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Abstract: With the increasing impacts of climate change, there is a growing demand for accessible 

tools that can provide reliable future climate information to support planning, finance, and other 

decision-making applications. Large language models (LLMs), such as GPT-4o, present a promising 

approach to bridging the gap between complex climate data and the general public, offering a way for 

non-specialist users to obtain essential climate insights through natural language interaction. However, 

an essential challenge remains underexplored: Evaluating the ability of LLMs to provide accurate and 

reliable future climate predictions, which is crucial for applications that rely on anticipating climate 

trends. In this study, we investigated the capability of GPT-4o in predicting rainfall at short-term (15-

day) and long-term (12-month) scales. We designed a series of experiments to assess GPT’s 

performance under different conditions, including scenarios with and without expert data inputs. Our 

results indicated that GPT, when operating independently, tended to generate conservative forecasts, 

often reverting to historical averages in the absence of clear trend signals. This study highlights the 

potential and challenges of applying LLMs for future climate predictions, providing insights into their 

integration with climate-related applications and indicating directions for enhancing their predictive 

capabilities in the field. 
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1. Introduction 

As the impacts of climate change intensify, obtaining accurate information about future climate 

trends has become increasingly important. Fields such as energy planning, urban development, and 

weather derivatives increasingly rely on precise climate forecasts to make critical decisions [1]. 

However, accessing, analyzing, and interpreting climate data typically requires interdisciplinary 

knowledge in areas such as climatology, geography, statistics, and computer science, making it 
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challenging for the general public to utilize this information effectively. Thus, there is a growing need 

for straightforward, accessible ways for the public to obtain relevant and important information or 

services based on climate predictions [2]. 

In recent years, large language models (LLMs) like ChatGPT-4 have provided a convenient 

means for the public to access specialized information [3]. With advanced natural language processing 

capabilities, LLMs can provide individuals with complex domain-specific knowledge. By processing 

simple language queries, LLMs enable users to obtain the necessary insights without requiring any 

training [4]. The remarkable progress in knowledge integration and common-sense reasoning exhibited 

by LLMs has led to their exploration in various data-intensive fields, including scientific computing 

and financial forecasting, making climate science a promising area for LLM applications [5,6]. 

In the climate domain, several researchers have attempted to apply LLMs to professional 

communication and information dissemination [7,8]. For instance, the ClimSight project uses future 

forecast data from the Climate Modeling Intercomparison Project (CMIP) to provide agricultural 

recommendations through local climate services [9]. ClimateGPT, on the other hand, trains LLMs on 

climate science literature to generate more specialized climate knowledge and descriptive content [10]. 

However, most researchers investigating climate LLMs focus on “descriptive output”; in particular, 

how to make LLMs generate content that reflects climate science terminology accurately [11]. LLMs 

have also been applied to simulating public opinions and diverse perspectives in the context of science 

communication about climate change [12,13]. While these models excel at interpretative tasks, the 

essential component of LLM responses for future climate scenarios lies in their ability to accurately 

predict future climate trends. Without this capacity to predict future climate factors reliably, LLM 

outputs may fall short of meeting the practical demands of climate adaptation and planning. 

To understand what the general public, who is not trained in climate modeling and analysis, would 

be able to get from LLMs on climate predictions, we aim to explore and assess the performance of 

LLMs in climate prediction tasks, focusing on their ability to capture trends when generating future 

climate data. We selected ChatGPT-4o, a representative LLM, for analysis and designed a series of 

experiments to evaluate its performance in generating short-term (15-day scale) and long-term (12-

month scale) rainfall forecasts. GPT-4o is an improved LLM launched by OpenAI, optimized based 

on the GPT-4 architecture (with “o” representing “optimized”). GPT-4o excels in logical reasoning, 

long-document processing, and answering interdisciplinary questions. By enhancing semantic 

understanding capabilities and improving context memory mechanisms, it more efficiently supports 

tasks such as data analysis and scholarly translation. Moreover, GPT-4o demonstrates a deeper grasp 

of domain-specific knowledge. The contribution of our study lies in advancing beyond climate LLM 

studies that focus primarily on descriptive output. We explore the predictive capabilities of LLMs, 

specifically their potential to generate accurate future climate trends with and without the assistance 

of domain-specific knowledge. 

