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Abstract: In this paper, we present the Enhanced Mountain Gazelle Optimizer (EnMGO), a new
variant of the mountain gazelle optimizer developed to address the persistent challenge of balancing
exploration and exploitation in high-dimensional optimization. While earlier modifications of the
algorithm focused on reformulating the control F-parameter to improve stability, they remained limited
in adaptability and convergence efficiency. The proposed EnMGO introduces two modifications: An
inertia weight based on a chaotic random technique to improve global exploration, and an
exponentially decreasing formulation of the F-parameter to enhance local exploitation. These
mechanisms create a more adaptive search process capable of efficiently navigating complex solution
spaces. The algorithm was evaluated on a set of standard benchmark functions and engineering design
problems, and the results demonstrated that EnMGO consistently outperforms previous variants,
achieving faster convergence and higher-quality solutions. It achieved better results in approximately
86.96% of the total 23 benchmark functions considered in the study, thereby highlighting its robustness
and effectiveness. Furthermore, in the application to engineering design optimization problems, the
EnMGO consistently outperformed the comparative algorithms across both design cases, reaffirming
its potential as a highly reliable and efficient optimization tool. Based on the performance, the potential
of EnMGO can be explored for application in real engineering optimization problems.
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1. Introduction

Optimization constitutes a critical aspect of problem-solving across a broad spectrum of scientific,
engineering, and industrial domains [1]. The main goal is to identify the most efficient, cost-effective,


https://www.aimspress.com/journal/aci

214

or high-performing solution from a defined set of feasible alternatives, typically under the presence of
multiple conflicting objectives and constraints [2]. Traditional mathematical optimization techniques,
although foundational, often fall short of effectively addressing real-world problems that are non-linear,
multi-modal, and high-dimensional in nature [3]. These challenges have led to the increasing adoption
of metaheuristic algorithms, which are widely recognized for their robustness, adaptability, and
capability to yield near-optimal solutions within reasonable computational timeframes [4].

Metaheuristic algorithms are generally inspired by natural phenomena, biological evolution, or
collective intelligence observed in social or ecological systems [5]. Notable examples include genetic
algorithms (GA), which draw from principles of natural selection and genetics [6]; particle swarm
optimization (PSO), modeled on the collective motion of bird flocks and fish schools [7]; and grey
wolf optimizer (GWQO), which simulates the leadership hierarchy and cooperative hunting behavior of
grey wolves [8]. Over the years, a myriad of such algorithms have been proposed [9], each attempting
to address specific performance limitations associated with exploration, exploitation, convergence rate,
or stagnation in local optima [10,11].

Among these, the mountain gazelle optimizer (MGO) has emerged as a recent addition, inspired
by the behavioral ecology of mountain gazelles [12]. The MGO algorithm models critical aspects of
gazelle behavior such as territorial defense, group dynamics, and foraging patterns. Although MGO
demonstrated commendable potential in solving various optimization problems, several performance
issues remain inherent in its original formulation [13]. These include an insufficient balance between
global exploration and local exploitation, vulnerability to premature convergence, and suboptimal
performance when applied to high-dimensional search spaces [14].

In response to these challenges, a modified version of the MGO—termed the improved f-
parameter mountain gazelle optimizer (IFMGO)—was introduced in a previous study [15]. The

IFMGO replaced the original MGO's F-parameter with a new mathematical formulation that improved
the dynamic balance between exploration and exploitation. Comprehensive testing on both high- and
fixed-dimensional benchmark functions demonstrated that IFMGO significantly outperforms both the
base MGO and PSO in terms of convergence accuracy, solution stability, and computational efficiency
[15]. The enhancements introduced in IFMGO therefore laid a solid foundation for further
developments in the MGO framework.

Building upon the foundation established by IFMGO, we propose a more advanced variant of the
MGQO, herein referred to as the enhanced mountain gazelle optimizer (EnMGO). This enhancement
introduces two key modifications to further elevate the algorithm’s global search performance and
resilience against stagnation. The first is the incorporation of an adaptive inertia weight strategy,
inspired by the PSO algorithm, which dynamically adjusts the momentum of search agents during the
optimization process [16]. This mechanism facilitates a more effective trade-off between exploration
and exploitation throughout the iterations, enabling the algorithm to escape local optima and converge
more efficiently toward global solutions.

The second enhancement involves the integration of chaotic mapping-based sequences into the
position update mechanism. Chaotic maps, known for their deterministic yet unpredictable nature, are
employed to introduce controlled randomness into the search process [17]. This increases population
diversity and mitigates premature convergence by enabling the algorithm to more thoroughly explore
the search space, particularly in high-dimensional and complex landscapes.

Our primary objective of this research is to rigorously evaluate the effectiveness of these
enhancements in improving the convergence behavior, solution accuracy, and robustness of the MGO
framework. The performance of EnMGO is benchmarked against algorithms using a comprehensive
set of standardized optimization functions. Through this investigation, we aim to contribute a more

Applied Computing and Intelligence Volume 5, Issue 2, 213-235.



