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Abstract: A long-range, wide-area network is a cost-effective, energy-efficient technology for wide-
area sensor networks. But the massive Internet of Things (IoT) brings challenges such as increased
traffic and energy consumption. Thus, there is a pressing need to design a scheduling strategy to
improve network energy efficiency without compensating for its reliability. We have proposed a deep
deterministic policy gradient-based scheduling algorithm with a frequency-hopping spread spectrum
that avoids repeated collisions and retransmissions. Frequency-hopping divides frequency channels
into subchannels, allowing multiple devices to operate simultaneously. This makes it a favorable
scheduling strategy for dense networks, as it reduces collisions and energy consumption. Scheduling
in a long-range, wide-area network involves selecting transmission parameters for each device, which
can be cumbersome. We used the deep deterministic policy gradient algorithm to optimize schedule
generation for high-density networks, enhancing energy efficiency. In this paper, we compared the
performance of the frequency-hopping spread spectrum with other heuristic and machine learning-
based algorithms using the LoRaSim simulator. We observed a 42% increase in the packet delivery
ratio and a 17% improvement in energy efficiency with our solution, along with detailed results on the
transmission time and collision reduction.

Keywords: deep deterministic policy gradient; energy efficiency; frequency hopping spread
spectrum; LoRaWAN; massive 10T; scheduling

1. Introduction

The discussion in the Worldwide Internet of Things (loT) Spending Guide [1] shows how rapidly
the IoT is spreading around the world. For applications such as smart agriculture and tracking glacier
melting, where devices are battery-powered and installed remotely, frequently changing their batteries
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is not feasible. IoT devices require networks with very low energy consumption and long transmission
distances in these cases. One of the best possible solutions is a long-range (LoRa) network. It
has advantages such as being long range and having low battery consumption [2]. LoRaWAN is a
low-power, wide-area network (LPWAN) technology for IoT applications. LoRa is suitable for alert
messaging, notification systems, data collection, vehicle monitoring systems, and much more, which
makes it the best choice for applications with low transfer rates. The LoRaWAN physical layer uses an
ALOHA-based MAC protocol for the shared channel, a simple random access protocol. However, this
protocol lacks multi-access handling, leading to a higher collision probability. As a result, LoORaWAN
becomes unreliable when many devices transmit data simultaneously. The network uses retransmission
to handle collisions, leading to increased energy consumption. This energy consumption is much
higher than the energy invested in control message exchanges for scheduling strategies. Therefore,
scheduling strategies should be designed to minimize the consumption of energy for the massive 10T.

Other challenges with LoORaWAN are network scalability and its duty cycle restriction. LoRa uses
an ISM band with 868—-870 MHz frequency and has about eight channels and a 1% of duty cycle,
which means each channel could be used only for 36 seconds out of one hour [3]. Each device waits
for a chance for transmission, and as the number of devices increases, the waiting period increases.
Moreover, the duty cycle limits the use of channels and causes higher collisions. Collision probability
rises with an increasing number of IoT devices in the network. Thus, large network devices and duty
cycles increase retransmission and higher energy consumption. Interference or collision in the network
occur when two or more devices choose the same transmission parameters, such as the channel and
spread factor (SF), to transmit at any particular time. For example, the devices in the same circular
band shown in Figure 1 choose the same SE. A proper scheduling strategy helps in selecting a unique
combination of transmission parameters to avoid collision and interference. This gives rise to a pressing
need to design a scheduling strategy for LoRaWAN.

Communication Schedule generation

/ Massive sensor end devices \ NW+Edge

v)) @) *))
.))) O))) .))) LoRa RF Backhaul

. . ° g Julation Single Network | ‘Reinforcemel
. ® o000 o Gateway Learning Mo

0) ) °)

LoRa Physical Infrastructure

: %
SFOUL
SF1I0 ;¢ { ;.

Edge-based Network Server SF11 ))) i .)))

DEV 5

SF12

\\ DEV6
°)
DEV 7 DEV 8

Figure 1. LoORaWAN network communication with a scheduling strategy.

The frequency-hopping spread spectrum (FHSS) modulation technique is used with LoRa in [3] to
improve network capacity and robustness from that interference or collision. Long-range, frequency-
hopping spread spectrum (LR-FHSS) increases the number of channels to select by dividing each
channel into subcarriers, and the device can hop among the frequencies and transmit concurrently using
a hopping sequence. The device pseudo-randomly determines the hopping sequence itself without
sharing it with other devices. Thus, a device transmits at any time without the knowledge of other
devices transmitting with them and ends up in a collision. However, another issue is the selection
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of the SF, which is affected by the distance of the device from the gateway. SFs help to define the
number of chips required to transmit the symbol. There are a total of six SFs from SF7 to SF12.
The higher the spreading factor, the lower the data rate. If the data is sent slowly, the signal is more
accessible to receive and distinguish from noise. On the other hand, sending data slowly means the
data spends a longer time in the air and keeps the devices highly utilized, leading to bigger power
(battery) consumption. Thus, the SF selection is a critical parameter for adjusting the data rate and
noise balance. It also affects the system’s energy consumption. Hence, when determining a scheduling
policy, it is essential to take SF allocation into consideration as it is a very crucial parameter.

Apart from the SF, transmission power is also a significant transmission parameter to trade-off with
energy consumption [4]. So, transmission power is related to energy consumption. By increasing
the transmission power, we increase the signal strength, which accumulates the energy consumption.
In [5], the authors showed global optimal transmission power for maximizing energy consumption
achieved by configuring transceivers of devices by optimizing parameters. LoRa transmission signal
strength is affected by indoor use or environmental topography, such as mountains, trees, and
transmitting devices. Antenna gain, beamwidth, and the frequency of operation have a significant
impact on the transmission range. Adequate transmission power is affected by cable loss and antenna
gain. The higher the transmission power, the better the received signal strength indication (RSSI) and
signal-to-noise ratio (SNR). These two quantities help to decide whether the received signal should be
discarded or accepted as actual data. We use adequate transmission power as the reference [6]. Thus,
antenna selection plays a vital role in LoRa communication.

Furthermore, we have shown the need for edge computing with LoORaWAN, called ‘edge-enabled
LoRaWAN” for real-time monitoring and control solutions of massive IoT data overhead. Massive IoT
technology has a significant setback because of the lack of any network with ubiquitous coverage
and the capability to deal with vertical IoT use cases. IoT applications such as vehicular 0T,
intelligent cities, smart metering, parking, street lighting, and many more come under the exact network
requirements [7]. One emerging solution for such use cases is 5G technology, which is still in its early
stages and needs time to evolve. Another noncellular solution, LoORaWAN, has proved itself to be
efficient for IoT networks with the capability to coexist with 5G shortly to form hybrid networks. 5G
networks can complement LoRaWAN as access networks or backhaul data links from the gateway to a
remote cloud for [oT applications.

For deciding the scheduling strategy, not just one device but the entire network status is required.
This helps to design a strategy that selects transmission parameters for a device concerning what is set
for other devices. With the advantages of frequency-hopping, as discussed above, we can combine it
with intelligent transmission parameter scheduling to reap more benefits. Also, the decisions regarding
the channel and other parameter selections should be made by a central entity, which can decide for all
devices to avoid collisions and make optimized choices. We assume that the central control system is
located on an edge computing server.

