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Abstract: Reliable and interpretable traffic crash modeling is essential for understanding causality and
improving road safety. This study introduced a novel approach to predicting crash types by utilizing
a comprehensive dataset fused from multiple sources, including weather data, crash reports, high-
resolution traffic information, pavement geometry, and facility characteristics. An essential part of our
proposed approach was a feature group tabular transformer (FGTT) model, which organizes disparate
data into meaningful feature groups, represented as tokens. These group-based tokens serve as rich
semantic components, enabling effective identification of collision patterns and interpretation of causal
mechanisms. The FGTT model was compared with widely used tree ensemble models, including
random forest, XGBoost, and CatBoost, demonstrating better predictive performance. Furthermore,
the attention heatmaps from the FGTT model revealed key influential factor interactions, providing
fresh insights into the underlying causality of distinct crash types.

Keywords: road safety; crash analysis and modeling; causality analysis; tabular transformer; tree
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1. Introduction

According to the national highway traffic safety administration (NHTSA), an estimated 40,990
people died in motor vehicle traffic crashes in 2023 [1], highlighting the urgent need for enhanced
road safety measures and policies. The inherent complexity of traffic dynamics, coupled with evasive
factors, such as driver and human behavior, vehicular, and environmental conditions, makes crash
modeling a challenging endeavor. To develop effective safety interventions, it is essential to gain
a deeper understanding of the intricate and multifaceted interactions among road users, roadway
infrastructure, and weather conditions. These can include enhancements to geometric design and traffic
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control devices, the implementation of new traffic regulations, and the integration of advanced vehicle
and infrastructure technologies. Collectively, these measures have the potential to significantly reduce
the frequency and severity of traffic crashes.

Existing approaches to crash analysis have two critical gaps. First, traditional approaches rely on
narrowly defined datasets, excluding critical variables such as detailed traffic patterns, environmental
conditions, pavement characteristics, and driver behavior due to data accessibility challenges. This
feature exclusion hampers the ability to model the multifaceted interactions among diverse factors.
Second, while machine learning (ML) and deep learning (DL) models have shown strong predictive
capabilities, their interpretability remains limited, particularly in deriving actionable insights for policy
formulation or engineering design.

To address these challenges, we present a novel approach that leverages an extensive, integrated
dataset encompassing weather conditions, traffic data, road geometry, pavement conditions, and driver
characteristics. By fusing data from multiple sources, we aim to capture the full spectrum of factors
underlying traffic crashes. Building upon this rich dataset, we introduce a novel model, namely
the feature group tabular transformer (FGTT), designed to enhance both predictive performance and
interpretability in crash type modeling. The FGTT organizes original features into semantically
meaningful units or groups, such as traffic, event, vehicle, driver, environmental, geometric, pavement,
and contextual factors. These distinct groups are then represented as tokens and used within a
transformer architecture [2]. This semantic grouping allows the model to capture interdependencies
among different feature groups and facilitates a more nuanced understanding of the factors contributing
to different crash types. By explicitly modeling the interactions among feature groups through the
attention mechanism, the FGTT enhances causal analysis in crash modeling, leveraging attention
heatmaps to uncover critical insights.

In summary, our contributions are twofold:

(1) We compile and utilize a multisource dataset that integrates critical variables often omitted in
the existing literature. This comprehensive dataset enables a more holistic analysis of traffic crashes
by accounting for a wide range of influencing factors.

(2) We introduce the FGTT model, which improves predictive accuracy for crash types while
enhancing interpretability through the analysis of attention weights associated with semantic feature
groups. This model not only outperforms state-of-the-art ensemble methods such as random forest,
XGBoost, and CatBoost but also provides valuable insights into the relationships among feature
groups, aiding in the understanding of potential confounding effects common in crash data. The
attention heatmaps analysis highlights the dominant role of event-specific details (e.g., vehicle
maneuvers and crash locations) and their interactions with the driver feature group, leading to different
crash types. Additionally, it uncovers more complex feature group interactions specific to angle
crashes.

This study combines a comprehensive dataset with an innovative modeling approach to advance
traffic safety analysis, providing both methodological advancements and practical insights to inform
more effective road safety countermeasures and strategies.
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2. Crash modeling

Crash collision and severity modeling has been a widely investigated topic utilizing various kinds of
data. Typically, the approaches focus on modeling crash severity to identify factors mostly correlated
with traffic crashes to provide effective countermeasures. However, not much emphasis has been placed
on modeling and predicting crash types, as they are typically used as independent features within those
studies. Kim et al. [3] conducted a study to model and predict crash types at intersections in rural
Georgia. Their results highlight that countermeasures targeting crash severity might only address
a subset of crashes. Besides crash severity, more effective countermeasures could be developed by
understanding contributing factors to different crash types. The authors also note that crash types
are associated with road geometry, environment, and traffic variables in different ways than crash
severities are, which serve as justification for modeling them separately. While this study focuses
on predicting the crash types, it is imperative to acknowledge the interconnection of crash types and
severity. Typically, the methods employed for predicting these outcomes (crash severity vs. crash type)
often overlap, leveraging similar datasets and analytical frameworks. Many crash severity studies
and modeling approaches directly use the crash type as an input feature for modeling severity and
risk [4-6]. Moreover, advanced driver-assistance systems (ADAS) and other interventions can also
reduce the likelihood of certain types of collisions occurring in the first place [7]. Therefore, while the
primary objective of this study focuses on crash types, a comprehensive literature review pertaining to
predicting crash severity is also included.

Statistical models have widely been applied to analyze crash collision and risk with respect to
varying features, offering a robust framework, and identifying key risk factors. Statistical methods offer
some advantages when it comes to crash modeling due to their elegant forms and ease in modeling and
interpretation. However, they are limited in adequately modeling complex relationships present within
crash data. For example, they often assume explicit or fixed interactions among variables, potentially
oversimplifying crash complexity and disregarding the dynamic interactions of variables, such as driver
behavior, the environment, and traffic.

Additionally, the quality and availability of data can also significantly impact the model’s accuracy
and reliability, with issues such as missing data and class imbalance posing notable challenges. Zeng
et al. [6] investigated the effects of real-time weather conditions and roadway geometry on the severity
of freeway crashes. They utilized an ordered logit model due to the ordered nature of crash severity
(low, medium, high). The variables included the hourly wind speed, temperature, precipitation,
visibility, and humidity alongside the horizontal curvature and grading of the roadway, and other
crash- and driver- related features. Their results indicated that heavier precipitation contributed more
to medium severity crashes, and that more severe crashes tended to occur on freeway segments with
a small horizontal curve radius and higher vertical gradients. However, they failed to incorporate
essential traffic-related features, such as speed and traffic volume, which play a crucial role in crash
types and severity [8,9]. They acknowledged the fact that higher-resolution weather data could give
additional insights into the crash severity outcomes.