215

scalable and generalizable optimization tool capable of addressing a wider class of real-world problems
across domains.

2. Mountain gazelle optimization

In this study, we provide a new version of the MGO called the EnMGO. It is an improvement to
the original MGO, which is inspired by the social life of the mountain gazelles in wildlife. Various
modifications are proposed and integrated into the MGO to form the EnMGO. A comprehensive test
on the EnMGO is done, and the performance is compared to the MGO and another version to justify
the improved performance of the proposed EnMGO on standard benchmark test functions.

The original MGO draws inspiration from the mountain gazelles [13]. They are a type of mammal
that lives in the Arabian Peninsula and nearby territories [18]. Although they are spread across a wide
coverage, they have a relatively low population density [10]. This species is commonly found in
habitats where Robinia trees grow [19]. Mountain gazelles are highly territorial, maintaining territories
at considerable distances from one another [19]. They typically form three (3) types of groups: The
herds of mother gazelles and their young ones, the groups of young male gazelles, and the solitary
adult male gazelles within their respective territories [10]. The male gazelles often engage in fights,
primarily competing for resources than for mates [18]. In these encounters, younger males tend to use
their horns more frequently than older or the dominant males do. These gazelles can migrate by
traveling over 120 kilometers in search of good food [20]. They are also known for their exceptional
speed, capable of running about 100 meters at an average speed of 80 km/h [18]. The social behavior
of the mountain gazelles in the wild was mimicked to develop the original MGO. The key behavioral
components were modeled mathematically to form the algorithm. The mathematical modeling is
presented in the next section.

Mathematical Model of MGO: The MGO algorithm is modeled considering the concept of the
social behavior of mountain gazelles presented earlier, and their natural habitat [21]. It captures the
major aspects of their grouping dynamics, which consist of the behavior of young male gazelles, the
herds of mother gazelles and babies (maternity), the solitary and territorial nature of male gazelles, as
well as the migration patterns to search for good food [13,22]. The mathematical framework is
structured as follows.

2.1. The Territorial Solitary Male (TSM) phase

The male adults among the gazelles protect their prestigious territories against strange intruders
who attempt to take over their territory or pose a possible danger to the members of the territory. This
ideology is mathematically modeled in Eq (1) [13].

TSM = malegqzene — |(ri1 X BH — 1, X X(t)) X F| x Cofy, (1)

where 13, and 7y, are integers selected randomly to be either 1 or 2. maleyq,eqie 18 the position vector
representing the function value of the best male gazelle.

The determination of values of variables BH, F, and Cof- is based on Eqs (2)—(4), respectively.
The BH parameter represents a young male herd coefficient vector, Cof- is a randomly selected
coefficient vector (with the 7 signifying the randomness) updated in each iteration and used to increase
the search capability, and X (t) is the position of the gazelle vector.

BH = Xyq X1y + My, X175, TQ= {% N} )
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Variable X,., represents a randomly selected solution (young male) within the specified range ra,
while My, denotes the average number of search agents. N refers to the total number of gazelles, r;and

1, are randomly generated numbers in the range (0, 1) [18].

F = N,(D) x (2 — Iter x (Majner)). 3)

Here, variable Ni consists of randomly generated values corresponding to the problem’s
dimension (D). It is calculated based on a standard distribution approach. The terms /ter and MaxlIter
depict the current iteration and the maximum number of iterations, respectively [18].

(a+1)+rm;,
N,(D),
Cof; = oy @

| N3(D) X Ny(D)? x cos((14.2) x N3 (D)),

where r; and 7, represent terms with random values (numbers) generated from the range (0, 1).

Moreover, parameters N,, N3, and N, are sets of random numbers having the size of the problem

function. The i represents the iteration, while D retains its purpose as the problem dimension [18].
Variable a is a value that is determined using Eq (5) at every iteration [18].

a=—1+1ter><( 1 ) (5)

MaxlIter

2.2. The Maternity Herd (MH) phase

Just like other mammals in the wildlife, the mother gazelles have a protective instinct to keep
their offspring safe. The mechanism applied by the mother gazelles in this context is expressed by
employing mathematical modeling presented in Eq (6) [19].

MH = (BH + Cofy,) + (riz X malegazene — Tia X Xrana) X Cofyr. (6)

In Eq (6), Xrana is the position of a function value of a randomly selected gazelle from the
population expressed as a vector [19], and variables i3 and ris are integers randomly selected as either 1
or 2. The term Cof , is a coefficient randomly selected from the several formulations in Eq (4) during
the first iteration, where subscript /,7 indicates the first iteration and randomness, respectively. The
term introduces randomness and scaling to enhance diversity in the solution space.

2.3. The Bachelor Male Herds (BMH) phase

Young male gazelles create their new territories and try to win over some female gazelles to join
them in the newly created territories [19]. The strategy of creating new territories by these young adult
male gazelles is modeled in Eq (7).