We propose a scheduling strategy for edge-enabled LoRaWAN with a frequency-hopping spread
spectrum (DP-FH) radio wireless technology. The FHSS technology is used to switch transmitting
radio signals among several frequency channels rapidly [3]. With subcarrier-hopping, we focus
on selecting the SF and TP while finding the schedule. Transmission power defines the power
used by the transceiver to improve the range of communication, but higher power impacts energy
consumption. Different powers give different RSSI values, which are used to decide the impact of the
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performance of the link, as well as the self-configuration of the power transmission received on an
antenna [8]. Transmission power ranges from -4 dBm to 20 dBm in LoRa end devices. We extend
this idea in our system to dynamically select the transmission power. The SF is also a factor to
consider when minimizing energy consumption because the higher the SF, the more range, air time,
and energy consumption. We use edge-computing servers in our network in conjunction with the
LoRa gateway to compute a scheduling strategy. The IoT environment is highly dynamic, and its
communication capabilities often result in sudden variations. For decision-making in complex and
dynamic problem spaces with unpredictable environments, reinforcement learning approaches have
been observed to provide optimal solutions through interaction with the environment. We used a
reinforcement learning algorithm to find the optimal scheduling strategy. By dynamically scaling the
physical layer parameters, we would like to improve the energy efficiency of the network by reducing
the number of collisions. Figure 1 provides an overview of our proposed architecture, showing the
different SFs assigned to devices and the edge computing server responsible for creating schedules for
all of them.

In this paper, we propose a dynamic reinforcement learning-based scheduling strategy for
LoRaWAN. We designed a network such that scheduling strategy generation takes place in an edge-
computing server near the gateway’s premises. Our scheduling strategy generates an optimized
selection of occupied bandwidth (OBW), SF, and time slot for each device with transmission power,
leading to minimal energy consumption. The learning agent generates the schedule using location,
battery, and data buffer information provided by the IoT devices. Our goal is to reduce collisions
and reduce the energy consumption of IoT devices in LoRaWAN. The contributions of this article are
summarized as follows:

(1) We propose a novel approach for LoRa transmission scheduling using edge-enabled networks that
reduce collisions and retransmissions and improve the energy consumption of 10T devices.

(2) We use reinforcement learning to schedule FHSS-based LoRaWAN. A deep deterministic policy
gradient (DDPG) algorithm predicts the optimal transmission power, channel, and SF.

(3) We demonstrate through extensive simulations that reinforcement learning with frequency-
hopping outperforms existing scheduling algorithms regarding energy conservation and data
collection time.

The remaining sections of this paper are organized as follows: Section 2 provides an overview
of existing technical performance studies of LoRaWAN. Subsection 3.1 presents the system model
of the scheduling strategy, while Subsection 3.2 discusses the simulation network and formulates the
optimization problem. In Section 4, we propose algorithms and discuss them. Section 5 presents the
simulation setup, simulation results, and system analysis. Finally, Section 7 concludes the paper.

2. LoRaWAN scheduling algorithms

LoRaWAN works well with 10T devices that do not have bulk data to transmit. The lower energy
consumption, such that a battery can be used for up to 10 years, is a major characteristic of LoORaWAN
to promote its use for sensor networks. Despite these advantages, some challenges this network faces
must be worked on. Duty cycle limitation lowers the channel usage to just 1-10%. The legacy ALOHA
network with MAC protocol is used at the physical layer, which increases the chances of collision due
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to pseudo-random channel allocation. A proper channel allocation strategy must be designed to utilize
the channel to the fullest and reduce the time to transmit the data from all devices in the network.
There are various channel scheduling algorithms in the existing work. They consider minimizing
transmission time or energy consumption as their cost function.

2.1. Minimizing transmission time

Previous work has been done on scheduling algorithms in the LoRa network. In [9], authors
design an algorithm for achieving a shorter time for total uplink transmission from all end nodes to
the gateway. Using data size, minimum SF, and payload size, it generates a list of end devices, SF, and
time slots maintaining the duty cycle restrictions. The global algorithm computes the schedule for all
transmissions using a single frame. The algorithm in [10] formulates the scheduling problem as the
minimization of the transmission time. They associate forbidden slots in the same time frame and the
same or different SF (overlapping frequency as in [11]) as well as the following 100 slots (1% duty
cycle). To reduce the total time, they formulated a minimization problem to minimize the length of the
most extended frame among all SFs. The minimization equation suggests finding the total time slot,
which gives the time duration of the frame or time required for all data to be transmitted. An adaptive
solution to determine the best LoORaWAN parameter settings, aiming to reduce channel utilization and
maximize the number of packets delivered, is proposed in [12]. However, the paper does not discuss the
potential trade-offs or drawbacks of the proposed adaptive solution, such as increased computational
complexity or potential impact on other network performance metrics.

2.2. Reducing energy consumption

A scheduling algorithm, fine-grained scheduling for reliable and energy-efficient data collection
(FREE), in [13] is meant for cases where delay requirements are not stringent and 10T devices use data
buffers at their end. The algorithm aims to minimize energy consumption while following data cycle
restrictions. Thus, this solution is suitable for scalable applications because it eliminates collisions and
grouping acknowledgments. It also shows that using longer packet lengths is better than using short
ones regarding energy usage. MAC headers impact more than more extended packet headers. It further
defines two cost functions, one for energy consumption and another for collection time. It uses partial
knowledge to select online schedules greedily. Our preliminary study about using a machine learning
algorithm for scheduling is shown in [14] to generate scheduling in LoRaWAN and minimize energy
consumption. It shows how the machine learning approach improves energy efficiency. The work
in [15], focused on the performance evaluation of SF assignment schemes in LoORaWAN networks and
proposed a novel smart SF assignment strategy using machine learning techniques. The proposed smart
SF assignment techniques, which use a support vector machine (SVM) and a decision tree classifier
(DTC), show promising simulation results in terms of energy efficiency. However, it does not consider
other factors affecting network performance, such as congestion or varying channel conditions.

2.3. Frequency-hopping mode for reducing collisions

Reference [16] observed long battery life, communication range, and cost in LoRa-LPWAN
compared to ALOHA-based LoRa. It also showed the distribution of the SF tiers based on the distance
between the device and the gateway. This implementation and simulation were performed using
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Omnet++ [17]. The LoRa network with frequency-hopping was simulated to enable connectivity
between 10T devices and low earth orbit satellites in [18]. This was a case study for large-scale
networks. They showed that FHSS suits a large-scale network with infrequent data collection devices,
such as ones that collect information every 15 minutes. Furthermore, they demonstrated that path loss
was majorly due to the loss of headers, and that the capture effect can boost performance. Another
reference for studying the scalability of the LoRa system can be found in [19]. Their experiments
showed dynamic communication parameter selection and that increased sinks improve scalability.

2.4. Frequency-hopping and resource allocation based on intelligent solutions

LoRa-DRL proposed in [20] is a deep reinforcement learning-based resource allocation and
scheduling algorithm for dense LoRa networks. They both use the double deep Q-learning network to
learn the scheduling parameters. These parameters are sent to devices using control packets. If devices
do not receive these packets, the physical layer continues using the previous parameters. They tested
the framework in large-scale jamming networks, where it proved quite effective. [21] designed another
DDPG-based reinforcement learning method for scheduling. The learning agent makes scheduling
decisions on channel and SF selection at each time step to minimize the overall energy.