Truck traffic impacts on crash severity have also been studied, since crashes involving trucks tend
to be more severe due to the weight and size of the trucks involved. Xu et al. [10] looked at the
effect of truck traffic characteristics on crash severity, leveraging weigh-in-motion (WIM) sensor data
over a 5-year period. They utilized both vehicle-specific and summary data, along with geometric
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roadway features, to reveal a correlation between mean vehicle weight and annual average daily traffic
(AADT), and an increased risk of injuries and fatalities. Dutta and Fontaine [11] investigated the use
of continuous count station (CCS) sensor data, including traffic speed and volume metrics, to improve
crash prediction modeling. Their findings highlighted the significance of three time scales of those
features (15-minute, hourly, yearly traffic data) and their impacts on model accuracy. Other studies
have explored the influence of various features on truck traffic crash severity, such as environmental
conditions, vehicle and driver characteristics, roadway geometry, and crash-specific features [12—15].

Aside from classic statistical approaches, various machine learning techniques have been employed
for crash severity analysis and prediction [14,16]. While statistical models often struggle to capture the
intricate and non-linear relationships in crash and traffic data due to their inherent constraints, machine
learning approaches offer a viable alternative. These methods excel in modeling complex relationships
and handling high-dimensional feature spaces. Assi [4] utilized a hybrid approach comprised of
principal component analysis (PCA) and support vector machines (SVM) as well as a multilayer-
perceptron (MLP) using crash, roadway, driver, vehicle, and environmental characteristics to predict
the severity of crashes. An increase in model performance and accuracy was noted when incorporating
PCA features into the model over the initial features due to the reduction in dimensionality, however
this study did not consider any traffic-related variables (e.g., speed or volume) which are known to
influence the crash severity outcome.

Morris and Yang (2020) [17] conducted a comprehensive study on crash collision patterns
on interstates in Georgia, leveraging linear discriminate analysis and extreme gradient boosting
(XGBoost) to classify multi-vehicle crash collisions. Their comprehensive dataset included a wide
range of variables, encompassing roadway, traffic, weather, environmental, and driver-related features.
However, the final dataset size was relatively limited (approximately 3700 crash instances) and did
not consider any pavement characteristics. In a separate study, Morris and Yang [18] presented an
approach for addressing imbalanced data and analyzing the outcomes using three different machine
learning methods. The imbalance inherently present in crash data can pose an issue for modeling due
to the biases imposed as the minority classes can easily be overpowered by the majority class, resulting
in poor prediction for the minority classes. To cope with the class imbalance, they investigated various
resampling methods to balance the dataset more evenly using techniques like the synthetic minority
oversampling technique (SMOTE) and adaptive synthetic sampling approach for imbalanced learning,
and leveraging ensemble methods for prediction (CatBoost, XGBoost, random forest). Their results
demonstrated that resampling methods enhanced crash collision predictions across all the models
evaluated.

Deep learning methods have also been applied to crash modeling, leveraging their innate ability
to handle large, high-dimensional datasets and to learn complex features and intricate relationships.
However, these models can be computationally intensive and are susceptible to overfitting without
careful tuning and proper regularization. While these models can deliver exceptional results, they often
face the “black box problem”, where the lack of interpretability make it unclear why certain predictions
were made. This opacity hinders the ability to derive actionable insights from the results, limiting their
practical applicability [19]. Dong et al. [20] developed a deep learning model for predicting crash
severity counts, utilizing a two-module architecture. The first module encodes inputs into feature
representations, which are then processed by the second module for fine-tuned encoding before being
passed to a regression layer to generate final crash severity predictions. The researchers evaluated their
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model with and without the regression layer in the final module and compared its performance to a
traditional SVM model. The proposed model with the regression layer performed the best, followed by
that without the regression layer, and finally the SVM. These results highlighted that even without the
regression layer, the encoded feature representations significantly contributed to prediction accuracy.
The study also investigated how the model grouped closely related features (e.g., AADT, speed limit,
truck percentage) into shared representation nodes, which were labeled as different representation
groups based on their constituent features. Their findings indicated that geometric, pavement, and
traffic feature representations had the most direct impacts on major injury crashes, minor injury crashes,
and property-damage-only crashes, respectively.

Sattar et al. [21] also conducted a study predicting crash severity and comparing three deep learning
models: an MLP, an MLP with embedding and TabNet, a popular tabular deep learning model based
on transformer architectures. Their evaluation considered not only accuracy, but also precision, recall,
and F1 scores, emphasizing the fact that misclassifying a severe injury is more crucial than less severe
ones. Additionally, the study examined training times, given the resource-intensive nature of training
deep learning models. The results showed that all three models yielded similar results for the severity
classification task. However, the authors highlighted the significant differences in training times. The
TabNet architecture, being more complex than the MLP models, required substantially longer training
time, approximately 700% more. TabNet has also been explored to predict the duration of traffic
incidents using tabular data [22]. This method demonstrated better performance compared to previous
machine learning methods, excelling not only in prediction accuracy but also in interpretability. Its
feature importance mechanism, driven by attention weights within the transformer architecture, enables
a more intricate understanding of the model’s outputs. Building on this foundation, our proposed
FGTT introduces an innovative feature grouping strategy. By encoding semantically related features
into tokens, the FGTT enhances both interpretability and predictive performance, offering a more
transparent and effective framework for modeling traffic collisions and improving decision-making
in traffic safety.

3. Data collection and compilation

Multiple sources were fused together to create a comprehensive dataset. Traffic counts, pavement
condition data, and crash data were sourced from the Georgia Department of Transportation (GDOT),
while public weather data was readily available from online platforms. This fused dataset enabled a
more nuanced understanding of crash collisions. The dataset is not only used to identify the strongly
correlated features with crash types but also to provide a broader perspective on the events surrounding
crash instances, thereby enhancing crash modeling in ways that other studies may not have considered.
Furthermore, this study specifically focused on multi-vehicle (MV) crashes. Previous studies [23,24]
have noted differences in the factors affecting single-vehicle (SV) crashes compared to MV crashes.
For instance, Wang and Feng [23] found that factors like traffic volume and speed variance had no
significant influence on SV crashes, while the opposite was true of MV crashes.

High-resolution traffic data, such as traffic counts and speeds, were obtained at 5-minute intervals
from various CCSs throughout the state of Georgia. Crash incidents from police report data were first
matched to these CCS stations both temporally and spatially. After the sites and crashes were matched,
the high-resolution traffic data was aggregated into hourly intervals for modeling purposes. Weather
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data for the crash instances was obtained from Weather Underground [25], with weather variables
extracted from weather stations that were spatially matched to the corresponding CCS sites. Finally,
pavement condition data was matched to the appropriate CCS sites based on geographic coordinates,
providing pavement condition details for each crash instance.