BMH = (X(t) — D) + (15 X malegqzene — g X BH) X Cof; . (7)

In Eq (7), variable X(?) represents the values in vector form of the gazelle in the current iteration.
Variables 1;5 and ;¢ are random values chosen randomly from (1, 2). The 74 denotes a value randomly
chosen from the range (0, 1). Cof- is a randomly selected coefficient vector updated in each iteration
and used to increase the search capability. Finally, the value of variable D is calculated using Eq (8).

D = (IX(©)| + |malegazene|) % (2.74 — 6). (8)
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2.4. The Migration in Search of Food (MSF) phase

This phase involves the habit of roaming randomly in search of nutritious food varieties by the
mountain gazelles, especially during periods of the year when food is relatively scarce. This
mechanism of searching by a random movement is modeled in Eq (9) [19]. This model generates
values randomly within the search space.

MSF = (ub — Ib) X 1 + Ib. (9)

Parameters /b and ub indicate the search space or range, with the first variable representing the
lower search bound, while the second variable represents the upper or maximum search bound. The
variable r,, represents a random number chosen such that its maximum cannot be greater than 1 and its
possible smallest value cannot be less than 0 [19].

3. Enhanced mountain gazelle optimization

In this section, we present the modifications carried out for selected parts of the MGO algorithm
that led to the development of the EnMGO algorithm.

3.1. The proposed modification

The proposed EnMGO is an improved version of the original MGO. It takes the same inspiration
from the gazelles’ social lifestyle, modeled mathematically in Equations from (1) to (9), with some
modifications introduced to effectively boost its performance. The proposed modifications introduced
are comprehensively presented below.

The TSM phase plays a major role in the population update operators of the algorithm. The
mathematical representation is presented as in Eq (1) [13]. This update phase is one of the keys to
determining the performance of the MGO algorithm. Hence, positive amendments in this phase can
lead to enhanced performance.

Two major amendments are proposed in this modification to improve the TSM phase for better
global performance. They include an alternative approach for determining the values of the factor F
parameter in Eq (1) to improve the exploitation, and an introduction of an adaptive inertia weight to
improve the exploration quality of the algorithm.

3.1.1.  Alternative F parameter

In the original MGO algorithm, the value of the F parameter is determined using Eq (3) [13]. The
values produced by this equation start with 7.3743 and exponentially decrease to the lowest value of 1.
The decreasing characteristics of the value of the F parameter are illustrated below in Figure 1.

The values of the F parameter presented in Figure 1 greatly influence the convergence process of
the MGO algorithm. It generates exponentially decreasing factors that significantly determine the
amount of deduction that needs to be done on the best solution obtained so far for a possible better
solution.
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Figure 1. The original varying characteristics of the F parameter.

The range of the F parameter values indicates substantial deductions during the algorithm’s
execution [15]. However, it has been established that smaller update changes in the best solutions give
better chances of obtaining the global solution to the optimization problems, but with slow
convergence speed [20]. While larger update changes lead to faster convergence but very high
tendency to skip the global solution of the optimization problem. The set of values for the F parameter,
as presented in Figure 1, shows that the original MGO algorithm has larger update changes, which
cause it to struggle to produce results very close to the global solutions.

An alternative approach for the determination of the F parameter values is proposed. This
approach is based on the natural exponent inertia weight (NEIW) strategy [16]. The proposition leads
to a new way of determining the value of the F parameter at each iteration, which is given in Eq (10).

F=w+Ww,—w) Xe 1) , (10)
where the values of wy, and w, are given as 0.00009 and 0.9, representing the possible lowest and
highest that could be produced by the equation, respectively. The maximum iterations and the iteration
count are also represented as Maxlter and Iter, respectively. The characteristics indicating how the
value changes with respect to the iterations are illustrated below for 500 iterations in Figure 2.
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Figure 2. Varying characteristics of the proposed F parameter.
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As shown in Figure 2, the proposed values range from a maximum of 0.9 and decrease
exponentially to closer to 0. This ensures that a smaller magnitude of difference is made for the best
result at every iteration to enhance the chances of obtaining global solutions. Hence, the exploitation
by the algorithm is improved.

3.1.2.  Introduction of Inertia Weight

The first modification proposed above enhances the algorithm’s ability to obtain global solutions
for optimization problems. However, it has the possibility of reducing the convergence speed, which
means the exploration quality is poor. In this second modification, a chaotic random inertia weight
(CRIW) is proposed to augment this possible negative impact of the first modification by introducing
a chaotic random search [16]. The weight w is integrated into Eq (1) and it modifies into Eq (11) below:

TSM = w X malegqzene — (1 X BH — 115 X X(£)) X F| x Cof,, (11)

where F' is determined at every iteration based on Eq (10), and the value of w is calculated based on
the CRIW function given below in Eq (12). All other notations retain their meaning defined before.

w(t) = 0.5 X rand + 0.5z, (12)

where w(t) is the weight at iteration t , rand is a randomly generated value within the range of 0 to 1,
and z is a constant integer.