Based on our literature studies, we observed research issues summarized in Table 1. We aim to
design a scheduling strategy in an edge-enabled LoRa network to overcome its challenges by reducing
the collision and improving the throughput and data rate while minimizing the energy consumption of
devices and increasing their battery life.

Table 1. Comparative analysis of existing literature of scheduling algorithms.

Objective References Characteristics
Reducing latency  [9-12] + Reduce the latency using data size, minimum SF, and
payload size.
+ Utilize the unused time slots and formulate the minimization
equations to minimize the frame length.
— Focus on selecting the SF only to minimize the transmission
time.
— They do not consider a selection of channels, data size, or
the pseudo-orthogonality of the SF.
Reducing energy [13,15,22] + Usage of data buffers where delay requirements are not
consumption stringent.
+ Eliminate collisions and group acknowledgments for larger
packet sizes.
+ Partial knowledge of greedy scheduling.
— Do not consider transmission parameters based on

scheduling.
Reducing [3,18] + Simulate frequency-hopping for large-scale networks.
collisions — Not suitable for frequent data transmission.
Resource [20,21] + Learn the scheduling parameters using reinforcement
allocation learning algorithms in a frequency-hopping mode.

— Computation overhead on the LoRa gateway.
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Our scheduling strategy is summarized as:

(1) Reinforcement learning process and strategy calculation occur at the edge server to lower gateway
overhead.

(2) We schedule all registered devices with equal transmission opportunities using four unique
parameters: channel, SF, transmission power, and time slot.

(3) Unique slot allocation in each frame to all devices also lowers the collision to reduce
retransmission and increase the overall data collection rate.

(4) Our strategy dynamically allocates the SF, channel, transmission power, and time slot such that
overall air time and, thus, energy consumption of the system is minimized.

(5) We focus on improving energy efficiency without degrading the network’s latency and packet
delivery ratio (PDR).

3. System model and problem formulation

The IoT devices set transmission parameters received from the network server and use them while
transmitting of signals. These parameters determine signal strength, energy consumption, and the data
rate of signal. In this paper, we design a scheduling strategy on the network server for the selection of
transmission parameters and send it to [oT devices.

3.1. System model

We design our scheduling strategy on the LoORaWAN network. Figure 1 shows the LoRaWAN unit
under consideration consisting of end devices communicating with a gateway. All the transmissions
obtained at the gateway are collected and sent to the edge-based network server. The edge server
runs a reinforcement learning algorithm to find optimal transmission parameters for IoT devices. The
gateway uses backhaul networks such as cellular and WiFi networks to communicate with the network
server. The network server is also responsible for MAC layer responsibilities such as collision handling
and transmission parameter setting using MAC commands. We propose to use an edge-enabled LoRa
network and a new reinforcement learning-based scheduling strategy.

Scheduling strategy generation for unique transmission parameter selection in each time slot for
each device is shown in Figure 2. The proposed network has N IoT devices for data collection. We
consider that data is generated periodically. These devices use uplink channels C to transmit the packets
to the LoRa gateway using SF f at transmission time slot # with transmission power p. Packets are
divided into fixed-size fragments transmitted in fixed time slot ¢, also known as the fragment duration.
We use FHSS to increase network capacity with LoRa. In FHSS, we use network setup parameters
such as the number of channels, packet and fragment size, data rate, and coding rate similar to the LR-
FHSS [3]. The number of operating channel width (OCW) channels depends on the data rate. Since
our setup uses DR8/9, we have eight OCW channels C, 137 kHz each. Data rates decide the number
of OCW used in FHSS as shown in Table 1 in [3]. Each OCW channel is divided into 280 occupied
bandwidth (OBW) channels ¢ with a bandwidth of 488Hz, sub-channels of the selected channels. Each
device can use any channel in the ISM band supported by LoRa with duty cycle restrictions d., which
differ for each channel. Duty cycle d, denotes the time for which a particular channel can be occupied
by a device while using SF f. Figure 2 shows different SFs allocated to devices with different color
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bands. The six SFs range from SF7 to SF12. At any time, any device can transmit data over a single
OBW channel c.

Time slot 1 Time slot 2 Time slot 3
Fragment 1 Fragment 2 Fragment 3

Scheduling Scheduling Scheduling

‘\\'\s‘i‘o“

LR
(5]

s
1
a

First Fragment of | |Second Fragment| | Third Fragment of
.))) Device 1 of SF=8 of Device 3 of SF | | Device 2 of SF= 8
- and OBW =0, = 8 uses OBW =0, uses OBW =0,
.))) TP=p1fort=1 TP=p3fort=2 | TP =p1duringt=3

Figure 2. Scheduling strategy generation.

Signals transmitted over a channel face interference if at least two of them select the same OBW
channel ¢ and the same SF f for transmission at the same time slot . Thus scheduling a packet
transmission involves the selection of a 4-tuple (c, f, t, p) that is (channel, SF, time slot, transmission
power) for each packet from each device that joined to LoRa gateway, such that no two schedules can
overlap in OBW and SF at a time. This is due to the orthogonality of spreading factors, channels,
and time slots. Also, transmission power should be selected to ensure minimal energy consumption.
Moreover, as explained in [11], some spreading factors interfere, which should be considered while
scheduling. For frequency-hopping all packets for each device with payload L and MAC header H are
divided into 50 ms, which are called fragments (RP2-1.0.2 LoRaWAN ®Regional Parameters) [23].
Each fragment is transmitted on a separate OBW, and then the device hops to the next OBW. Moreover,
the duty cycle limitation of 3.9 kHz minimum separation, which is eight OBWs (each of 488 Hz),
should be maintained. In Figure 2, we show that our DDPG agent in the edge server assigns a unique
schedule to all registered devices with different SFs, time slots, and channels to all fragments so that
none interfere with each other. Transmission power selection also occurs such that all parameters
contribute to the minimal energy consumption of devices when all fragments from all devices are
transmitted successfully.

While transmitting the packet, as per LR-FHSS, we transmit three replicas of the headers, each
of 233 ms header duration 7y and waiting time 7y of 2 bits transmission time. The replicas of the
headers are required to confirm that at least one of them is received by the receiver. Reference [18]
gives the time-on-air 7, of a packet for L bytes physical layer payload at LR-FHSS as

L+2'|’ (1)

Ty =3%Ty+ Ty + 0.102[

where M = 2 for DR8/DRI10, and 0.102 ms is the payload duration. Fragments are several bytes
transmitted in one hop period ¢, 50 ms [18]. Thus, the number of fragments Ny for a given packet with
payload L and 2 ms guard time is

0.102[ 2]

NF:I- "

]. )
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Energy is consumed for each packet that is transmitted. We calculate the energy consumed to transmit
all data packets D using the equation defined in [13] given by

E=(+R)*D*Ty*I+V, 3)

where R is the number of times packets are retransmitted, and / and V are the average current and
voltage in the transceiver chip during transmission, respectively [13]. We designed our system to make
it collision-free and have a retransmission factor R = 0. Unregistered [oT devices can transmit and
interfere with registered devices, which causes a retransmission.