The structure of this article is as follows: In Section 2, we introduce the data used and the model 

employed as the rainfall expert model (EM). In Section 3, we describe the experiments conducted. In 

Section 4 , we present the comparative results. The discussion and conclusions are provided in 

Section 5. 

2. Data and rainfall expert model 

In this study, we focused on rainfall prediction at two time scales: short-term (15-day scale) and 

long-term (12-month scale). We considered 15 cities across the contiguous United States: Washington 

DC, Tucson, AZ, Salt Lake City, UT, Reno, NV, Phoenix, AZ, Pensacola, FL, New York, NY, Mobile, 
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AL, Forks, WA, El Paso, TX, Dallas, TX, Chicago, IL, Birmingham, AL, Baton Rouge, LA, and 

Atlanta, GA. These cities represent varying levels of rainfall, covering high, medium, and low rainfall 

areas. For each city, we collected daily data on maximum temperature, minimum temperature, and 

rainfall, which were used as inputs for future rainfall prediction. Figure 1 shows the locations of the 

cities and their annual average rainfall. 

 

Figure 1. The locations of selected cities in the United States and their corresponding 

annual rainfall amounts. 

For rainfall prediction, historical daily maximum temperature, minimum temperature, and rainfall 

were used as inputs. For temperature prediction, only minimum and maximum temperature were used 

as inputs. After preprocessing, the data from 1900 to 2022 were used, with 80% for training and 20% 

for validation. 

We employed a two-layer LSTM model as our rainfall expert model (EM) for rainfall prediction. 

LSTM is a recurrent neural network (RNN) specifically designed to capture long-term dependencies 

in sequential data by mitigating the vanishing gradient problem through its unique gating mechanism 

[14,15]. The model used an input window of 60-time steps, corresponding to 60 days for short-term 

prediction and 60 months for long-term prediction. The output window was set to 15-time steps for 

short-term prediction and 12-time steps for long-term prediction, respectively. The LSTM hidden size 

was set to 128, and a batch size of 64 was used. The model was trained over 500 epochs, with the 

Adam optimizer. The specific input features for rainfall prediction included historical minimum 

temperature, maximum temperature, and rainfall over the input window, predicting future rainfall. For 

temperature prediction, only the corresponding minimum and maximum temperatures were used as 

inputs. 

To evaluate the model’s predictive accuracy, we used data starting from September 30, 2023, as 

the baseline for comparison. For short-term predictions, we used the 60 days prior to this date to 

forecast daily rainfall from October 1 to October 15, 2023. For long-term predictions, we used the 60 

months prior to October 2023 to forecast monthly rainfall from October 2023 to September 2024. This 

setup enabled us to evaluate the EM model’s performance on both short-term and long-term rainfall 

forecasting tasks. 

3. Experimental setup 

In this study, to systematically evaluate the performance of LLMs in rainfall forecasting tasks and 
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to analyze their ability to generate future climate data trends and patterns under input scenarios, we 

designed several experiments. These experiments were intended to assess the LLM’s ability to 

generate rainfall predictions with and without the support of specialized knowledge. The different 

experimental conditions also ranged from direct to indirect provision of expert information, enabling 

a comprehensive analysis of GPT’s potential in integrating climate data and generating forecasts. The 

selection of the most suitable prompt in this experiment depended mainly on intuition and 

experimentation. The experimental setups were as follows: 

3.1. Experiment 1: GPT-only prediction 

In the first experiment, GPT-4o was tasked with independently generating rainfall predictions 

without any additional expert information or data input. This condition mainly assesses GPT’s ability 

to produce short-term and long-term rainfall predictions based solely on its pre-trained knowledge. By 

analyzing its predictions, we aim to uncover GPT’s inclination in judging future climate trends without 

external guidance. This experiment helps us understand the GPT’s interpretation of climate events 

based on its common-sense knowledge. We used the following prompt sample: 

Prompt Sample 1: 

You are a climate data prediction system focused primarily on forecasting rainfall for selected cities. 