By considering the value of z to be 1, and varying values of the proposed weight (w), values for
the 500 iterations are illustrated in Figure 3.
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Figure 3. Varying characteristics of w.

As illustrated in Figure 3, the proposed weight value changes randomly within a range of 0.5 to 1,
ensuring a possible jump from one value to another. This improves the algorithm’s exploration
capability.

The two proposed modifications improve the algorithm’s exploitation and exploration techniques,
respectively, greatly enhancing its ability to solve different optimization problems [16]. The
implementation guide/procedure of the EnMGO is presented in Figure 4 as a flowchart.

Figure 4 presents the systematic steps showing a comprehensive procedure for the
implementation of the proposed EnMGO algorithm. Following these steps in any appropriate coding
language will give the expected outcome.
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Figure 4. Implementation flowchart of the EnMGO algorithm.
3.2. Testing on standard benchmark functions

To demonstrate the enhanced performance of the EnMGO, it is tested using 23 standard
benchmark test functions that were employed in the literature of the original MGO algorithm [23].
These functions are a reliable basis for assessing the algorithm’s efficiency across optimization
challenges. The first 7 test functions (F1-F7) are high-dimensional unimodal optimization problems.
These functions are particularly useful for evaluating an algorithm’s exploitation capability and its
ability to scale effectively in problems with a single global optimum. The ability to efficiently converge
to the best solution is a crucial aspect of optimization algorithms, and these functions provide insights
into the EnMGO algorithm’s strength in this regard.

The second category includes 6 benchmark test functions (F8—F13), which represent high-
dimensional multimodal optimization problems. These test functions contain multiple local optimum
solutions and are designed to assess how well an optimization algorithm can maintain a favorable
exploration and exploitation balance [13]. An efficient algorithm should not only search broadly across
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the solution space but in addition also refine its search to converge toward the best possible solution.
By evaluating EnMGO with these functions, its ability to avoid premature convergence and explore
diverse regions of the search space can be examined.

The final category consists of 10 fixed-dimensional benchmark test functions (F14-F23), which
are suitable for testing an algorithm’s exploration ability and its capacity to handle problems with
multiple local optima solutions [13]. These test functions are essential for analyzing the diversity of
solutions generated by the EnMGO algorithm and determining its effectiveness in overcoming
complex optimization challenges.

By considering all three categories of standard benchmark test functions, we provide a
comprehensive assessment of the EnMGO’s performance as compared to that of the original MGO
algorithm and an existing variant.

The proposed EnMGO algorithm is implemented by coding and executed in a MATLAB
environment using an HP Pavilion laptop (HP EliteBook). The implementation involves coding and
running simulation tests on the standard benchmark test functions to evaluate the algorithm’s
performance on each of the functions. On each standard benchmark test function, the algorithm is
tested 30 times independently. The specific parameter settings of the pre-requisite variables used for
the simulations are detailed in Table 1 for effective comprehension.

Table 1. Settings of parameters

Parameter Value
Size of population 30
Maximum number of 500
Iterations

Number of Simulations 30

The detailed information on the standard benchmark test functions used in the test is accurately
presented in Table 2 [13]. It presents the mathematical expressions of the functions for clarity. The
range is also presented to indicate the numerical values search space within which the algorithm
operates to find optimal solutions for the test functions. The dimensions are also captured accordingly
to show the problem dimensions under each function, which can be interpreted as the number of
variables in the given optimization problem. Finally, the global solutions (Fmin) of the various test
functions are determined. They are the best possible solutions for the test functions, and they are the
benchmark for assessing any solution produced by an algorithm on the said test function. The relatively
closer the results produced by the algorithm are to the global solution, the better the performance.

Table 2. Details of benchmark functions.

No. Equations Range/Dimension  Fmin

High-dimensional unimodal benchmark functions
d

Fl , [-100, 100]/ 30 0
f@ =) xi
it=11 a
) [-10, 10/ 30 0
e = bl +| [
i=1 i=12
F3 d [ i [-100, 100/ 30 0
f@=>{>x
=1 \j=1
F4  f(x) =max{|x|1<i<d} [-100, 100]/ 30 0

Continued on next page

Applied Computing and Intelligence Volume 5, Issue 2, 213-235.



