clearly. These common qualities of the three algorithms for these 10 

functions agree with the very competitive or close results presented in Table 5. Therefore, the 3 

algorithms are potential optimization tools for solving fixed-dimensional multimodal problems. 

The holistic comparison of the 3 algorithms for the 23 standard benchmark test functions, as 

presented in Tables 3 and 5, shows that the proposed modified algorithms (EnMGO) produced very 

good performance for all the test functions except functions F5, F6, and F12. This performance 

represents 20 out of the 23 test functions, a very good indicator of about 86.96%. For the situations of 

functions F5, F6, and F12, the proposed EnMGO was outperformed by its counterparts. However, the 

performance of the EnMGO on these 3 test functions is close to that of the others. Hence, the overall 

performance of the proposed EnMGO is superior compared to the original MGO and IFMGO. 

4.2.  Performance on engineering design problems 

The performance of the EnMGO on the 2 engineering design problems, the pressure vessel design 

problem, and the three-bar truss design problem, is compared to that of the MGO and IFMGO 

presented in reference [19]. The performances of the three algorithms on the engineering design 

problems are compared in Tables 6 and 7, respectively. The EnMGO was tested 30 times for each of 

the design problems, and the best results were recorded for the comparison. 

Table 6. Performances on the pressure vessel design problem. 

Algorithm X1 X2 X3 X4 F(x) 

MGO 0.8947789 0.4404352 46.3616 130.1125 6108.9319 

IFMGO 0.7805281 0.386001 40.4248 198.799 5897.7704 

EnMGO 0.7822144 0.3851635 40.52622 197.1715 5888.9498 

Table 6 presents the performance of the 3 algorithms, where the function values (f(x)) represent 

the manufacturing cost of the pressure vessel produced by each corresponding algorithm. The proposed 

EnMGO produced the lowest cost value of 5888.998, while the original MGO produced the highest 

cost value of 6108.9319. The IFMGO produced a very competitive cost value of 5897.770 compared 

to that of the proposed EnMGO. However, the EnMGO outperformed the other two algorithms. 

The test result of the EnMGO on the three-bar truss design problem is also compared to that of 

the MGO and FIMGO in Table 7 below. 

Table 7. Performance on the three-bar truss design problem. 

Algorithm X1 X2 F(x) 

MGO 0.78534 0.41775 263.9041 

IFMGO 0.78845 0.4089 263.8959 

EnMGO 0.78918 0.40682 263.8957 
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The results in Table 7 show very close performances among the 3 algorithms. Each produced 

optimal function had values around 263. This indicates that they are all good candidate tools for solving 

optimization problems similar to the three-bar truss design problem. However, a closer look at the 

function values indicates minute differences among them, with the EnMGO producing the least, 

followed by the IFMGO and the MGO. 

5. Conclusions 

A new variant of the MGO called the EnMGO has been developed for better performance on 

optimization problems. Two key modifications were introduced to address relevant weaknesses that 

substantially enhance the performance of the algorithm. First, a NEIW strategy is introduced to 

determine the values of the F parameter for the sole purpose of improving exploitation for better 

performance. The second modification introduced a CRIW to improve the exploration capability of 

the algorithm. The proposed EnMGO was tested on standard benchmark functions for testing purposes, 

and the outcome was benchmarked against those of the original MGO and the IFMGO reported in the 

literature for the same functions. The new EnMGO showed very good performance on 20 test functions 

of the 23 standard test functions used, and this represents a significant performance of about 86.96%. 

The EnMGO was further tested on 2 engineering design problems (the pressure vessel design problem 

and the three-bar truss design problem). The outcome was compared to that of the MGO and IFMGO, 

and the performance was relatively good. Based on the remarkable performances exhibited by the 

proposed EnMGO on the standard benchmark test functions and the engineering design problems, we 

conclude that the modifications introduced have led to significant improvement in the algorithm. The 

EnMGO is therefore recommended to be adopted for solving engineering optimization problems, such 

as the optimization of power distribution systems compensations, and optimal renewable energy 

integration for effective power delivery. Its potential application can also be extended to other fields 

such as agriculture and mechanical engineering designs. An example of such potential applications is 

the truss structures optimization [24] in which the design of truss structures is optimized for maximum 

performance. 
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