Your timestamp is September 30, 2023, meaning you only consider information available prior to this 

date. Please make a final forecast based on your knowledge, including historical trends, regional 

variations, and potential future scenarios. For the time being, please ignore narrative responses; I am 

only interested in numerical results. Please predict for {city} during {October 1, 2023, to October 15, 

2023}. 

–– 

Please use the supplied data to predict the rainfall for the above period. 

3.2. Experiment 2: GPT-EM prediction 

In the second experiment, we provided GPT-4o with rainfall predictions generated by a rainfall 

expert model (EM) and asked it to make further predictions based on this expert data. This condition 

was designed to examine whether GPT, after receiving direct forecast support from a specialized model, 

can effectively utilize this data to capture trends or adjust its predictions. By comparing GPT’s 

predictions with and without the expert data support, we could analyze its ability to integrate external 

information. We used the following prompt sample: 

Prompt Sample 2: 

You are a climate data prediction system focused primarily on forecasting rainfall for selected cities. 

Your timestamp is September 30, 2023, meaning you only consider information available prior to this 

date. I will provide you with a potential {daily} prediction for the period {October 1, 2023, to 

October 15, 2023} based on a deep learning model for the {city}. Please consider the results of the 

model and combine them with your knowledge to make a final forecast. For the time being, please 

ignore narrative responses; I am only interested in numerical results. 

––potential forecast–– 

Period: {October 1, 2023 to October 15, 2023} 

Rainfall: {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15} 

–– 

Please use the supplied data to predict the rainfall for the above period. 

 



5 
 

Applied Computing and Intelligence                                                                      Volume 5, Issue 1, 1–13. 

3.3. Experiment 3: GPT-Regional climate prediction 

In the third experiment, we indirectly provided GPT with predictions of regional climate factors 

related to rainfall (minimum and maximum temperatures) and tasked it with generating rainfall 

predictions based on these climate factors. In this setup, GPT did not receive direct rainfall predictions 

but instead relied on relevant climate variables as hints to infer trends. We aimed to evaluate whether 

GPT could use indirect climate information to generate reasonable rainfall predictions and assessed its 

ability to understand the relationships between climate variables in the absence of explicit rainfall data. 

We used the following prompt sample: 

Prompt Sample 3: 

You are a climate data prediction system focused primarily on forecasting rainfall for selected cities. 

Your timestamp is September 30, 2023, meaning you only consider information available prior to this 

date. I will provide you with a potential {daily} prediction for the period {October 1, 2023, to 

October 15, 2023} based on a deep learning model for the {city}. These predictions include {daily} 

maximum and minimum temperatures. Please consider the relationship between these climate data and 

potential rainfall. Integrate this information with your knowledge to make a final prediction. For the 

time being, please ignore narrative responses; I am only interested in numerical results. 

––potential forecast–– 

Period: {October 1, 2023, to October 15, 2023} 

Tmin: {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15} 

Tmax: {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15} 

–– 

Please use the supplied data to predict the rainfall for the above period. 

3.4. Experiment 4: GPT-Teleconnection prediction 

In the fourth experiment, to further explore GPT’s understanding of large-scale climate indices, 

we provided it with global teleconnection indices, such as Nino3.4 [16], the Pacific Decadal Oscillation 

(PDO) [17], and the North Atlantic Oscillation (NAO) [18] and instructed it to generate a 12-month-

scale rainfall forecast based on this predictive information [19]. These teleconnection indices are 

crucial variables in climate forecasting, revealing the long-term influence of large-scale climate 

patterns on variables such as rainfall [20,21]. It should be noted that in this experiment, we used the 

actual values of these indices from October 2023 to September 2024 as inputs to serve as a comparison. 

We used the following prompt sample: 

Prompt Sample 4: 

You are a climate data prediction system focused primarily on forecasting rainfall for selected cities. 

