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Abstract: Autonomous vehicles (AV) face significant challenges in navigating adverse weather, 

particularly rain, due to the visual impairment of camera-based systems. In this study, we leveraged 

contemporary deep learning techniques to mitigate these challenges, aiming to develop a vision model 

that processes live vehicle camera feeds to eliminate rain-induced visual hindrances, yielding visuals 

closely resembling clear, rain-free scenes. Using the Car Learning to Act (CARLA) simulation 

environment, we generated a comprehensive dataset of clear and rainy images for model training and 

testing. In our model, we employed a classic encoder-decoder architecture with skip connections and 

concatenation operations. It was trained using novel batching schemes designed to effectively 

distinguish high-frequency rain patterns from low-frequency scene features across successive image 

frames. To evaluate the model’s performance, we integrated it with a steering module that processes 

front-view images as input. The results demonstrated notable improvements in steering accuracy, 

underscoring the model’s potential to enhance navigation safety and reliability in rainy weather 

conditions. 

Keywords: autonomous vehicles; vehicle safety; adverse weather navigation; deep learning; computer 

vision; image deraining; batching schemes; CARLA simulator; steering performance 

 

1. Introduction 

Rain poses significant challenges to not only human visual perception, but also for autonomous 

vehicles (AV) navigating roadways. Rain streaks can severely hinder camera-based objects and feature 

detection systems employed by AV. Consequently, automotive manufacturers often deactivate 

autonomous driving features during inclement weather. In response, research within the field of 
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developing deraining deep learning models has seen a surge of interest in recent years. However, due 

to the intricate nature of dynamic rain streaks and slowly changing background scenes, deraining 

remains a challenging task. 

We aim to address the deraining challenge for AV by: (1) Developing a deep learning based vision 

model capable of removing rain streaks, yielding results that resemble a clear, rain-free image, (2) 

using a data centric approach to devise and analyze different batching schemes to enhance model 

training and inference performance, and (3) utilizing an established steering angle predication model 

to validate the benefits of deraining in improving AV’s steering performance. 

The datasets for this study are generated from the Car Learning to Act (CARLA) simulator. Three 

datasets are prepared for model training, validation, and testing purposes. Each dataset comprises of 

rainy images as the input and corresponding clear images as the label. The training dataset includes 

diverse maps and environments to improve the model’s generalization. Moreover, the validation and 

testing datasets are derived from maps not used in the training dataset. Deraining, akin to denoising, is 

a common machine learning task, exemplified by methods like denoising autoencoder [1]. 

However, the challenge of removing rain streaks from an ego vehicle's camera view differs 

significantly from denoising static images due to the dynamic nature of sequential scenes captured by 

these cameras. Here, rain streaks act as high-frequency signals (similar to noises), contrasting with the 

low-frequency signals of camera scenes, which evolve slowly as the vehicle navigates roads. 

Removing rain streaks while maintaining the integrity of scenes is analogous to filtering out high-

frequency signals. In order to harness the distinct dynamics of these signal types, two novel batching 

schemes are employed and compared to the conventional batching to assess their impact on the model 

training and the resultant deraining performance. The first batching scheme uses paired images that 

are sequential in time and sequential in batch (STSB), while the second batching scheme uses paired 

images that are sequential in time and random in batch (STRB). In contrast, the traditional batching 

scheme relies on image pairs that are random in time and random in batch (RTRB), where the temporal 

cue is lost within each batch. 

The model architecture devised in this study draws inspiration from two influential architectures: 

The Deep Convolutional Generative Adversarial Network (DCGAN) [2] and the U-Net [3]. DCGAN, 

renowned for its applications in computer vision such as image generation [4–6], style transfer [7,8], 

and data augmentation [9–11], serves as a foundational pillar in our approach. Moreover, U-Net, 

initially developed for biomedical image segmentation, is important in modern diffusion models for 

iterative image denoising [12–14]. To tackle the challenge of image deraining, we propose an encoder-

decoder architecture that extends the DCGAN to accommodate higher image resolutions while 

integrating the skip-concatenation mechanism from U-Net to leverage multiscale perceptual views, 

fostering context-aware denoising. 

To illustrate the effectiveness of our model, we compare the derained images against both rainy 

and ground-truth (clear) images. Additionally, we benchmark our model against PreNet [15], a seminal 

work in the field. To quantitatively assess the performance of our deraining model, we employ PilotNet 

[16], a steering angle predictor. Steering performance is evaluated under rainy, clear, and derained 

conditions to demonstrate the advantages of our model in improving vehicle steering under adverse 

weather conditions. In summary, the key contributions of this study are as follows: 

• We introduce sequential batching schemes that facilitate cost-free learning of structured scenic 

features against noisy rain streaks. This data-centric approach enhances both training stability and 

inference performance. 

• Inspired by DCGAN and U-Net, our proposed simple yet effective architecture surpasses the prior 

work in removing rain streaks from images. 
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• The efficacy of our deraining model is validated through steering performance evaluation using 

PilotNet, where steering angles predicted from derained images closely match those from clear 

images. 