After validating and confirming the correct matches among all crashes, CCS sites, pavement
features, and weather variables, the data was fused into a single combined dataset. Subsequently,
feature selection and reduction were carried out. Since the crash data comes from statewide police
reports, several features were purposely excluded due to their post-incident nature. Given that this
study aimed to identify the predictive variables prior to crash occurrence, after-effect features were
excluded. Additionally, other crash-related features were also removed, particularly those influenced
by the subjective judgment of the police officer writing the report, such as the contributing factors to the
crash and the specific harmful event elements pertaining to each crash. Other redundant crash features
from the police reports such as the road characteristics (e.g., whether the road was straight or curved),
were omitted in favor of more accurate, quantified road and pavement measurements that better portray
the road geometry and pavement conditions.

The compiled dataset had missing values for variables such as driver ages, traffic speeds, and
precipitation data. These missing values were imputed using averages from relevant groups to maintain
consistency across similar conditions. For precipitation accumulation data, missing values were
imputed by calculating the group mean based on the categorical variables City and Date_element. The
imputation was performed using a group-wise approach to preserve local weather patterns. Similarly,
missing values in the Hourly_avg_speed column were imputed by grouping the data based on No_lanes,
Day_of-week, Facility_type, Area_type, and Time_of-day, and replacing the missing values with the
mean of each respective group. This method ensured that imputations accounted for contextual
variations in traffic conditions. After processing, the final dataset consisted of 6810 MV crash instances
and 33 features. Table 1 lists the variables analyzed in this study.

The dataset had a total of 14 numerical features and 19 categorical features. Each of the numerical
and categorical feature statistics is shown in Tables 2 and 3.

Table 1. Total dataset description.

Feature Description Unit
City City limits where the crash took place -
Crash_type Manner of collision of the car crash -
Crash_location Location on the roadway where the crash took place -
Lighting The lighting conditions noted when the crash occurred -
Surface The surface roadway condition noted when the crash -

Driverl _safety_equip
Driver2 _safety_equip

occurred
The safety equipment in use by the primary (at-fault) driver
The safety equipment in use by the secondary driver

Vehl _type Type of vehicle of the primary (at-fault) driver -
Veh?2 _type Type of vehicle of the secondary driver -
Vehl _maneuver Maneuver that the primary driver was carrying out to cause -

the crash
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Feature Description Unit

Road_composition Make-up composition of the roadway where the crash -
occurred

Trafficway _layout The general roadway description of how traffic flow is -
controlled

Wind _speed Measured wind speed at the hour closest to the crash mph

Gust Measured gust at the hour closest to the crash mph

Precip_rate The precipitation rate for the hour closest to the crash in/hr

Precip_accum The total precipitation accumulation for the day up until an inches

hour before the crash
Hourly _truck_ratio Truck percentage (FHWA Classes 4-13) of total traffic in
the crash direction during the preceding hour

Hourly_volume The total volume of traffic that was measured in the same count
roadway direction as the crash for the hour prior to the crash
occurrence

Hourly_avg _speed The average speed of traffic measured in the same roadway mph
direction as the crash for the hour prior to the crash
occurrence

IRI avg International Roughness Index average in/mile

Rut_avg Longitudinal surface depression in the asphalt pavement of inches

the average two-wheel paths measured between the width
limits of the lane

Faulting _avg 3d Faulting values that fall across the entire lane in/mile
Heading angle Measures the beginning and ending of the horizontal degrees
curvature to determine the heading
Percent_grade Measures the grade classification of pavement sections percentage
Cross_section_slope  Critical design element for pavement cross-sections percentage
Crack_percentage Percentage of pavement surface exhibiting cracking percentage
Day_of week The day of the week the crash occurred -
Driverl _agerange The age range of the primary (at-fault) driver -
Driver2_agerange The age range of the secondary driver -
Curvature The curvature classification of the roadway -
Facility_type The classification type of the roadway facility -
Area_type The area where the roadway facility is located, either urban -
or rural
Num_lanes The number of lanes of the roadway (for one direction) count
Time _of day The time of day that the crash occurred -
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Table 2. Numerical feature statistics.

Feature Mean Std Min Max
Wind _speed 1.22 1.89 0 79
Gust 232 3.07 0 79
Precip_rate 0.01  0.09 0 3
Precip_accum 0.10 0.33 0 4.52
Hourly truck_ratio  0.08  0.10 0 0.88
Hourly_volume 4370 2884 10 10,688
Hourly_avg _speed  49.06 15.56 4.18 80.27
IRI avg 61.43 33.10 25 251
Rut_avg 0.107 0.061 O 0.41
Faulting_avg_3d 0.005 0.018 0 0.39
Heading 205 120.76 0.9 359.9
Percent_grade -1.29 191 -7.40 3.70
Cross_section_slope 0.361 1.691 -4770 3.4
Crack_percentage 8.11 10.74 0O 57

Table 3. Categorical feature distributions.

Feature

Distribution of Categories

City

Atlanta: 2375 (40.16%)
Metro Area Outside of Atlanta: 2202 (32.33%)
Unincorporated: 1873 (27.5%)

Crash_location

On Roadway - Non-Intersection: 5513 (80.95%)

On Roadway - Crossing/Intersection/Crosswalk/Roundabout: 717 (10.53%)

Entrance/Exit Ramp: 359 (5.27%)
Private Property/Off Roadway: 133 (1.95%)
Shoulder/Median/Gore: 88 (1.29%)

Lighting

Daylight: 5066 (74.39%)
Dark-Lighted: 1028 (15.09%)
Dark-Not Lighted: 574 (8.43%)
Dawn: 77 (1.13%)

Dusk: 65 (0.95%)

Surface

Dry: 5465 (80.25%)
Wet/Snow/Ice: 1345 (19.75%)

Driverl _safety_equip

Lap/Shoulder Belt/Helmet Used: 4911 (72.11%)
Unknown: 1,787 (26.24%)
None Used: 112 (1.64%)

Driver2 _safety_equip

Lap/Shoulder Belt/Helmet Used: 5541 (81.37%)
Unknown: 1208 (17.74%)
None Used: 61 (0.90%)
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Feature

Distribution of Categories

Vehl _type

Passenger Car/Pickup/Van/SUV: 6060 (88.99%)
Truck/Trailer: 457 (6.71%)

Unknown: 206 (3.02%)

Other: 55 (0.81%)

Motorcycle/Bicycle/ATV: 32 (0.47%)

Veh2 _type

Passenger Car/Pickup/Van/SUV: 6191 (90.91%)
Truck/Trailer: 413 (6.06%)

Unknown: 142 (2.09%)

Other: 47 (0.69%)

Motorcycle/Bicycle/ATV: 17 (0.25%)