Your timestamp is September 30, 2023, meaning you only consider information available prior to this 

date. I will provide you with the Nino3.4, Pacific Decadal Oscillation (PDO), and North Atlantic 

Oscillation (NAO) indices for the prediction period {October 1, 2023, to October 15, 2023}. Please 

integrate this information, consider their climate teleconnection relationship with potential regional 

rainfall, and combine it with your own knowledge to make a final prediction. For the time being, please 

ignore narrative responses; I am only interested in numerical results. 

––potential forecast–– 

Period: {October 1, 2023 to October 15, 2023} 

Nino3.4: {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15} 

PDO: {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15} 

NAO: {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15} 

–– 

Please use the supplied data to predict the rainfall for the above period. 
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3.5. Baseline comparison: 30-year historical average 

To assess the accuracy and trend consistency of GPT’s predictions, we used the average 

daily/monthly rainfall over the past 30 years as a baseline [22]. This standard is widely recognized in 

climatological studies for defining long-term trends, offering a stable reference point that smooths out 

short-term anomalies. By comparing GPT’s forecasts to this baseline, we aimed to evaluate whether 

its predictions aligned with climatological norms or exhibit meaningful deviations under different 

experimental conditions. 

We used Root Mean Square Error (RMSE) to measure the error between different predictions and 

actual rainfall. Additionally, we evaluated the accuracy and trend-capturing ability of the predictions 

using Pearson’s correlation coefficient and Nash-Sutcliffe's efficiency coefficient. 

4. Results 

Figures 2 and 3 present comparisons across scales and scenarios. In this study, the EM model 

utilized an LSTM structure, leveraging historical temperature and rainfall data to predict future rainfall. 

This time series-based deep learning model effectively captured the temporal dependencies within 

climate data, making it particularly suitable for detecting long-term trends and periodic patterns in 

meteorological data. As shown, the EM model achieved the best results for both long-term and short-

term predictions. We were interested in examining the differences in LLM inferences when 

professional knowledge was directly incorporated compared to when it was not. 

 

Figure 2. Performance comparison of rainfall prediction across experimental conditions 

(short-term). 

 

Figure 3. Performance comparison of rainfall prediction across experimental conditions 

(long-term). 
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However, when comparing Exp1 and Exp2, we found that providing GPT with relevant domain-

specific knowledge and asking it to integrate this with its own knowledge did not significantly improve 

the results over relying solely on GPT. In short-term predictions, the average RMSEs across all cities 

for Exp1 and Exp2 were 0.23 and 0.20, respectively, both notably higher than the EM model’s 0.06. 

For long-term predictions, adding domain-specific knowledge increased RMSE compared to Exp1 and 

reduced the correlation coefficient. Although the provided domain knowledge might offer better 

predictive insights, results from both short-term and long-term predictions indicated that GPT’s 

internal knowledge plays a dominant role in its inferences. 

We were also interested in observing what results GPT could provide when we input factors 

related to rainfall indirectly than inputting rainfall data directly. Specifically, for long-term predictions, 

we added teleconnection-related factors (Exp4). In short-term predictions, the indirect provision of 

regional meteorological factors had limited impact on results; Exp3 showed an RMSE similar to Exp1 

and Exp2, with a slightly improved correlation coefficient. However, in long-term predictions, whether 

adding regional factors or global teleconnection factors, GPT’s results declined compared to when this 

knowledge was not added. 

Comparing the results of different experiments with the 30-year historical average, we observed 

that GPT-generated predictions closely align with the 30-year average in both short-term and long-

term forecasts. This similarity suggests that, in the absence of strong trends or notable anomalies, GPT 

tends to generate conservative predictions that resemble long-term statistical averages. This tendency 

is even more pronounced in long-term forecasts: We calculated the correlation coefficients between 

each experiment’s results and the 30-year average, finding values of 0.86 for Exp1, 0.82 for Exp2, 0.76 

for Exp3, and 0.62 for Exp4, while the EM model showed a lower correlation of only 0.59. This may 

be due to GPT’s limited understanding of physical climate processes, leading it to default to safer, 

historically consistent forecasts. Additionally, this tendency reflects GPT’s low sensitivity to complex 

climate patterns; in scenarios with limited data or high uncertainty, it relies on historical averages for 

robustness. However, this approach limits GPT’s ability to capture potential trend shifts and the 

likelihood of extreme climate events. 