We observe that scheduling sequence generation constrained by minimal energy consumption
should consider factors such as OBW channel allocation ¢, SF f, transmission power p, and time
slot allocation ¢. We aim to generate a scheduling sequence for IoT devices in the LoRa network
by assigning a 4-tuple (c, f, t, p) to each registered IoT device. The unique 4-tuple confirms that
the schedule is collision-free for devices that have sent join requests to the gateway and registered
themselves, and reduces energy consumption. Collision reduction leads to better data transmission
rates and lower energy consumption due to fewer retransmissions.

Before the communication starts, every device must register itself to obtain its transmission
parameters from our algorithm using a join request sent to the LoRa gateway. The device sends
information such as location, data buffer, and the join request. All registered device information is
combined and sent to the edge server to generate the schedule. Our learning model generates the
schedule and sends it back to the LoRa gateway that communicates to all devices. Devices follow
this schedule and transmit their data packets. The LoRa gateway then collects the energy dissipation
information from all devices and sends it to the edge server as its reward. The learning DDPG model
learns a better scheduling strategy for the next time based on the received reward. This process
continues, and eventually, the devices get an optimized scheduling strategy. Other than interference
and collision, packet loss is another factor for retransmission. It is calculated using the received signal
strength indicator (RSSI) and sensitivity. RSSI [24] measures the power in the radio signal, which is
an approximate value for the signal strength received,

RSSI = p— PL(d0) + 10 x y + log(d/d0) + p, @)

where p is the transmission power, PL(d0) is the path loss and can vary for different environments
for a given distance d concerning the reference distance d0, y is the path loss exponent [25], and u is
unknown-but-bounded (UBB) noise with zero mean.

We decide sensitivity based on the SF discussed in [13]. If RSSI is less than the sensitivity, the
packet is considered lost and required to retransmit. However, the RSSI equation does not consider the
antenna parameters and the noise level. Therefore, besides RSSI, the noise level should be considered
to obtain the SNR. Given the antenna specifications, the friis formula provides another metric for the
received signal power. This metric can be used with the RSSI metric by considering the noise level
using SNR.

From Figure 3, the received power at a distance R from the transmitter is given to be

_ PG,G,2

T Gy )
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where G is the gain of the antenna, A is the wavelength, and ¢ is the distance between transmitting
antennas. However, this equation only states the gain of the antennas, which is a function of the
antenna efficiency and directivity. For antenna efficiencies, we use

G, = n.D;, (6)

G, = n.D,, 7

where D is the directivity and 7 is the efficiency of the antenna. The receiver antenna picks up both
signal and noise at temperature (€2), which can be expressed in terms of the bandwidth (BW),

P, = KQ,BW, ®)

where P, is the receiver noise power, K is Boltzmann’s constant 1.38 x 10723 (J/k), Q,,, is the system
noise temperature (Kelvin), and BW is the receiver bandwidth (Hz). Now that we have the receiver
signal power and the receiver noise power, the SNR can be defined as

P, P.G.G,2?
SNR=—"= =L , 9)
P, (KQBW)(4nR)*
SNR(dB) = 10log P,G,G,A* — 101og (KQ,,;BW) — 20 log (47R)". (10)
TX:Transmit antenna signal .) RX:Receive antenna
G, Gain of transmit noise ')) G,: Gain of receive
antenna antenna
R: distance
Transmitter Receiver
P,
Transmit power P.: Received power from signal

P, Received power from noise

Figure 3. Friis formula for received signal power.

With a higher SNR, RSSI will also increase due to the relationship: S NR = RS S I—RF background
noise. Background RF noise is the collective RF signal strength in the particular frequency we are
measuring. RF noise can come from non-802.11 devices, or it can come from other transmitters using
the same frequency in [26].

An array antenna can be used to increase the RSSI, which improves the SNR and increases the
antenna’s gain. The array antenna has the advantages of beam steering and beamforming to improve
the gain to IoT devices that are farther away in distance or have a low antenna gain or transmit power.
By controlling the amplitude and phase of each feed of the elements in an array antenna, the direction
of the beam can be steered and formed to maximize the transmission power between IoT devices and
the gateway. This will increase the RSSI of the signal the gateway receives, thus improving the SNR,
resulting in lower dropped or discarded packets. This eliminates the need for retransmission, which
saves energy and improves the energy efficiency of the LoRa network. Machine learning algorithms can
be used to optimize the beam steering and beamforming to optimize energy efficiency. This can be done
by controlling the amplitude and phase of each element in the antenna array such that the beams are
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formed so that the RSSI is above the threshold for the minimum SNR needed to transmit a data packet
successfully. By optimizing the feeds for the array antenna using machine learning, the minimum
amount of energy can be used to maximize packet transmission and minimize retransmission. However,
this array antenna is out of scope in this paper, but it will be our near future work for supporting a next-
generation LoORaWAN.

3.2. Problem formulation

Our goal is to generate a scheduling sequence for each device that is ready to transmit so that
the average energy consumption of each device is minimal. Each schedule is represented as a 3-
dimensional matrix having eight channels, six SFs, and transmission power as three dimensions for
each time slot. Once we select a channel, OBW in the corresponding channel is assigned sequentially.
We aim to find optimal values for three quantities: channel, SF, and transmission power for each
device, and generate a schedule of all devices such that no device with the same parameters transmits
in the same time slot. Also, every device gets a chance in an order such that the overall energy
consumption is the lowest with the selected corresponding parameters. Thus, we can formulate the
following problem:

N B,
minZZrb*TW*I*V, (11)
n=0 b=0
S.t.
N T N
> Midin = > B, (12)
n=0 =0 n=0
T— Mt Tuir
o MU * Tair e v, (13)
"

where B, denotes the buffer size in the number of packets for device n and r,, is the retransmission factor
for packet b. We assume that the buffer accommodates all the data to be transmitted; hence, the buffer
size is no less than the data to be transmitted. Equation (11) is an energy minimization equation for all
N devices, and I and V are the average current and voltage in the transceiver chip during transmission,
respectively. Equation (12) confirms that all B, packets of each n device are transmitted in total 7
time slots, and each time slot ¢ transmits M([¢][n] packets from device n. The most important duty
cycle restriction is satisfied by LoRa given by (13) where d denotes the duty cycle percentage allowed
(typically 1%).

We formulate the scheduling problem for energy optimization as a Markov decision problem
(MDP). It is a 4-tuple problem defining the parameters: (state (S), action (A), reward (R), transition
matrix (X)) to solve MDP.

(1) State: For each frame consisting of time slots, the system observes a state that forms as input to
the system. The state consists of
S ={B, Loc}, (14)

where B = Bj, B», ..., By denotes the data in the device’s buffer, and Loc is the location of the
devices.
(2) Action: Action consist of actions taken to change the state.

A:A19A2"'~5AN’ (15)
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Action in our system, denotes the scheduling decision for each device n and can be represented
as A, = {c, f, p} where c is the channel, f is the SF and p is the transmission power. These
parameters are selected for given sets of time slots . These values denote the transmission
parameter settings that combine to set the quality of signal transmitted by each device n when
it uses the set transmission parameters.