Vehl _maneuver

Straight: 3809 (55.93%)

Changing Lanes/Passing: 1886 (27.69%)
Negotiating a Curve: 369 (5.42%)

Turning (left, right, u-turn): 285 (4.19%)

Other: 251 (3.69%)

Backing: 89 (1.31%)

Stopped/Parked: 85 (1.25%)

Entering/Leaving Parking/Driveway: 36 (0.53%)

Road_composition

Black Top: 5921 (86.95%)
Concrete/Other: 889 (13.05%)

Trafficway_layout

Two-Way Trafficway With A Physical Barrier/Separation: 3762 (55.28%)
One-Way Trafficway: 1275 (18.72%)

Two-Way Trafficway With No Physical Barrier/Separation: 944 (13.86%)
Continuous Turning Lane: 32 (0.47%)

Day_of week

Monday: 963 (14.14%)
Tuesday: 1096 (16.09%)
Wednesday: 935 (13.73%)
Thursday: 1135 (16.67%)
Friday: 1282 (18.83%)
Saturday: 784 (11.51%)
Sunday: 615 (9.03%)

Driverl _agerange

Under 25: 1758 (25.81%)
25-34: 1620 (23.79%)
35-44: 1856 (27.25%)
45-54: 723 (10.62%)

55 and up: 853 (12.53%)

Driver2_agerange

Under 25: 1244 (18.27%)
25-34: 1869 (27.44%)
35-44: 1520 (22.32%)
45-54: 1112 (16.33%)
55 and up: 1065 (15.64%)

Continued on next page
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Feature Distribution of Categories
Curvature A: 5869 (86.18%)
B: 869 (12.76%)
C or more: 72 (1.06%)
Facility_type Interstate: 5342 (78.44%)
Principal Arterial - Other: 751 (11.03%)
Minor Arterial: 393 (5.77%)
Principal Arterial - Other Freeways and Expressways: 324 (4.76%)

Area_type Urban: 6,691 (98.25%)
Rural: 119 (1.75%)
Num_lanes 2: 1746 (25.64%)

3: 618 (9.07%)
4: 585 (8.59%)
5: 954 (14.01%)
6: 709 (10.41%)
7: 2198 (32.28%)

Time_of day Early morning: 428 (6.28%)
Peak morning: 1185 (17.40%)
Midday: 1315 (19.31%)
Peak afternoon: 2857 (41.95%)
Late evening: 1025 (15.05%)

4. Crash type classification

In this study, we frame crash type inference as a multi-class classification problem. To enhance
both performance and interpretability in tabular data modeling, we propose the FGTT, leveraging the
transformer architecture [2]. The FGTT is evaluated against three tree ensemble baselines, including
random forest (RF), extreme gradient boosting (XGBoost), and categorical boosting (CatBoost). These
tree ensemble methods are well-established and widely recognized for their robust performance in
supervised learning tasks involving tabular data. This section provides a brief overview of each
ensemble method, followed by a detailed description of our proposed FGTT.

4.1. Baselines

Ensemble methods, which combine multiple decision trees to make predictions, have gained
significant popularity due to their flexibility and robustness in handling large tabular datasets. Among
the most widely used ensemble methods are random forest (RF) and gradient boosting. RF is a parallel
ensemble method, while gradient boosting is a sequential ensemble method. Within gradient boosting,
two state-of-the-art approaches are XGBoost and CatBoost.

4.1.1. Random forest

Random forest is a versatile machine learning algorithm. It operates by constructing a multitude of
decision trees at the training time and outputting the most common prediction (for classification) or the
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average prediction (for regression) from the individual trees. This helps reduce prediction variance and
prevent overfitting, a common issue with single decision trees. The algorithm randomly selects subsets
of both data and features at each split point, making it more robust. For classification, each tree votes
for a class, and the class with the most votes becomes the final prediction. RF is particularly well-suited
for predicting crash types due to its ability to handle complex, non-linear relationships between features
like speed, weather conditions, and road conditions. For example, Khanum et al. [26] and Morris and
Yang [17] both implemented RF in their approaches in modeling crash types and severity predictions,
respectively. Given its effectiveness, RF was chosen as a competitive baseline for comparison in this
study.

4.1.2. XGBoost

XGBoost is an advanced implementation of gradient boosting algorithms [27]. It has gained
popularity in the machine learning community for its speed, performance, and versatility. Different
from the conventional first-order tree ensemble, XGBoost is a second-order method with an objective

function expressed in Eq (1).

L) = Y 1050+ Y Q). (1)
i=1 3
where [(y;, ;) 1s the loss function measuring the discrepancy between the predicted y; and the actual
target y;, which is approximated by a second-order Taylor expansion; Q(f;) denotes the regularization
term, which penalizes the complexity of tree f;, typically by the number of nodes and the magnitude
of leaf weights. XGBoost recursively chooses a feature split that maximizes the gain (or a reduction in
loss). In the context of crash type classification, Yang et al. [28] utilized XGBoost for predicting crash
severity and employed the Shapley additive explanation (SHAP) for model interpretation.

4.1.3. CatBoost

CatBoost, short for categorical boosting, is a state-of-the-art, open-source, gradient boosting library
developed by Yandex [29]. It is specifically designed to work well with categorical data and is known
for its performance, accuracy, and ease of use. CatBoost can efficiently handle categorical features
through ordered target statistics while addressing the target leakage issue. Another distinguishing
feature of CatBoost is ordered boosting, a permutation-based enhancement to traditional gradient
boosting. This approach addresses bias and prediction shift by utilizing independent datasets at each
gradient step, a process formally described by Eq (2).

A (-1 ]
3 =9V + @ hy(xi, D), (2)

where

o j)ﬁ') is the prediction for the i-th instance at iteration ¢,

o h(x;, Z)fr;in) is the model built on the training subset Z)fr;in, which includes only data points that
precede x; in the current permutation,

e « is the learning rate, controlling the step size of the boosting algorithm.

In addition to the ordered boosting, CatBoost uses oblivious trees as base predictors, which are
computationally efficient and lead to faster predictions while reducing the risk of overfitting. As a

Applied Computing and Intelligence Volume 5, Issue 1, 29-56.



40

state-of-the-art model for tabular data with categorical features, CatBoost naturally serves as a strong
baseline for crash type prediction in this study. Previous research has successfully applied CatBoost
to crash modeling, as demonstrated by Hasan et al. [30], Li et al. [31], and Morris and Yang [18].
For interpreting tree ensemble models, the SHAP framework, developed by Lundberg et al. [32], has
been widely adopted [18,30,31]. SHAP values quantify the contribution of each feature to a specific
prediction by comparing the model’s output with and without the inclusion of that feature, offering
insights into the model’s decision-making process.