We further explored the differences between the results generated by GPT-4o and those from the 

EM model at each time point. In Figures 4 and 5, we compare the time series of short-term and long-

term predictions. For the short-term predictions, we found that Exp2 tended to produce results closer 

to the multi-year average, especially during peak phases in the series. For peak values in the EM 

predictions, Exp2 noticeably dampened the magnitude of these peaks. For example, in Atlanta, there 

was an increase in rainfall on October 11 and 12, 2023, relative to the preceding days. The EM model 

effectively captured this upward trend, while Exp2 significantly reduced the peak values on these dates, 

bringing them down from the EM’s 0.5–0.6 range to the 30-year average level of around 0.1–0.2. 

Similar patterns were observed on October 11 in Pensacola, October 6 and 14 in New York, and 

October 4 in Dallas. For peak values that were incorrectly predicted by the EM model, Exp2 also 

reduced their magnitude, as seen on October 15 in Phoenix and October 4 in Tucson. 

We also found that Exp2’s tendency to generate results close to the multi-year average was more 

pronounced in cities with higher rainfall. For instance, in Mobile and Baton Rouge, the results 

generated by Exp2 at each time point were closer to the 30-year average. A similar pattern could also 

be observed in the long-term predictions, where for all cities, Exp2’s monthly-scale results were closer 

to the multi-year average at each time point. This tendency likely reflects GPT’s preference for a more 

stable prediction aligned with the historical average than adjusting fully to the extreme values 

suggested by the professional model. It also indicates that when encountering anomalies or extreme 

values, GPT is inclined to revert toward the average, leading to a smoothing effect in its predictions. 
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Figure 4. Time series comparison of short-term rainfall predictions across experimental 

conditions for different cities. 
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Figure 5. Time series comparison of long-term rainfall predictions across experimental 

conditions for different cities. 

5. Discussion and future research 

As a large language model, GPT is fundamentally trained to learn language patterns from vast 

amounts of textual data, rather than physical processes. This means that it lacks the inherent physical 

constraints present in climate systems (such as energy conservation, atmospheric and ocean dynamics) 

and cannot consider causal relationships in predictions as physical models do. Thus, when predicting 

future rainfall trends, GPT primarily relies on “patterns in text” and “common-sense associations.” 

When it fails to detect clear trend signals, it defaults to generating results aligned with historical 

averages—a relatively safe and conservative inference approach that avoids extreme or highly volatile 
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predictions. This strategy reduces the risk of producing anomalous forecasts and limits GPT’s 

sensitivity to changing trends. 

GPT’s generation mechanism, based on language patterns, is more adept at producing general 

and trend-based content, yet often lacks sensitivity to rare or anomalous events. Extreme climate events 

are relatively infrequent in historical data, so without specialized training, GPT may lean toward 

predictions near the average, thus minimizing the risk of extreme error. This tendency causes GPT to 

smooth out results when dealing with extreme rainfall events, missing abnormal signals and 

downplaying the significance of extreme events. When directly provided with rainfall predictions from 

expert models (such as the EM model), GPT may not accurately interpret the data or effectively adjust 

its prediction strategy based on it. In other words, GPT is likely to treat this input as textual information, 

struggling to extract useful climate patterns or physical principles from it. This limitation diminishes 

its effectiveness in integrating specialized knowledge into its predictions. 

In our study, we experimented with an alternative approach for long-term monthly-scale 

predictions. We calculated the standard deviation of historical rainfall for each calendar month. A high 

standard deviation indicates greater rainfall variability for that month, which corresponds to a higher 

prediction difficulty, while a low standard deviation suggests that rainfall levels are more consistent, 

indicating potentially lower prediction difficulty [16]. We used this standard deviation as a 

representation of potential uncertainty and input it into GPT with the EM’s predicted rainfall using the 

following prompt: 

Prompt Sample 5: 

You are a climate data prediction system focused primarily on forecasting rainfall for selected cities. 