(3) Reward: Reward helps in learning the DDPG model to decide the action and update the learning
policy according to the reward value. Our reward is based on energy consumption E given as

R =-E. (16)

The negative sign shows that as energy reduces, reward increases, and vice versa. Our DDPG
model will learn that reward should increase, implying that energy consumption decreases.

(4) Transition Matrix: It defines the policy to find the next state s(;;;) given the current state s; and
action A taken. It is a function that provides a mapping from among the states for the action
chosen.

4. Proposed algorithms

We propose two algorithms. The first is LR-DP (Algorithm 1), which is a reinforcement learning-
based algorithm to generate a schedule finding OBW channel ¢, SF f, and transmission power p. This
algorithm does not do time scheduling, and hence leads to collisions. It predicts the unique 3-tuple (c,
f» p) for minimum energy consumption with collision. It uses the DDPG algorithm to predict the 3-
tuple by calculating rewards to minimize energy consumed by all devices. A detailed explanation of
how the DDPG model in LR-DP optimizes (Eq (11)) is given in Section 4.2.

Algorithm 1 LR-DP.

1: Randomly initialize the critic network Q(s,alfp) and actor network u(s|é,) using weights 6, and 6,,.
2: Initialize replay buffer R_buff

3: for episode = 1..M do

4: Initialize random noise N, for action exploration

5: Receive initial observation state S
6: A =pu(S16,) + Ny
7: Calculate reward R by executing A on state S
8: Store transition in buffer R_buff.add(S,, A, R, S /+1)
9: if learning == True then
10: Sample minibatch of K transitions from R_buff
11: Sety =r(S,A) +y*Q'(s, 1 (s7,,))
12: Update critic by minimizing loss L
13: Update actor policy using policy gradient Vg Ly,
14: Update target networks 6, and 6
15: end if
16: end for

In addition to intelligent learning, our second algorithm, DP-FH (Algorithm 2), generates a time-
based schedule as well by predicting the unique 4-tuple (c, f, ¢, p). Thus, we make a collision-
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free scheduling policy with minimal energy consumption. The frequency-hopping approach becomes
challenging since it needs synchronization. Since we have a single server generating schedules for all
the nodes, the allocation is such that all the settings are unique. Moreover, synchronization is achieved
by time-based scheduling with OBW scheduling.
Algorithm 2 DP-FH.

1: Initialize the MaxEpisodes

2: for episodes in MaxEpisodes do
3 Initialize the network

4: [(C, f, p)] x N = LR-DP (State) (Algorithm 1)

5: device_to_sf_txpow = group devices with the same SFs and transmission powers
6: reward_ep =0

7: for device_list in device_to_sf_txpow do

8: time_schedule, obw_schedule = generateSchedule()
9: Simulate transmission

10: reward_f = calculateReward()

11: reward_ep += reward_f

12: end for

13: Learn DDPG network based on reward_ep

14: end for

15: calculateReward():

16: Check overlap in the generated schedule
17: Test collision in simulation

18: Test path loss using RSSI and sensitivity
19: if collision then

20: reward = MIN_INT

21: return reward

22: end if

23: Calculate energy E

24: reward = -1 * E

25: return reward

26: generateSchedule(): # adds time parameter to scheduling apart from (c, f, p)
27: time = 0

28: for fragment in device_list do

29: for device in device_list do

30: if obw == 280 then

31: obw =0

32: time +=1

33: end if

34: obw +=1

35: obw_schedule[device][fragment] = obw
36: time_schedule[device][fragment] = time
37: end for

38: end for
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Collision testing in LR-DP and DP-FH involves checking interference at multiple levels. Frequency
collision involves comparing whether the channels overlap in their frequencies. The next level is to
verify that the SFs overlap. If multiple packets at the gateway are received that overlap in all the above
checks, then the collision is announced, and the packet is made to retransmit. Overall time and energy
of retransmission increase compared to the non-collision scenario, and hence the reward decreases.
Our DDPG model learns this information and produces (c, f, p) for the next time slot ¢ to increase the
reward and lower energy consumption. Unlike LR-DP, DP-FH selects OBW and checks whether there
is an overlap of minimum separation of eight OBW channels with the SF at any given time slot. We
evaluate our algorithms using LoRaSim, which has collision detection explained in [19].

4.1. Unique schedule generation

DP-FH has a method called generateS chedule(), which takes nodes having the same SF and channel
(collision as per LR-DP) and assigns each fragment of each node a unique time and OBW combination
such that none of them collide. Figure 4 gives examples of time and OBW schedules, each having
length Ny as described in (2).

Time schedule OBW schedule
Fragment Number Fragment Number
Ni t=1 t=2 t=4 N1 c=1 | c=259 | c=269
t=1 t=2 t=4 = = =
N2 N2 c=9 | c=267 | c=277
' t=1 | t=2 | t=5 ' =17 | c=275| c=4
S ! S !
}é , t=1 t=3 t=5 _.; ' c=25 | c=1 | c=12
S 51
z t=1 t=3 t=5 z c=33 c=9 c=20
! ol
21 21
o1 t=1 t=3 t=5 Z1 c=41 | c=17 | c=28
Al Al
1 1
1 1
1 1
' t=1 | t=3 | t=5 ' =280 | c=270 | c=276
1 ]
: t=2 t=3 t=6 : c=3 |c=280| c=2
NN t=2 t=4 t=6 Nn | ¢=11 | c=5 | c=10
Time-OBW mapping
Device N1 c=1 c=259 c=269
Device N2 c=9 c=267 c=277
Device N3 =7 c=275 c=4
Device N4 c=25 c=1 c=12
c=33 c=9 c=20
. c=1¥7, c=28
c=280 c=270 c=276
c=3 c=280 c=2
Device NN c=11 c=5 c=10
X =1 =2 =3 =4 =5 =6

Figure 4. Occupied bandwidth (OBW)-time mapping using schedule generation.

In the time schedule, each cell corresponds to the transmission time slot and in the OBW schedule,
each cell corresponds to the OBW assigned to each fragment (column) of a given device (row). In the
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time schedule, each cell value corresponding to the n device and k”* fragment number denotes the time

slot when the fragment k of device # is transmitted. Similarly, in the OBW schedule, each cell value
corresponding to the n device and k" fragment number denotes the subchannel number of frequency-
hopping to be used while transmitting the fragment k of device n during time slot time_schedule[n][k].
For ¢ = 1, we observe that each ¢ = 1 in the OBW schedule is assigned for different time slots per the
time schedule. This confirms that the schedule of devices with the same SF is collision-free and does
not use the same time slot and OBW during frequency-hopping. We have combined both schedules as
a time-OBW mapping for a better understanding. Every cell corresponds to device n and time slot ¢
will be using a subchannel corresponding to the cell value schedule [#][z].