4.2. Feature group tabular transformer

This section introduces the proposed method, the feature group tabular transformer (FGTT). We
begin with a brief overview of transformers and the multi-head self-attention mechanism, followed by
an explanation of our feature grouping approach.

4.2.1. Transformer encoder

Transformers [2] initially designed for sequential data, have become the architecture of choice for
a wide range of natural language processing (NLP) and computer vision tasks. The core innovation
of the transformer is the self-attention mechanism which enables the model to focus on relevant input
tokens based on their relationships to one another. This mechanism, referred to as scaled dot-product
attention, shown in Eq (3), computes the attention weight by extracting information from other tokens
in the input sequence. This allows the model to effectively capture dynamic context, semantics, and
relationships within the data.

Attention(Q, K, V) = Softmax(QKT) V, 3)
, K, Nl A

where Q and K are the query and key vectors, with the embedding dimension of d;. V is the value
vector. The dot products of the queries and keys are computed and divided by Vd, followed by a
softmax function to obtain the weights. This process is repeated across multiple heads n-times and
results are concatenated together.

In this study, only the transformer encoder is employed, as its feature encoding is expected to
enhance classification performance. The prediction approach is similar to that of Dong et al. [20],
where a linear regression head was appended to the encoder model. However, in this work, an MLP
classifier was used instead of a linear regression model to make final crash type predictions [21]. The
transformer encoder architecture utilized in this study is illustrated in Figure 1.
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Figure 1. Transformer encoder.

4.2.2. Feature group tokens

Transformers are typically used in the NLP domain, where they process sequential words (or
subwords) as vectorized tokens to learn context-sensitive semantic relationships between words to
process sentences. Inspired by this concept, the proposed FGTT approach adapts this framework
for tabular data in this study, where a crash sequence is created, consisting of distinct tokens that
encapsulate various semantic aspects of a crash event. By assigning unique semantics to each token,
this approach differs from tree-based models, which treat each original feature independently.

Instead of tokenizing each individual feature in the dataset, an additional step was introduced
to encode features by meaningful groups that represent distinct semantic aspects of a crash event.
To achieve this, related features were grouped based on their shared characteristics and roles in
determining crash outcomes. This grouping reflects different aspects of the events surrounding a crash
instance while addressing the overlap between certain features. Each feature group was then encoded
into a token vector using an MLP projector, where the resulting token represented the specific semantic
contribution of that feature group to the crash instance. This process produced a sequence of tokens,
with each encapsulating a meaningful aspect of the crash. By organizing features into these groups, the
approach aimed to provide a richer semantic representation of crashes compared to treating features
independently. This richer representation was expected to better leverage the learning capability of the
transformer encoder and deliver improved results over traditional ensemble methods. Table 4 shows the
eight feature groups defined for this study. These groups were derived from features most commonly
identified in the literature as influential in determining crash outcomes.
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Table 4. Feature groups and corresponding features.

Feature group Features

Event features Crash_location
Vehl _maneuver

Traffic features Hourly _truck_ratio

Hourly_volume
Hourly_avg _speed

Environment features Gust
Wind _speed
Precip_rate
Precip_accum
Lighting

Pavement features IRI avg
Rut_avg
Faulting avg 3d
Percent_grade
Cross_section_slope
Crack_percentage
Road_composition
Surface

Driver features Driverl _AgeRange
Driver2_AgeRange
Driverl _safety_equip
Driver2 _safety_equip

Contextual features Day_of week
Time_of _day
City

Geometric features Heading _angle
Curvature
Trafficway_layout
Number_of_lanes
Facility_type
Area_type

Vehicle features Vehl _type
Veh?2 _type

4.2.3. Proposed FGTT model

For the proposed FGTT model, features from the dataset are first organized into distinct feature
groups, each representing a specific aspect of the crash data. These groups, varying in size and
dimensionality due to the differing number of features they contain, are then processed through a
Feature Group Token Projection layer. This step ensures that all feature group tokens are projected
to a uniform dimension which is a necessary condition for input into the transformer encoder. The
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projection process not only standardizes the input but also transforms the feature tokens into a
shared representation space, enabling the model to better capture and understand the relationships
and interactions among different feature groups. For this purpose, an MLP model was utilized as the
feature projector. Once the tokens are projected to a common dimension, they are passed through
the transformer encoder block. The encoded outputs are then fed to an MLP classifier, followed by a
softmax layer to predict probabilities of crash types. The proposed FGTT model is shown in Figure 2.
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Figure 2. Illustration of the FGTT.

5. Experimental results and discussion

This section outlines the experiments conducted, including the implementation of each model
discussed in Section 4 and their interpretation to better understand the possible crash causality chains.
Specifically, SHAP value plots are used to explain the ensemble models, while attention weight
heatmaps are generated for the FGTT model to provide deeper insights into the impact and interactions
of the feature groups on crash type predictions.

Data partition and normalization are crucial steps in machine learning workflows. The original
dataset, as described previously, was divided into three subsets: training, validation, and testing.
Instead of using random data splitting, stratified splitting was adopted to ensure that each subset (i.e.,
training, validation, and testing) retains the same class distribution as the original dataset (13% of
angle crashes; 29% of sideswipe crashes; and 58% of rear-end crashes). This is particularly important
in scenarios like this study, where certain class labels, such as angle and sideswipe crashes, are
underrepresented. As a result, the original dataset of 6810 multi-vehicle crashes was partitioned using
stratified sampling based on the class label Crash type, leading to the following splits.

e Training Set: 6026 samples (88.5%);

e Validation Set: 392 samples (5.75%);

o Testing Set: 392 samples (5.75%).

Many of the features in this study are categorical. Given the small number of categories for each
categorical variable, one-hot encoding is employed. To expedite and stabilize training, numeric features
are standardized by subtracting the mean and divided by the standard deviation. To prevent information
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leakage, the mean and standard deviation are computed training dataset and then applied consistently
across all three subsets.

This standardization process ensures that each numeric feature contributes equally to the distance
computations, which is important for metric-oriented learning algorithms, such as transformers.
Standardizing the numeric data in this study is particularly important in this study, as some numeric
features, such as the Hourly_volume, span a large range of values.

5.1. Ensemble methods

A GridSearch cross-validation (CV) strategy was employed for hyperparameter tuning of the
ensemble models, including random forest, XGBoost, and CatBoost. CV is a commonly used
technique in machine learning for hyperparameter tuning. It involves partitioning the training data
into subsets, training the model on some subsets, and validating the model on the remaining subsets.
This process is repeated multiple times, cycling through the subsets, to ensure that each subset serves as
both training and validation data. The results are averaged to provide a final performance evaluation.
To ensure proper class label distribution, the data subsets are stratified. GridSearch systematically
explores the combinations of hyperparameters, cross-validating each combination to determine the
best-performing set. The final models were trained with the optimal hyperparameters identified.