Your timestamp is September 30, 2023, meaning you only consider information available prior to this 

date. I will provide you with a potential {daily} prediction for the period {October 1, 2023 to October 

15, 2023} based on a deep learning model for the {city}. The standard deviation here can be used as a 

measure of uncertainty. A smaller standard deviation indicates higher predictability, suggesting that 

my model’s result has lower uncertainty. Conversely, a larger standard deviation indicates greater 

difficulty in prediction, meaning higher uncertainty in my model’s results. Please focus on this measure 

of uncertainty, and combine it with your knowledge, such as historical trends, to make the final 

prediction. Please consider the results of the model and combine them with your knowledge to make 

a final forecast. For the time being, please ignore narrative responses; I am only interested in numerical 

results. 

––potential forecast–– 

Period: {October 1, 2023 to October 15, 2023} 

Rainfall: {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15} 

Standard Deviation: {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15} 

–– 

Please use the supplied data to predict the rainfall for the above period. 

This setup provided improved results. As shown in Figure 6, after adding the STD information, 

GPT’s results were close to those of the EM, with a significant improvement compared to Exp2. We 

present the time series comparison for the three cities with the most significant RMSE improvement 

in Figure 7. We observed that after adding this uncertainty information, GPT tended to provide results 

closer to those of the EM. However, we did not achieve the expected outcome where GPT would adjust 

the predictions with greater potential uncertainty. 
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Figure 6. Performance comparison of rainfall prediction across Exp2, EM, and another 

experiment of adding standard deviation. 

 

Figure 7. Time Series Comparison of long-term Rainfall Predictions across Exp2, EM, 

and another experiment of adding standard deviation. 

A potential framework to integrate GPT’s knowledge with EM’s predictive insights is to leverage 

their strengths across uncertainty intervals, resulting in more reliable predictions. By having the EM 

model provide uncertainty information along with its predictions, we can effectively combine GPT’s 

conservative prediction tendencies with the high-precision predictions of the physical model. 

Specifically, the EM model’s predictions can use uncertainty information to define “confidence 

regions”. In low-uncertainty regions, GPT can directly adopt the EM model’s predictions, as the EM 

model is generally reliable in these areas. In high-uncertainty regions, however, GPT can use its own 

knowledge to generate relatively conservative predictions, defaulting to historical averages or stable 

values to mitigate reliance on extreme fluctuations. By positioning the EM model as the “high-

confidence predictor” and GPT as the “smoothing factor” in high-uncertainty scenarios, this strategy 

balances model accuracy with stability, enhancing overall prediction reliability. 

In this study, we analyzed only a limited set of cities and time series, which imposes certain 

constraints. Additionally, we provided domain knowledge through direct prompts. In the future, 

optimization strategies such as knowledge distillation, prompt engineering, or multi-task learning 

could be explored to improve GPT’s understanding and handling of climate data [23]. For instance, 

incorporating a multi-task learning framework might allow GPT to autonomously learn the weights 

and importance of climate factors when processing climate data, potentially helping it to better 

integrate domain-specific knowledge and demonstrate greater potential in climate forecasting. 

6. Conclusions 

We investigated the ability of large language models (LLMs), specifically ChatGPT-4o, to 

provide future climate information, focusing on rainfall prediction accuracy. We utilized a 2-layer 
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LSTM model as an Expert Model (EM), assuming it could generate reliable future predictions. 

Through a series of experiments, we compared ChatGPT-4o’s rainfall predictions under varying 

conditions: relying solely on its internal knowledge, directly receiving rainfall predictions from the 

EM, and indirectly inferring rainfall from other related factors predicted by the EM. In these 

experiments, we evaluated both short-term (15-day, daily scale) and long-term (12-month, monthly 

scale) prediction capabilities. The results revealed that ChatGPT-4o consistently prioritizes stable 

predictions closely aligned with historical averages, regardless of whether it integrates additional 

information from the EM. This tendency highlights the LLM’s inherent bias towards conservative 

outputs, which may limit its effectiveness in capturing dynamic or extreme variations in climate 

scenarios. 
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