4.2. Deep deterministic policy gradient

We use the DDPG-based reinforcement learning algorithm for the minimization of energy
consumption by scheduling transmission parameters. As shown in Eq (11), we aim to reduce the
overall energy consumption so that all the data in the device buffer is transmitted and the duty cycle
restrictions are followed. The minimization equation involves reducing the time on air and reducing the
number of retransmissions due to collisions. This can be achieved by selecting optimal transmission
parameters that avoid collisions and reduce energy consumption. There are 6720 transmission
parameter settings [19]. Selecting unique settings for each device makes the selection space very
large. Optimal transmission parameter selection is a computationally complex problem and can be
categorized as an NP-hard problem. The reinforcement learning algorithm is a suitable solution for
optimization where the agent is required to perceive and interpret its environment and take action
accordingly. Our problem does not produce any data to analyze. Instead, it provides an environment
to take action and optimize actions based on rewards and punishments for every action. Hence,
reinforcement learning is our first choice for solving our problem. When deciding on the optimal
scheduling strategy, the parameters selected are channels (among subchannels of eight channels), six
SFs ranging from SF7 to SF12, and transmission power. All these parameters are discrete except
transmission power, which is continuous. The deep Q-network algorithm is suitable for discrete action
space since it predicts Q-values for each state-action pair, which are discrete, and learns policy from
Q-values. However, we expect deterministic decisions instead of distribution over actions generated
using the deterministic policy gradient algorithm.

The DDPG algorithm is an off-policy algorithm combining the deterministic policy gradient and
the deep Q-network. Hence, we use the DDPG algorithm applied to Algorithm 2. Policy gradient
algorithms such as DDPG [27] require a policy function u(s) which finds the best action to be taken
to reach the next state from state s. At each time slot #, an actor network evaluates the current state
s, using u to choose action a,, and the critic network uses the value function to calculate the Q-value
Qo(s:, a;) of the selected action. In addition to an actor network (u with parameters 6,) and a critic
network (Q with parameters 6p), DDPG has a target actor (1" with parameters #,) and a target critic
network (Q’ with parameters ¢/,) to manage stability while training. The critic network computes the
loss as the mean-squared error between the temporal-difference (TD)-target and the Q-value estimate
of the current state and corresponding action. The TD-target y is generated in target networks. The
next state s,.; and the associated action predicted by the target actor u’ are provided as input to the
target critic Q' [28] formulated as
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y=r(spa) + T % Q' (spr, f' (5141), A7)

where r(s, a) is the reward obtained when the actor network chooses action «a in state s, I" is the discount
factor, and Q’(s;41,1'(5/41)) 1s the maximum future return of the next state. DDPG uses a buffer to
sample a minibatch of size m for calculating the loss function of the critic and then learns by minimizing
the loss function given by

1 m
Lo=— > (i = Qs (s, (18)
i=1

where Q(s,, u(s,)) is the Q-value estimate of the current state and corresponding action at time 7. The
actor network maximizes the Q-value. For a continuous action space, we cannot find the max Q-value
for a set of actions. For continuous values, maximizing a function is the same as minimizing the
negative value of that function. Hence, the loss function of the actor network is

L, = =0(st, u(s1)). (19)

Here, the loss function is in terms of Q and not 6; hence, we apply the chain rule to optimize it:

1 m
Vel = — Z(VaQ(st,ﬂ(S))Veﬂ(S))- (20)
i=1

Parameters of the actor and critic network are updated using these optimized loss functions. Finally, the
DDPG agent does a soft update to the parameters of the critic target network and actor target network
using a small constant ¢ such that

Oy =60, +(1-06)0,,

2D
QQr = QQ +(1- 6)9Ql.

The next step s, is calculated for the remaining computation of the task on obtaining action q,.

4.3. Deep deterministic reinforcement learning algorithm

In Algorithm 2, we use the frequency-hopping technique by increasing the number of usable
channels. The channel, SF, and transmission power selection are made similarly as in Algorithm 1
using LR-DP. The difference lies in the selection of the central frequency. In LR-DP, we select central
frequencies among OCW, and in DP-FH, we select from OBWs, thus enabling the frequency-hopping
technique. We first group devices with the same SF and transmission powers allocated by LR-DP,
which are then passed to generateS chedule(). We then assign each node fragment a unique time and
OBW combination so that none of them collide. Thus, the algorithm adds the time parameter to the
schedule generated to reduce collision and retransmissions and make it more energy efficient.

The transmission parameter selection and setting process is as follows: [oT devices must join the
network to participate in transmission. The LoRa gateway collects the state of each device and sends it
to the edge server to find the optimal transmission parameter setting using our proposed algorithm. The
entire schedule generated for all time slots is sent to the devices. MAC commands request information
from end devices and set each device’s parameters. MAC commands interact between the device and
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network server in [29]. The network server obtains the setting from the edge server and sends separate
MAC commands to each end device. Devices use these settings for future transmissions, which again
consume some energy. Future model training is done based on the amount of consumed energy using
the newly set parameters.

5. Experimental setup

We implement simulations LR-DP and DP-FH using LoRaSim in [19], which uses a Simpy library
from Python. For machine learning, we use Python’s Tensorflow libraries. We evaluate and compare
the results with FREE algorithm results in [13] for various performance metrics such as energy
consumption, packet delivery ratio, transmission time, and collision probabilities.

For evaluation, we use the parameters for the simulation discussed in Table 2. Our learning
agent gets input device information and learns the policy to generate the optimal channel, SF, and
transmission power. We have extended this learning with the frequency-hopping strategy in LoRaSim
to include OBW and time slot selection to avoid a collision. After every learning episode, we generate
rewards as a negative energy consumption value. The learning agent learns that optimal parameters
generate maximum reward, meaning learning takes place to minimize energy. Thus, our algorithm
optimizes energy.

Table 2. Simulation parameters.

Parameter Value

Number of IoT devices (V) 100—4000

OCW channels (EU863-870) (C) 867 MHz, 867.3 MHz, 867.5 MHz, 867.7 MHz,
867.9 MHz, 868.1 MHz, 868.3 MHz, 868.5 MHz

OCW bandwidth (OCpgy) 137 KHz
OBW bandwidth (OBgy) 488 Hz
OBW minimum separation 39kHz
Coding rate (CR) 1/3
Data rate (DR) DRS
Spread factor (f) [7,8,9,10, 11, 12]
Transmission power (p) -4 to 20 dBm
Payload fragment duration 50 ms
Payload duration 102 ms
Uplink channel duty cycle (d) 1%
Battery capacity 1000 mAh
Maximum data packet size 50 bytes
Mean path loss at the reference 127.41 dB
distance dO (PL(d0))

6. Results

We gathered results to compare our implementation with existing algorithms. In the first stage of
our implementation, we used only reinforcement learning to optimize the selection of transmission
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parameters (the algorithm mentioned in LR-DP [22]) such as central frequency, bandwidth, SF, and
transmission power. We combined reinforcement learning and frequency-hopping in the second stage
of our proposed approach (Algorithm 2). We trained the model for around 3000 iterations to obtain the
results shown in this section. Figure 5 shows the training process of the DP-FH RL algorithm. This
training was for 4000 devices and data for 10 bytes. The reward is an energy consumption function
denoted in Eq (16). Training the model increases the reward, which reduces the energy consumption
of the devices. We made multiple training runs to find the maximum number of episodes required for
training. They range from approximately 1800 to 3000. In the learning process, we observed a few dips
at around 1300 due to exploration used in the DDPG algorithm. The performance evaluation based on
collisions, transmission time, energy consumption, and packet delivery ratio is shown in Figures 6-10.