All tree ensemble models were trained using a consistent methodology, which included
hyperparameter tuning through 5-fold GridSearch CV and leveraging a validation set to implement
early stopping to mitigate the risk of overfitting. The hyperparameters for the 5-fold CV process for
XGBoost, random forest, and CatBoost are listed in Table 5.

Table 5. Cross-validation hyperparameter tuning for XGBoost, random forest, and CatBoost
(bold indicates the selected value).

Model Cross-validation Parameters

Random Forest 7:{0.01, 0.05, 0.1, 0.3}; n_estimators:{100, 200, 500}; max_depth:{None, 10,
20, 30}; min_samples_split:{2, 5, 10}

XGBoost n7:{0.01, 0.05, 0.1, 0.3}; n_estimators:{100, 200, 500}; max_depth:{3, 5, 7, 9}

CatBoost n:{0.01, 0.05, 0.1, 0.3}; iterations:{100, 200, 500, 1000, 2000, 4000};
depth:{3, 5,7, 9}

5.2. FGTT

A different strategy was employed for tuning the parameters of the FGTT model. Bayesian
optimization (BO) was used to efficiently find the optimal parameter settings. Unlike GridSearch,
which exhaustively evaluates every combination of parameters, BO leverages a Gaussian process
to construct a posterior distribution of the objective function based on prior evaluations. It then
uses an acquisition function to decide where to sample next. This is particularly advantageous for
tuning deep learning models, where the parameter space can be extremely large, and training can be
computationally intensive and time-consuming. By intelligently choosing the next set of parameters
to evaluate, BO significantly reduces the time and resources required as compared to the GridSearch
method. This method has proven to be efficient and effective in tuning the hyperparameters of complex
models [33,34]. The Optuna package [35] was used for BO implementation.
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The FGTT model was trained using focal loss, which was initially implemented for object detection
tasks to address the challenge associated with class imbalance [36]. It achieves this by down-weighting
the loss contribution from well-classified examples, typically belonging to majority classes, and
focusing more on misclassified examples, often from minority classes. This adjustment enables the
model to prioritize learning from underrepresented but significant classes, improving robustness and
performance on imbalanced datasets where traditional loss functions may struggle. Focal loss has been
successfully applied in various domains [37-39], demonstrating improved prediction outcomes. The
parameter settings for the FGTT are listed in Table 6.

Table 6. Parameter settings for the FGTT.

Parameter Range of Values Evaluated Optimal Value
learning rate [0.001, 0.1] 0.017
optimizer Adam, SGD, RMSProp SGD

FFN dimension 16, 24, 32, 64 64

hidden dimension 16, 24, 32, 64 64

MLP dropout rate 0.1, 0.2, 0.3, 0.4 0.2

number of heads  2,3,4,6 4

number of layers  2,3,4,5,6 3

5.3. Evaluation metrics

Evaluating machine learning models on imbalanced datasets requires metrics that capture
performance beyond simple accuracy. Although overall accuracy, defined as the ratio of correct
predictions to total predictions, offers a general assessment, it falls short in scenarios with uneven
class distributions. In such cases, metrics like precision, recall, and their harmonic mean, the F1 score,
offer a more nuanced and comprehensive evaluation.

Precision measures the proportion of correctly predicted positive instances among all predicted

positives:
TP

P .. -
rec1sion TP+ FP (9)

Recall quantifies the ability to identify actual positive instances among all true positives:

TP
Recall = ———. (10)
TP+ FN
Since Precision and Recall often exhibit a trade-off, balancing them is critical. The F1 score

achieves this balance by calculating their harmonic mean:

Precision X Recall
Fl1=2

X — : (11
Precision + Recall
Unlike the arithmetic mean, the F1 score penalizes extreme imbalances between Precision and
Recall, making it suitable for tasks involving critical minority classes. In this study, where rare crash
types, such as sideswipe and angle crashes, are of primary interest, the F1 score serves as a more
reliable and informative metric than Accuracy.
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6. Results

The model performance metrics are summarized in Table 7.

Table 7. Comparison of model performance.

Modeling Method Label Ace. Prec. Rec. F1 Rear-end Sideswipe Angle
Rear-end 93.4% 0.845 0934 0.887 93.0% 6.6% 0.4%
Random forest Sideswipe 772% 0.740 0.772 0.756 17.5% 77.2% 5.3%
Angle 294% 0.682 0.294 0411 37.3% 33.3% 29.4%
Weighted Avg  80.4% 0.793 0.804 0.787 - - -
Rear-end 92.5% 0.850 0.925 0.886 92.5% 5.3% 2.2%
XGBoost Sideswipe 79.8% 0.752 0.798 0.775 15.8% 79.8% 4.4%
Angle 27.5% 0.583 0.275 0373 37.3% 35.3% 27.5%
Weighted Avg  80.4% 0.787 0.804 0.787 - - -
Rear-end 91.6% 0.863 0.916 0.889 91.6% 5.7% 2.6%
CatBoost Sideswipe 74.6% 0.752 0.746 0.749 15.8% 74.6% 9.6%
Angle 41.2% 0.553 0412 0472 29.4% 29.4% 41.2%
Weighted Avg 80.1% 0.790 0.801 0.794 - - -
Rear-end 92.1% 0.867 0.921 0.893 92.1% 5.7% 2.2%
FGTT Sideswipe 77.2% 0.733 0.772 0.752 17.5% 77.2% 5.3%
Angle 39.2% 0.645 0.392 0.488 23.5% 37.3% 39.2%

Weighted Avg  80.9% 0.799 0.809 0.799 - - -

The FGTT model outperformed all ensemble models, achieving the highest overall weighted F1
score of 0.799, the highest precision of 0.799, the highest recall of 0.809, and the highest accuracy
of 80.9%. This demonstrates the FGTT’s ability to deliver a more balanced performance across all
crash types while maintaining strong overall predictive capability.

The CatBoost model also showed strong performance, with a weighted F1 score of 0.794, only
slightly lower than the FGTT. Notably, it excelled in predicting the minority class, Angle, achieving the
highest accuracy (41.2%) and recall (0.412) for this category. This highlights CatBoost’s effectiveness
in handling imbalanced datasets and identifying the minority crash type. Additionally, CatBoost
exhibited high precision (0.863) and a high F1 score (0.889) for the rear-end category, showcasing
its reliability for majority class predictions.

The XGBoost model, while slightly trailing in overall performance, achieved a competitive
weighted F1 score of 0.787. It displayed balanced predictive performance across categories but
struggled in the Angle class, with the lowest accuracy (27.5%) and F1 score (0.373).

The random forest model excelled in predicting the majority class (Rear-end), achieving the highest
accuracy (93.4%) and F1 score (0.887) among all models for this category. However, its performance
declined for the minority class, Angle, with an accuracy of 29.4% and an F1 score of 0.411. Despite
this, the RF model maintained a competitive overall weighted F1 score of 0.787 matching XGBoost.