222

No. Equations Range/Dimension  Fmin
F5 & - , [-30, 30/ 30 0
FG) = ) [1000kis = ¥8)% + (i = 1))
i=1
F6 d , [-100, 100]/ 30 0
FG) =) (1x +05))
izl
F7 [-1.28,1.28]/30 0
flx) = Z(ix{* + random0,1)
=1
High-dimensional multimodal benchmark functions
F8 ] [-500, 500]/ 30 -12,569
16 = =) (xesin(T]))
i=1
F9 S [-5.12,5.12]/30 0
f(x) =10d + Z[xi - 10 cos(2nxi)]
i=1
F10 [-32, 32]/ 30 0
f(x)=—-20exp cos2mx; |+20+e
F11 [-600, 600]/ 30 0
f() = 7555
F12 -50, 501/ 30 0
Fe0 = {msm(nyl) + Z(yl ~ D21+ 10 sin2 (e + (g = 1) } 130,301
=1
x;+1 l
yi=1l+—
k(x; —a)™ x; >a
U(x;,a,k,m) = 0,—a<x;<a
k(—x;—a)™x < —a
a
F13 f(x) =01 {sin2(3nxi) + Z(xi — 1?1+ sin®Grx; + 1] + (x4 — 1)2} [-50, 50}/ 30 0
, =
+ ) U(x;,5100,4)
2
Fixed-dimensional multimodal benchmark functions
Fl4 1 & 1 [-65.53,65.53)/2  0.998
) = |55+ ) - :
500 =i+Xi (- aji)
F15 x, (b2 + bixy) P [-5, 5]/ 4 0.00030
fo) = Z T
b + bix; + xy
1
F16  f(x) = 4x? — 2.1x¢ +§x1 + X1, — 4x5 + 4x3 [-5.5)/2 -1.0316
2
F17 ( 51 , 5 ) ( 1) [-5,0][10,15)/2  0.398
=(xy———=x2+=x, — 10(1—— 1 ’ g
f(x) X, 41r2x +nx1 6] +10 o cos x; + 10
FI8  f(x) =[1+ (x; +x, + 1)?2(19 — 14x;, + 3x7 — 14x, + 6x,x, + 3x2)]. [-5,5])/2 3
[30 + (2x; — 3x,)%. (18 — 32x; + 12x% + 48x, — 36x,x, + 27x2)]
F20 [0, 17/ 6 332

4 6
flx)=— Z a; exp —Z bij(x; — Pij)z
=1

i=1

Continued on next page
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No. Equations Range/Dimension  Fmin
F21 5 A [0, 10]/ 4 -10.1532
) ==Y 1K = @)X - a)" + ¢
i=1
F22 . o [0, 10)/ 4 -10.4028
) == Y I —a)X —a)" +c
i=1
F23 [0, 10)/ 4 -10.5363

) = = ) 1K - a)(X - a)” + ]

i=1

3.3. Testing on engineering design problems

The EnMGO is tested on some engineering design problems, and the performances on these
problems are compared to the performance of the original MGO and IFMGO reported in [19] to further
establish the effectiveness of the EnMGO in solving real-world optimization problems. The
engineering designs include: The pressure vessel design problem (PVDP) and the three-bar truss
design problem (TTDP).

3.3.1.  The pressure vessel design problem (PVDP)

The pressure vessel design problem is a widely used benchmark for testing optimization
algorithms, aiming to minimize the manufacturing cost of a cylindrical pressure vessel with
hemispherical heads. This involves optimizing four key design variables: The discrete thicknesses of
the shell (x1) and head (x2), and the continuous inner radius (x3) and cylindrical length (x4). The
problem is challenging due to its non-linear objective function and constraints (related to stress,
minimum thickness, volume, and length), mixed discrete and continuous variables, and the presence
of multiple local optima, making it an excellent test for an algorithm's ability to handle complexity,
constraints, and find a globally optimal solution in a practical engineering context. The optimization
problem is expressed mathematically in (13).

f(x) = 0.622x,x3x4 + 1.778x,x5 + 3.1661x7x, + 19.84x% x5, (13)
where x;, x,, X3, and x, represent the design variables.
Constraints:
g1(x) = —x; +0.0193x; < 0,
g2(x) = —x, +0.00954x5 < 0,
g3(x) = —mxix, — gnxg + 1296000 < 0, (14)
9,(x) = x4 —240 < 0.
Variables bound:
0.0625 < x4, x, < 6.1875,
{ 10 < x3, %, < 200. (13)

3.3.2.  The three-bar truss design problem (TTDP)

The three-bar truss design problem involves minimizing the total weight or volume of a simple
three-bar truss (Figure 5) by optimizing the cross-sectional areas of its bars while adhering to critical
constraints like maximum allowable stress in each bar and potential displacement limits. This problem
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is popular because its continuous, constrained, and often non-linear nature provides a realistic yet well-
understood challenge for evaluating the effectiveness of metaheuristics in finding optimal solutions
within a complex search space. The objective function is given in Eq (16) below:

Minimize f(x) = (2v2x; + x).L. (16)
Constraints:

\/_x1+x2
gl( ) \/—x1+2x1x2P_O-S0'
g2 (x) =

| g31(x) = \/_x w P —9=0,

P-—0<0, (17)

V2x2 +2x1x2

where 0 < x;,x, < 1,1 = 100cm,P = 2KNcm™2,06 = 2KNcm™2,

[ L | L l
2 sl i
"

Figure 5. The three-bar truss design.
4. Results and discussion
4.1. Performance on standard benchmark test functions

The EnMGO was executed 30 times for each of the 23 test functions, and key statistical metrics
(best, mean, worst, and standard deviation (STD)) were recorded [18]. The performances of the
EnMGO on the benchmark functions are compared with those of two other algorithms reported in the
literature [ 13]. The comparative analysis of EnMGO, MGO, and IFMGO is presented based on various
types of test functions.