-50 1

-100 |

-150 -

Reward

-200

-250 |

-300

0 500 1000 1500 2000 2500 3000
Episode

Figure 5. Training of the DP-FH model for 3000 episodes.

We compare our results with various algorithms as shown in Table 3: the heuristic approach,
FREE in [13], LoRa-based frequency-hopping, LR-FHSS in [3], SF assignment using a support vector
machine (SF_Smart_SVM), SF assignment using a decision tree classifier (SF_Smart_DTC) [15], mixed
integer linear programming (MILP) called an optimization model for LoRaWAN resource allocation
for IoT applications (MARCO), and a heuristic for adaptive resource allocation on LoRaWAN for [oT
applications (CORRECT) [12].

Table 3. Algorithms for comparison with the proposed algorithm DP-FH.

Reference Name Intelligent/Heuristic
Proposed  DP-FH Intelligent

[13] FREE Heuristic

[22] LR-DP Intelligent

[15] SF_Smart SVM Intelligent

[15] SF_Smart DTC Intelligent

[12] MARCO Intelligent

[12] CORRECT Intelligent

[3] LR-FHSS Heuristic
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Our evaluation is in four phases:

(1) We evaluate the results for various parameters by increasing the number of devices.

(2) We evaluate the results for various parameters by increasing the data size to be transmitted.
(3) We evaluate the effect of the ML algorithm with the frequency-hopping spread spectrum.
(4) We make signal strength-specific evaluations, including RSSI and SNR.

Each phase is discussed below with a detailed analysis of the results.

6.1. Increasing number of devices

In this step of evaluation, we record the total time to transmit the data (ms), the number of collisions
in transmission, measurements of energy consumed (J), and the packet delivery ratio (PDR). Figure 6
is a comparison of total collisions and total transmission time for an increasing number of devices
from 100 to 4000 for 20 bytes of data. The transmission time involves all the packets that are
transmitted even after retransmission. But if the device decides to drop the transmission of packet
fragments due to exceeding the number of allowed retransmission attempts, the packet will not be
received by the gateway. This recorded transmission time is the average of the total time each device
takes to transmit all possible packets. It should be noted that the collisions are counted each time the
packet is interfered irrespective of whether it was a first-time transmission or retransmitted packet.
Thus, as the number of collisions increases, the number of retransmissions and total time to transmit,
taken by each device, also increases. It can be observed that both go hand in hand. Also, DP-FH has the
lowest collision probability with the lowest time to transmit. With more devices and elevated network
traffic, the number of collisions increases. However, our proposed algorithm still maintains the trend
of lowest collisions and lowest time to transmit. FREE is a heuristic algorithm and is observed to have
a higher collision ratio than all other existing algorithms. Machine learning-based algorithms, such
as MARCO [12], LR-DP [22], and the adaptive algorithm CORRECT [12] perform better than FREE.
Transmission time for DP-FH is about 58% lower than other machine learning and adaptive algorithms.
The collision count in DP-FH is about 9% lower than the existing state-of-the-art MARCO algorithm.

Figure 7 shows a comparison for the energy consumed by the devices to send all their data and the
PDR achieved in this transmission. It runs from 100 to 4000 for 10 bytes of data with a maximum
gateway range of 5000m. We compare the energy consumed and PDR using our proposed algorithm
DP-FH with FREE, LR-DP, SF_Smart_SVM, and SF_Smart_DTC. It shows evaluation results for the
network by increasing the device density by increasing its count from 100 to 4000. The distance
between the gateway and the device is a minimum of 5000m. Figure 7 shows the energy consumed
by the algorithms under consideration. Energy consumption is the average energy a device consumes
to transmit a packet [19]. We observe that the machine learning algorithms perform better than the
heuristic FREE algorithm regarding energy consumption. DP-FH consumes about a minimum of 17%
lower energy compared to the existing algorithms. Another aspect is the packet delivery ratio, which
is affected if energy consumption is reduced. But here we see that the DP-FH still has comparable
ratios as FREE, LR-DP, SF_Smart_SVM, and SF_Smart_DTC. Using our proposed approach, the PDR
is improved by around 42%. The improvements in energy consumption, packet delivery ratio, and
total time to transmit are due to the handling of collisions. The frequency-hopping technique LoRa
uses gives a spectrum of frequencies for various devices to transmit. Since this avoids overlap in
frequencies, the collisions are reduced. Moreover, the massive IoT, which may cause collisions even
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in frequency-hopping, is further reduced due to the appropriate scheduling of transmission parameters.
This helps mitigate collisions and retransmission, thus reducing energy consumption, latency, and the

packet delivery ratio.
Collision Transmission time
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Figure 6. Comparison of total collisions and total transmission time for increasing the
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Figure 7. Energy consumption and packet delivery ratio for increasing the devices.

The transmission parameters, specially SF, need to be allocated and tweaked to manage energy
consumption. Figure 8 shows SF distributions: the existing heuristic FREE approach and the proposed
DP-FH. When using DP-FH for scheduling, we minimize energy consumption that is closely related
to spreading factor selection. Since we focus on minimizing energy consumption, we observe that
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the DDPG-based scheduling strategy learns the impact of the SF on energy consumption and allocates
minimal SFs. If we increase the SF, transmission time increases, and more energy is consumed. Hence,
more devices use a lower SF. However, if devices are far away, they must be assigned higher SFs to
ensure that transmission is successful because the signals with lower SFs do not travel longer distances.
Hence, we see that after higher usage of SF7, more devices use SF SF11, and less use SF12. The
SFs SF8, SF9, and SF10 are observed to be allocated minimally, and instead, transmission powers
or data rates are adjusted to avoid collisions and increase the range of devices with SF7. This is
because the algorithm mostly assigns SF7 to reduce energy; it plays on other parameters, such as
transmission power, to try and tweak them to achieve acceptable RSSI and keep the SF low to SF7.
However, at a certain distance between the gateway and the device, signals with SF7 cannot reach
the gateway. Here, SF11 is allocated and we try to avoid SF12 for the same reason as SF8 to SF10.
The FREE algorithm has designed an SF allocation algorithm to minimize the cost function (energy
minimization for @ = 0) in [13] such that RSSI is higher than the device sensitivity for validation
packet loss. However, it is observed that while minimizing energy consumption, FREE fails to consider
transmission time in Figure 7. We increased the number of devices from 100 to 2000 and transmitted 50
bytes of data. In DP-FH (titled as XXX-FHSS in Figure 8, where XXX is the number of devices),
as the number of devices increases, the percentage of devices allocated to SF7 (avg. 75%) reduces
and that to higher SFs increase. This shows that as the number of devices increases, the allocation
of unique transmission parameters forces the scheduling strategy to allocate devices to SF7 up to
a threshold (Table 4). Beyond that, all remaining devices are allocated higher SFs. However, the
FREE algorithm heuristically allocates transmission parameters to the device and does not have enough
unique transmission parameters to allocate. Thus, it ends up assigning higher SFs to about 40% of the
devices.