In summary, the FGTT delivered the best overall performance, while CatBoost demonstrated better
capabilities for minority class prediction. Both models showcased the advantages of ensemble learning
techniques in achieving balanced and accurate predictions across crash types.

In addition to comparing overall model performance, further analysis and interpretation of model
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predictions were performed using SHAP values for the ensemble methods and attention weight
heatmaps for the proposed FGTT model.

SHAP values provided insights into feature importance by quantifying each feature’s contribution
to the prediction, enabling a deeper understanding of how individual features influenced the model’s
decisions for different crash types. Specifically, the SHAP value for a given feature measures its
contribution to the final model prediction, weighted relative to the contributions of all other features.
In this study, the SHAP values for the CatBoost model were averaged across all classes (rear-end,
sideswipe, angle) since CatBoost has the best performance among the ensemble models. This analysis
highlights the magnitude of each feature’s impact on the model’s prediction.

6.1. Feature importance by SHAP values for CatBoost

Figure 3 shows the top fifteen features based on SHAP values for the CatBoost model. The
analysis highlights that the event features, such as the maneuver of vehicle 1 (Vehl_maneuver) and
crash location, and traffic features are consistently the most significant features in inferencing crash
types, as evidenced by their high SHAP values. For the event features, the maneuver of vehicle 1 such
as changing lanes or passing and keeping straight all have the most impact with the highest SHAP
values for the three crash types. Specifically, the maneuver executed by the at-fault vehicle, such
as changing lanes, traveling straight, or performing other actions, directly affects the positioning and
interaction between vehicles, thereby influencing the type of crash. The crash location also plays an
important role with higher SHAP values of Crash_location_On roadway - Non-intersection for rear-end
and sideswipe crashes than angle crash.

Rear-End Crash Sideswipe Crash Angle Crash
Veh1l_maneuver_Changing Lanes/Passing _ _ _
Vehl_maneuver_Straight _ - _
Hourly_avg_speed _ 1 - I
Crash_location_On Roadway - Non-Intersection - B _ |
Cross_section_slope - - |
Hourly_truck_ratio - - ‘
Driverl_safety_equip_Lap/Shoulder Belt/Helmet Used - l
Heading_angle l - ‘
Vehl_maneuver_Other . - .
IRI_avg . - ‘
Gust I -
Veh2_type_Truck/Trailer . . |
Veh1l_maneuver_Turning (left, right, U-turn) l . I
City_Atlanta I - ‘
o 100 200 300 -50 0 50 100 -5 0 5

Directional SHAP Value (Mean |[SHAP| Magnitude)

Figure 3. Directional SHAP values for CatBoost.

The traffic features, such as the hourly volume (Hourly volume), hourly average speed
(Hourly_avg _speed), and truck percentage (Hourly_ truck_ratio), see detailed explanations in Table 1,
are listed among the top seven most important features across crash types. These results underscore
the critical role of vehicle behavior and traffic flow in affecting crash types. Similarly, hourly
volume, speed, and truck ratio reflect traffic density, status, and exposure, which directly correlate
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with crash risks. The hourly average speed emerges as a critical feature across crash types, with
notable contributions in rear-end and sideswipe crashes. Its significance can be attributed to the
direct relationship between speed and the likelihood of these crashes. High average speeds reduce the
reaction time available to drivers, increasing the risk of rear-end collisions, especially in high-traffic
scenarios. For sideswipe crashes, elevated speeds may amplify the difficulty of safely changing lanes
or maintaining control during complex driving maneuvers. The Hourly_truck_ratio, which is unique
in our dataset, emerges as a notable feature in the SHAP analysis, contributing to the understanding
of crash type dynamics, particularly for rear-end and sideswipe collisions. This feature represents
the proportion of trucks in the traffic flow during a given hour and is closely tied to crash likelihood
due to the unique characteristics and limitations of trucks. The SHAP values indicate that a higher
Hourly_truck_ratio generally increases the probability of sideswipe crashes, likely because trucks
occupy more space on the roadway, have larger blind spots, and require greater distances to maneuver
safely. These factors can create conditions that make lane changes and overtaking more challenging
for other vehicles, leading to sideswipe incidents. In addition, Hourly_truck_ratio plays a role in
rear-end crashes, albeit with a smaller magnitude of contribution. The large size, heavy weight, and
slower acceleration of trucks can create speed differentials in mixed traffic, particularly during peak
hours, where traffic density is high. Such conditions may increase the likelihood of rear-end collisions
when vehicles following trucks fail to adjust their speed or maintain a safe following distance. These
findings underscore the need for targeted interventions, such as lane restrictions for trucks during peak
traffic hours, better signage to alert drivers of truck-heavy zones, and enhanced training for drivers on
navigating safely around trucks.

Additionally, other factors, including pavement features (cross-section slope, IRI_avg), geometric
features (Heading_angle), and weather-related features (gust), provide further insights into the
multifaceted nature of crash dynamics.

6.2. FGTT attention heatmaps

To better understand feature importance for the FGTT model, attention weights were extracted from
the last attention layer and examined at different levels. In the context of attention mechanisms, there
are two key elements, the query and key tokens, that play a pivotal role. These tokens are transformed
representations of the input data. Specifically, query tokens are used to probe the input data, while
key tokens are matched against these queries. The model evaluates the similarity between each query
token and all key tokens to compute attention scores. These scores quantify the relevance of each part of
the input sequence to the query. Using these scores, the model generates a weighted sum of values, an
amalgamation of contextually embedded information that highlights the features deemed most relevant
for making predictions. In this study, attention weights for the FGTT model were extracted for three
distinct crash types from the test set and passed through the final trained model to identify the features
most associated with each crash type. The attention weights were obtained from the last layer of the
transformer encoder, which is the layer that produces the final transformer output used for predictions.

Figure 4 illustrates the class token attention scores toward each feature group for crash type
inference. These attention scores signify the importance of each feature group in predicting three
crash types: rear-end, sideswipe, and angle.

The results show that the event feature group consistently receives the highest attention scores
across all crash types from the class token. This indicates the dominant role of event-specific details,
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such as vehicle maneuvers and crash locations, affecting the risks of different crash types. Notably,
sideswipe crashes exhibit higher attention to the event feature group compared to angle crashes and
rear-end crashes, likely reflecting the critical influence of dynamic actions, such as lane changes, which
are commonly associated with these types of collisions. In contrast, rear-end and angle crashes may
depend less on immediate events and more on environmental, contextual, and pavement factors.

[ Rear-End
I Sideswipe
I Angle

0.25

CLS Attention Scores

Figure 4. Class token (CLS) attention scores by feature groups.