For the performance on high-dimensional unimodal functions, the simulation outcome of the
proposed EnMGO is compared to the original MGO [13] and another variant of the MGO called the
IFMGO [15] on the unimodal high-dimensional functions in Table 3. The comparison is presented in
Table 4, where the best result under each function for the various statistical indicators is bolded.

The results presented in Table 3 indicate that the proposed EnMGO outperformed the MGO and
the IFMGO exceptionally by producing the global optimal solutions on F1-F4. It also performed better
than the MGO and the IFMGO for function F7. However, the IFMGO produced better results for
functions F5 and F6 by outperforming the MGO and the proposed EnMGO. The proposed EnMGO
performed relatively better by outperforming the other algorithms for five (5) benchmark functions of
the seven (7) tested, representing about 71.4% good performance. This justifies the proposed
EnMGO'’s exploitation power in solving optimization problems with one global solution.
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Table 3. Results on unimodal functions.

Function Parameter EnMGO MGO [13] IFMGO 15]
Best 0 2.415E-81 5.567E-273
F1 Worst 0 4.949E-71 4.268E-236
Mean 0 4.7455E-72 1.429E-237
STD 0 1.340E-71 0
Best 0 1.676E-46 2.379E-154
F2 Worst 0 6.078E-41 1.628E-136
Mean 0 3.907E-42 5.426E-138
STD 0 1.189E-41 2.972E-137
Best 0 3.531E-14 3.993E-67
F3 Worst 0 1.637E-7 2.079E-37
Mean 0 6.822E-9 6.958E-39
STD 0 2.979E-8 3.795E-38
Best 0 5.25E-30 2.287E-117
F4 Worst 0 4.142E-22 5.137E-93
Mean 0 1.591E-23 1.722E-94
STD 0 7.543E-23 9.378E-94
Best 2.4386E-9 0 0
F5 Worst 2.2368E-6 2.556E-22 3.212E-29
Mean 1.8680E-7 1.195E-23 2.718E-30
STD 4.1333E-7 4.959E-23 7.541E-30
Best 1.0672E-7 4.809E-12 1.243E-13
Fé6 Worst 3.7268E-3 3.510E-8 3.170E-10
Mean 2.8979E-4 4.540E-9 2.135E-11
STD 7.1283E-4 7.654E-9 6.922E-9
Best 3.7252E-6 3.245E-5 3.239E-5
F7 Worst 3.6953E-4 1.534E-3 9.906E-4
Mean 1.1618E-4 5.596E-4 2.379E-4
STD 9.8718E-5 3.889E-4 2.164E-4

The convergence characteristics of the EnMGO, MGO, and IFMGO are presented in the
following curves (Figures 6—12) to illustrate the convergence processes.
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Figure 6. Convergence characteristics of function F1.

Applied Computing and Intelligence Volume 5, Issue 2, 213-235.



F2
10° T T T T T T T
EnMGO
MGO
IFMGO
\\.
40100 | \
\
3 \
o \
> \
4 \
g \
k= \
i 4g200 [ \
\
\
\
\
107300 |- \
P W . . . .
0 500 1000 1500 2000 2500

3000 3500 4000
Iteration

Figure 7. Convergence characteristics of function F2

F3
10° T T T T
\ EnMGO
\ MGO
\ IFMGO
\
\
\
10-100 L \\
E '\
s \
2 \
@ \
£ |
w 10-200 b \\
|
\
\
\
107300 | \‘
| . . .
0 1000 2000 3000

4000 5000
Iteration

Figure 8. Convergence characteristics of function F3.
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Figure 9. Convergence characteristics of function F4.
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Figure 10. Convergence characteristics of function F5.
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Figure 11. Convergence characteristics of function F6.
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Figure 12. Convergence characteristics of function F7.

The convergence characteristics presented above in F1-F4, and F7 show the superior performance
of the EnMGO, where it converges effectively towards the global solutions. In F5 and F6, the MGO
shows better convergence characteristics, which agree with the results presented in Table 3.

4.1.1. Performance on high-dimensional multimodal functions

Table 4 presents the performance comparison of the proposed EnMGO, the original MGO, and
the IFMGO on the high-dimensional multimodal test functions. This shows the algorithms’ capabilities
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of solving optimization problems that require effective balancing of the exploration and exploitation
mechanisms.