DP-FH
100-FHSS 500-FHSS 1000-FHSS 1500-FHSS 2000-FHSS
12% 8% 2% 13% 13%
13% 19%
0% 21% 20%
L oo :
ES 75% 72% 75% 0%
I EEE FREE
[ sFi2 100-FREE 500-FREE 1000-FREE 1500-FREE 2000-FREE
10% 5% 10% 3% 7% 5% 8% 4% 8% 6%
9 6% 6% 6% 7%
389% 13% 1% 14% o 14%
15% ° 44% 429 41% 1%
23% 27% 26% 26%

23%

Figure 8. SF distributions for an increasing number of devices.
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Table 4. Interference thresholds [13].

SF7 SF8 SF9 SF10 SF11 SF12
SF7 1 -8 -9 -9 -9 -9
SF8 -11 1 -11 -12 -13 -13
SF9 -15 -13 1 -13 -14 -15
SF10 -19 -18 -17 1 -17 -18
SF11 -22 -22 -21 -20 1 -20
SF12 -25 -25 -25 -24 -23 1

6.2. Increasing data sizes

In this section, we evaluate how our proposed algorithm performs when the amount of data to be
transmitted increases. When the amount of data to transmit increases, the number of fragments to
transmit also increases. DP-FH utilizes the subchannels due to FHSS and transmits data from devices
more frequently than the other two algorithms, which do not use FHSS. This reduces the overall waiting
time for all devices and improves transmission latency for our approach. Figure 9 shows transmission
time and energy consumption. It uses from 10 to 50 bytes using 1000 devices transmitting this data to
the gateway. Our proposed algorithm takes about 14% less time to transmit the same data as others.
Figure 9 compares energy consumption (J) for three scheduling strategies showing the lowest energy
consumption in DP-FH compared to FREE and LR-DP. For smaller data sizes, energy consumption
for LR-DP is higher than FREE but lower for larger data packets. For energy consumption evaluation
in Figure 9, we compare our proposed approach with FREE; we observe that for increasing data sizes,
energy consumption is more in FREE as well as LR-DP but frequency-hopping reduces the energy
consumption by around 98%.

Transmission time Energy consumption
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Figure 9. Comparison of time on air and energy consumption for increasing data size.

We compare SF distribution for increasing data sizes with 500 devices and data sizes from 10 to 50
bytes for DP-FH and FREE in Figure 10. This is a crucial result since we need to observe how the
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SF distribution takes place to collect more data from data-intensive applications such as reporting
systems. This can help us extend LoRa applications to a larger spectrum of use cases rather than just
notification purposes or small data applications. As we know, more data can be sent over the channels
with transmission parameters having a smaller SF. A smaller SF selection is better for a network with
good reception at the receiver gateway and a higher SNR ratio since it lowers energy consumption.
DP-FH allocates most of the devices to lower SFs (avg. 71.4%) since we intend to minimize energy
consumption. We observe the same for all data sizes with multiple fragments to transmit, unlike the
FREE algorithm, which uses sensitivity and RSSI to select SFs and proves inefficient in conserving
energy.
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Figure 10. SF distribution of devices for increasing data packet size.

6.3. Enhancing the frequency-hopping spread spectrum using ML algorithms

When the amount of data to be transmitted increases, the number of fragments sent by each device
increases, increasing the total transmission time. Thus, it is necessary to compare the transmission
times of the existing frequency-hopping technique, LR-FHSS in [3], an FHSS-based approach, and
DP-FH which uses DDPG-based scheduling in addition to FHSS. We compare the results of the time
on air (ToA) per device and increasing data sizes ranging from 10 to 50 bytes. ToA is the time for which
the transmission unit of the end device is kept ON so that the signal reaches the gateway. Figure 11
shows a comparison of the ToA of frequency-hopping-based strategies, heuristic LR-FHSS, and DP-
FH in [3] that uses reinforcement learning with data rate DR8/10 (head replication = 3) abiding by the
EU 868-870 MHz band regulation, which imposes a 1% duty cycle per device and channel. We observe
that using the reinforcement learning DDPG algorithm for scheduling frequency-hopping improves the
ToA per device. This reduces data collection time and improves the efficiency of the system. The
increase in the ToA for the LR-FHSS algorithm per device is more (about 97%) [3] as packet size
increases compared to the ToA taken by DP-FH. The hopping sequence suggested using reinforcement
learning thus gives an optimal schedule compared to LR-FHSS.
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Figure 12 plots RSSI values for distances of devices from the gateways in km. RSSI > -120 dBm is
required for the signal to be received without the need of a repeater in [30]. We observe that DP-FH has
RSSI > -120 dBm for 87.2% of the times, whereas, for the FREE approach, it is just 35%. As devices
move farther (> 20 Km), signal strength reduces in FREE, but for DP-FH, it remains above -120 dBm,
maintaining signal strength. Figure 12 plots the SNR of packets received from the corresponding
number of devices. A favorable SNR means that the signal power is greater than the noise power, i.e.,
the receiver can demodulate the signal. An SNR below -30dB is unacceptable [31]. We observe that
in algorithms LR-DP and DP-FH, received packets from most of the devices have positive SNR values
as opposed to the FREE algorithm that has near zero but a negative SNR ratio. A negative ratio makes
demodulation at the receiver difficult. Thus, implementing an intelligent selection of transmission

power helps in improving SNR.
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Figure 12. RSSI and SNR of devices in our proposed DP-FH algorithm.
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7. Conclusions

In this paper, we propose an intelligent and energy-efficient frequency-hopping-based scheduling
algorithm, named DP-FH, which is based on a deep deterministic policy gradient algorithm and
incorporates a frequency-hopping spread spectrum for LoRa networks. It uses a DDPG algorithm
to schedule transmission parameters in frequency-hopping LoRaWAN. Using FHSS increases the
channels available for transmission, which enables more devices to transmit at the same time without
collisions. This reduces the waiting time of devices and reduces the overall transmission time.
Moreover, the DDPG-based scheduling algorithm generates unique transmission parameter allocation
strategies for each device, ensuring collision avoidance and a higher packet delivery ratio. This reduces
the amount of retransmissions and improves the energy efficiency of the system. We also show that
the overall energy efficiency is increased due to lower SF allocations to devices. We compare existing
heuristic as well as machine learning-based algorithms for scheduling in LoRaWAN and compare their
results to show that DP-FH improves its energy efficiency and packet delivery ratio, still maintaining
lower transmission times and a lower collision rate. We observe a 42% improvement in PDR, 17%
more energy efficiency, 58% speed increase, and 9% lowered collisions. We have also shown that
unlike FREE and LR-DP, signal strength in our approach is maintained even when devices are far
away from the gateway. Thus, it is safe to specify that the proposed algorithm, DP-FH, is suitable for
reducing energy consumption in LoRaWAN with the massive IoT with increased coverage.

As part of our future work, we plan to improve LoRa with frequency-hopping for communication
with increased data to transmit, thus opening more use cases for LoRa. Regarding beamforming
and beam steering, we plan to utilize machine learning to optimize the beamforming for the array
antenna to improve the RSSI and maximize overall communication reliability while improving energy
efficiency for massive IoT networks. The SNR and RSSI data from the IoT devices will be continuously
monitored, and based on the RSSI of certain IoTs at specific distances from a gateway device, the
beamforming and steering will be controlled to improve the data packet transmission. Simultaneously
improving data packet transmission reliability, minimizing retransmission, and increasing data
transmission can increase energy efficiency and communication reliability.
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