The traffic, environment, pavement, driver, and contextual feature groups demonstrate moderate
attention scores, suggesting their relevance in providing additional context for crash type prediction.
For example, angle crashes exhibit relatively higher attention to environmental features, which may
highlight the role of conditions like gust, wind speed, precipitation, and lighting in angle crash
scenarios, particularly on the driver’s driving perception and pavement conditions. Similarly, the
driver and contextual feature groups receive comparable attention across crash types, suggesting the
importance of driver characteristics, potentially driver behavior indicated by the driver characteristics,
and contextual factors, such as traffic patterns, reflected by the time of day and the day of the week.
These features likely serve as secondary factors that modulate the primary event-driven dynamics of
crashes. This finding aligns with the understanding that immediate crash events and driver interactions
often have a stronger impact on outcomes than static roadway or vehicle characteristics.

Figures 5-7 present the attention heatmaps depicting the interactions between different feature
groups for three crash types: rear-end, sideswipe, and angle. The intensity of the attention weights
in these headmaps reflects the importance of the relationship for each feature group pair in the model’s
predictions.

Analyzing the heatmaps reveals distinct patterns of feature group interactions for each crash
type. Comparing the heatmaps across crash types reveals that certain feature group interactions are
universally influential, while others are crash-type specific. One notable finding across the three
heatmaps is that the event feature group shows more influence than other feature groups across the
three crash types. For the rear-end crash type, there are prominent interactions between feature groups,
including event and geometric, traffic and driver, event and vehicle, event and contextual, event and
driver feature groups. For sideswipe crash type, the heatmap highlights substantial interactions of the
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event feature group with the driver, contextual, vehicle feature groups.

Moreover, the event feature group has consistent strong attention toward the driver feature group
across all three heatmaps. The persistent interaction underscores the fundamental role of driver-related
features, or potential latent factors, in the occurrence of different crash types.

In the angle crash heatmap, there is more pronounced emphasis on overall feature group interactions
compared to rear-end and sideswipe crashes. This may suggest a more complex combined effect
of feature group interactions on the model’s inference for angle crashes. Notably, the strong
attention associated with driver-event feature group pairs further highlights their significant influence
in predicting the angle crash type.

Rear-End Crash
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geometric -
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Figure 5. Feature groups attention heatmap for rear-end crashes.
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Figure 6. Feature groups attention heatmap for sideswipe crashes.
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Figure 7. Feature groups attention heatmap for angle crashes.

These findings demonstrate the model’s ability to capture the intricate relationships among different
feature groups in inferring crash types. The highlighted feature group interactions specific to
each crash type reveal the potential for developing targeted intervention strategies. For instance,
mitigating rear-end crashes could involve prioritizing driver assistance technologies and improving
pavement conditions. Reducing sideswipe crashes might require redesigning roadway geometries and
managing traffic flows. Addressing angle crashes could benefit from enhancing intersection designs
and implementing environmental hazard warning systems.

In summary, the attention heatmaps offer valuable insights into how the transformer-based model
utilizes feature group interactions to distinguish between crash types. Understanding these interactions
not only enhances the interpretability of the model but also guides the development of targeted safety
measures to mitigate specific crash types effectively.

7. Conclusions and future directions

Drawing from the collective insights gathered throughout the research, it becomes evident that
predictive modeling of traffic crash outcomes benefits significantly from the integration of diverse data
types and sources. The primary contributions of this study lie in the use of a comprehensive and
highly descriptive dataset and the introduction of the FGTT, which efficiently processes and encodes
data into group-specific tokens, enabling it to uncover complex relationships between feature groups
through attention heatmaps. These semantically rich tokens enhance the model’s ability to capture
nuanced interactions, resulting in both improved predictive performance and greater interpretability.
While the FGTT model demonstrated better performance in our experiments compared to popular
ensemble methods, opportunities for further refinement remain. In this study, the token feature groups
were constructed using carefully selected features identified as semantically similar based on domain
knowledge. Future research could explore more flexible grouping schemes that allow the model to
dynamically learn optimal groupings to enhance the semantic understanding of feature interactions
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and further improve the model’s ability to infer crash outcomes.

Further insights were gained by examining the attention weights extracted from the FGTT model,
providing a deeper understanding of the factors influencing different crash types. In particular, for
angle crashes, distinct attention patterns emerged, with driver and environment features receiving
greater weight compared to the other two crash types. For sideswipe and rear-end crashes, event-
related features, such as crash location and vehicle maneuvers, and contextual-related features are
more prominent. Moreover, the event feature group has relatively strong attention toward the driver
feature group across all three crash types, underscoring the importance of driver features. Considering
the growing emphasis on explainable machine learning, enhancing the interpretability of complex
models like the FGTT is critical. Developing methods to make the model’s decision-making more
comprehensible will not only bolster trust but also support its adoption in policy-making and real-
world applications, where transparency and interpretability are essential.

Furthermore, the comparative evaluation of different modeling methods underscored the
effectiveness of the CatBoost model in handling the minority classes, evidenced by its leading
performance in predicting the angle crash category. Future research should explore SMOTE
or generative models, such as generative adversarial networks or variational autoencoders, to
synthetically augment minority classes with high-fidelity samples [40]. These approaches could help
create a more balanced training dataset, ultimately enhancing the model’s predictive power across
classes. Additionally, the exploration of alternative data augmentation techniques, innovative feature
engineering strategies, and the integration of physics-guided or domain-specific embeddings could also
be invaluable.

From a data perspective, in addition to CCS data utilized in this study, weigh-in-motion (WIM)
data is another valuable data source than could enhance crash outcome prediction. Previous studies
have identified correlations between truck weights and crash outcomes [10, 41], suggesting that
incorporating WIM data could improve model performance. However, a challenge in utilizing WIM
data, however, is its sparse distribution, which would limit the amount of crash instances available
for analysis at these WIM sites. While this study considered hourly summaries, further insights can
be gained through the exploration and usage of finer time resolutions (e.g., 5 minutes or 15 minutes),
as Dutta and Fontaine [11] found that diverse ways to aggregate the traffic data had impacts on their
modeling results.

The growth of the electric vehicle (EV) and connected and autonomous vehicles (CAV) present
new opportunities for future research. Many new EVs on the market are equipped with an array of
cameras and sensors that can provide a richer data source, offering deeper insights into driver behavior,
actions, and vehicle maneuvers. In conclusion, this research represents a significant step forward in
enhancing road safety analytics. By leveraging the FGTT’s ability to uncover complex relationships
within the data through semantically grouped features, it lays the groundwork for more informed and
effective safety strategies. Additionally, the comprehensive dataset utilized in this study underscores
the importance of considering diverse features that impact crash outcomes. It is the convergence of
data-driven insights and technological innovation that will drive progress toward safer roadways and
more effective policy making for a safer future.
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