The simulation outcomes of the three (3) algorithms for the multimodal functions presented in
Table 4 indicate very competitive performances among the algorithms. In the case of F§, the EnMGO,
MGO, and IFMGO all produced the global solution with the best results. However, the EnMGO
slightly outperformed the MGO and the IFMGO in terms of the standard deviation (STD). All the
algorithms produced the global solutions in the cases of F9 and F11, while in F10 and F13, the EnMGO
outperformed the MGO and the IFMGO by exhibiting better performances. In the case of F12, the
IFMGO outperformed the EnMGO and the original MGO. In all, the proposed EnMGO has shown
good performance on all the functions but F12, indicating its potential in solving high-dimensional
multimodal optimization problems. It is relevant to acknowledge that the MGO and IFMGO also
produced very competitive results across the 6 multimodal functions.

Table 4. Results on multimodal functions (high-dimensional).

Function Parameter EnMGO MGO [13] IFMGO [15]
Best -12570 -12570 -12570
F8 Worst -12570 -12570 -12570
Mean -12570 -12570 -12570
STD 1.0984E-11 3.9992E-8 1.7527E-8
Best 0 0 0
F9 Worst 0 0 0
Mean 0 0 0
STD 0 0 0
Best 8.882E-16 8.882E-16 8.882E-16
F10 Worst 8.882E-16 4 441E-15 4 441E-15
Mean 8.882E-16 1.717E-15 1.007E-15
STD 0 1.528E-15 6.486E-16
Best 0 0 0
F11 Worst 0 0 0
Mean 0 0 0
STD 0 0 0
Best 1.7480E-32 1.571E-32 1.5705E-32
F12 Worst 7.3642E-27 2.196E-25 1.6916E-32
Mean 3.6821E-27 1.697E-26 1.6313E-32
STD 2.0407E-37 4.538E-26 4.417E-34
Best 1.3498E-32 1.3498E-32 1.3498E-32
F13 Worst 1.3175E-32 6.403E-32 3.569E-32
Mean 1.3531E-32 1.814E-32 1.562E-32
STD 7.3617E-35 9.954E-33 5.319E-33

The three algorithms (EnMGO, MGO, and IFMGO) are further compared in terms of their
convergence processes in the following curves (Figures 13—18), illustrated. The maximum iteration is
set to 5000 to provide enough room for the algorithms to converge towards the global solutions of the
benchmark functions (F8 to F13).
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Figure 13. Convergence characteristics of function F8.
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Figure 15. Convergence characteristics of function F10.
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Figure 16. Convergence characteristics of function F11.
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Figure 17. Convergence characteristics of function F12.
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Figure 18. Convergence characteristics of function F13.

All the algorithms showed very close convergence characteristics, almost 100% the same, leading
to overlapping curves in F8. In F9-F13, the EnMGO and IFMGO algorithms exhibit a closer
convergence process than that of the MGO. However, all three algorithms converged to the global
solutions within reasonable iterations.
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4.1.2. Performance on fixed-dimensional multimodal functions

In this section, we present the performance of the proposed EnMGO, MGO, and IFMGO in
Table 5. These algorithms are tested on 10 standard fixed-high-dimensional multimodal functions, and
their simulation results are compared.

Table 5. Results on multimodal functions (fixed-dimensional).

Function Parameter EnMGO MGO [13] IFMGO [15]
Best 0.998 0.998 0.998
F14 Worst 0.998 0.998 0.998
Mean 0.998 0.998 0.998
STD 2.4236E-22 1.8440E-16 5.9168E-17
Best 3.0561E-4 3.0749E-4 3.0605E-4
F15 Worst 7.1565E-4 1.2232E-3 1.2343E-3
Mean 3.7585E-4 3.7059E-4 3.0779E-4
STD 1.2405E-4 2.3182E-4 1.9014E-4
Best -1.03160 -1.03160 -1.03160
F16 Worst -1.03160 -1.03160 -1.03160
Mean -1.03160 -1.03160 -1.03160
STD 1.2211E-18 4.7908E-16 6.9914E-17
Best 0.3980 0.39789 0.39789
F17 Worst 0.3980 0.39789 0.39789
Mean 0.3980 0.39789 0.39789
STD 0 0 0
Best 3 3 3
F18 Worst 3 3 3
Mean 3 3 3
STD 1.7973E-25 1.4092E-15 1.1019E-15
Best -3.8621 -3.8628 -3.8628
F19 Worst -3.8615 -3.8628 -3.8628
Mean -3.8627 -3.8628 -3.8628
STD 1.8912E-24 2.2584E-15 1.8436E-15
Best -3.3218 -3.3220 -3.3220
F20 Worst -3.1824 -3.3220 -3.3220
Mean -3.2417 -3.3220 -3.3220
STD 5.9552E-2 6.033E-2 0
Best -10.15 -10.15 -10.15
F21 Worst -10.15 -10.15 -10.15
Mean -10.15 -10.15 -10.15
STD 0 0 0
Best -1.04028E+01 -10.403 -10.403
F22 Worst -1.04027E+01 -10.403 -10.403
Mean -1.04028E+01 -10.403 -10.403
STD 3.9324E-5 0 0
Best -1.05363E+1 -10.536 -10.536
F23 Worst -1.05361E+01 -10.536 -10.536
Mean -1.05363E+01 -10.536 -10.536
STD 4.7387E-05 0 0
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The results for functions F14, F16-F18, and F22 show that all the algorithms produced global
solutions, which indicates that can solve optimization problems with similar characteristics to the
functions. However, in the cases of functions F15, F19, F20, and F22, none of the algorithms produced
the global solutions, but the proposed EnMGO produced relatively better results compared to the MGO
and IFMGO. The EnMGO further exhibited superiority by producing the global solution of function
F23. It is worth noting that though EnMGO generally outperformed the other algorithms, they all
performed closely with very competitive results. The EnMGO has generally produced very good
performance on all 10 fixed-dimensional multimodal test functions.

The convergence characteristics of the EnMGO, MGO, and IFMGO for F14-F23 exhibited very
close convergence behavior toward the global solutions, producing overlapping curves. Hence, it was
impossible to display them clearly. These common qualities of the three algorithms for these 10
functions agree with the very competitive or close results presented in Table 5. Therefore, the 3
algorithms are potential optimization tools for solving fixed-dimensional multimodal problems.

The holistic comparison of the 3 algorithms for the 23 standard benchmark test functions, as
presented in Tables 3 and 5, shows that the proposed modified algorithms (EnMGO) produced very
good performance for all the test functions except functions F5, F6, and F12. This performance
represents 20 out of the 23 test functions, a very good indicator of about 86.96%. For the situations of
functions F5, F6, and F12, the proposed EnMGO was outperformed by its counterparts. However, the
performance of the EnMGO on these 3 test functions is close to that of the others. Hence, the overall
performance of the proposed EnMGO is superior compared to the original MGO and IFMGO.

4.2. Performance on engineering design problems

The performance of the EnMGO on the 2 engineering design problems, the pressure vessel design
problem, and the three-bar truss design problem, is compared to that of the MGO and IFMGO
presented in reference [19]. The performances of the three algorithms on the engineering design
problems are compared in Tables 6 and 7, respectively. The EnMGO was tested 30 times for each of
the design problems, and the best results were recorded for the comparison.

Table 6. Performances on the pressure vessel design problem.

Algorithm X1 X2 X3 X4 F(x)

MGO 0.8947789 0.4404352 46.3616 130.1125 6108.9319
IFMGO 0.7805281 0.386001 40.4248 198.799 5897.7704
EnMGO 0.7822144 0.3851635 40.52622 197.1715 5888.9498

Table 6 presents the performance of the 3 algorithms, where the function values (f(x)) represent
the manufacturing cost of the pressure vessel produced by each corresponding algorithm. The proposed
EnMGO produced the lowest cost value of 5888.998, while the original MGO produced the highest
cost value of 6108.9319. The IFMGO produced a very competitive cost value of 5897.770 compared
to that of the proposed EnMGO. However, the EnMGO outperformed the other two algorithms.

The test result of the EnMGO on the three-bar truss design problem is also compared to that of
the MGO and FIMGO in Table 7 below.

Table 7. Performance on the three-bar truss design problem.

Algorithm X1 X2 F(x)

MGO 0.78534 0.41775 263.9041
IFMGO 0.78845 0.4089 263.8959
EnMGO 0.78918 0.40682 263.8957
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The results in Table 7 show very close performances among the 3 algorithms. Each produced
optimal function had values around 263. This indicates that they are all good candidate tools for solving
optimization problems similar to the three-bar truss design problem. However, a closer look at the
function values indicates minute differences among them, with the EnMGO producing the least,
followed by the IFMGO and the MGO.

5. Conclusions

A new variant of the MGO called the EnMGO has been developed for better performance on
optimization problems. Two key modifications were introduced to address relevant weaknesses that
substantially enhance the performance of the algorithm. First, a NEIW strategy is introduced to
determine the values of the F parameter for the sole purpose of improving exploitation for better
performance. The second modification introduced a CRIW to improve the exploration capability of
the algorithm. The proposed EnMGO was tested on standard benchmark functions for testing purposes,
and the outcome was benchmarked against those of the original MGO and the IFMGO reported in the
literature for the same functions. The new EnMGO showed very good performance on 20 test functions
of the 23 standard test functions used, and this represents a significant performance of about 86.96%.
The EnMGO was further tested on 2 engineering design problems (the pressure vessel design problem
and the three-bar truss design problem). The outcome was compared to that of the MGO and IFMGO,
and the performance was relatively good. Based on the remarkable performances exhibited by the
proposed EnMGO on the standard benchmark test functions and the engineering design problems, we
conclude that the modifications introduced have led to significant improvement in the algorithm. The
EnMGO is therefore recommended to be adopted for solving engineering optimization problems, such
as the optimization of power distribution systems compensations, and optimal renewable energy
integration for effective power delivery. Its potential application can also be extended to other fields
such as agriculture and mechanical engineering designs. An example of such potential applications is
the truss structures optimization [24] in which the design of truss structures is optimized for maximum
performance.
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