2. Deraining 

A number of deep learning models have been proposed to address the deraining challenge. DID-

MDN [17] utilized a multi-dilation network to capture rain streaks of varying sizes using dilated 

convolutions to capture long-range dependences in rain streak patterns. JORDER [18] jointly addresses 

rain detection and removal within a unified framework by extracting rain discriminative features. 

PReNet [15] used a modified progressive residual network (PRN) to remove rain streaks by 

progressively refining the deraining results through multiple stages. DerainNet [19] employed a deep 

convolutional neural network (CNN) [20] to directly learn the mapping relationship between rainy and 

clear images. Restormer [21] used a multiscale hierarchal design incorporating efficient transformer 

blocks, such as multi-Dconv head transposed attention and gated-Dconv feed-forward network to 

derain images. KBnet [22] argued against transformer models as they lack desirable inductive bias of 

convolutions. Instead, it incorporated a kernel basis attention model to adaptively aggregate spatial 

information and a multi-axis feature fusion to encode and fuse diverse features for image restoration. 

Other researchers in the field have adopted GAN [23] based architectures for image deraining. 

DerainCycleGAN [24] used an unsupervised attention guided rain streak extractor, two generators, 

and two discriminators to derain images. ID-CGAN [25] integrated skip-connections and DenseNet 

Block that uses per-pixel loss and perceptual loss to improve deraining performance. PAN [26] 

employed a perceptual adversarial loss and hidden trainable layers. FS-GAN [27] incorporated feature-

supervision on generator layers to contribute gradient information for optimization to improve image 

deraining. IGAN [28] followed a divide-and-conquer strategy to divide image deraining into rain 

locating, removal, and detail refinement sub-tasks. 

In contrast to researchers who focused on model architecture, we emphasize a data centric 

approach using cost-free batching schemes to improve image deraining performance. For proof of 

concept, we devise a simple encoder-decoder architecture with end-to-end training for direct image 

deraining and style transfer. 

3. Data collection 

Data collection and curation is pivotal in our data-centric approach, profoundly shaping the 

training of our model. We aim to achieve three objectives: (1) Capturing both rainy images and their 

corresponding clear counterparts as an ego vehicle navigates roads, facilitating direct end-to-end 

training with sequential images; (2) ensuring diversity in the driving environments captured within the 

datasets; and (3) acquiring steering wheel angle data alongside image data to enable quantitative 

evaluation of deraining on steering performance. 

3.1. CARLA simulator 

To collect necessary data for model training and testing, Car Learning to Act (CARLA) [29], a 

simulator for autonomous driving research, is utilized. CARLA is a powerful open-source simulator 

that contains various digital assets, such as vehicles, sensors to capture data, and pre-made maps that 

include a diverse selection of environments. CARLA also has an extensive API, offering flexibility in 

setting the time of day, controlling weather conditions, and gathering necessary vehicle data. However, 
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one glaring issue with CARLA is its simulated rain effects. The original rain effects in CARLA based 

on the 0.9.14 release were unrealistic when compared to real rain. Consequently, modifying the rain 

effects in CARLA to closely reflect real-world rainy conditions becomes necessary. To modify the 

rain effects, a custom-built version of CARLA is created using the Unreal Editor to modify the rain 

asset file to reflect real-world rain effects. Figure 1 shows a comparison of a real-world heavy rain 

image, the original CARLA heavy rain image, and the modified CARLA heavy rain image. 

 

Figure 1. Visualization of heavy rain effect when compared to original CARLA rain effect 

and modified CARLA rain effect. 

The rain streaks in the real-world image can be described as thin with a light grey color, while 

the original CARLA rain effect is drastic in comparison. The rain streaks are thick rectangular pixels, 

with a dark grey color to them. After modifying the rain asset file, the rain streaks are thinner, lighter 

in color, closely resembling real-world rain effect. 

3.2. Image data 

The datasets for the model training required a rainy input image and a corresponding clear label 

image. It was essential that the simulation runs were synchronized to capture the clear and rainy images 

at the exact frame. To synchronize the frames, a Python script was developed to ensure that the ego 

vehicle followed a predefined path in CARLA. This script sets the simulation in synchronous mode to 

manually call the simulation to move forward a time step. This ensures that frames across different 

simulation runs were identical. The forward-view images were captured through the CARLA spectator 

view that was attached to the hood of the ego vehicle. In the simulation runs, no other moving vehicles 

were present, and all traffic lights were set to green when the ego vehicle approached to prevent 

repetitive, standstill images for extended periods of time. The time of day was set to Noon for 

generating both the clear and rainy road scene images. 

CARLA offers various pre-made maps that can be used to create image datasets containing diverse 

road scenes. The aerial views of the maps used are shown in Figure 2. 

For the training datasets, the following five distinct maps were included: Town01, Town03, 

Town04, Town07, and Town10. Town01 featured a small river surrounded by a mix of commercial 

and residential buildings in a forest terrain. Town03 was an urban landscape with metro tracks, a blend 

of commercial and residential buildings, and a roundabout. Town04 offered highway roads winding 

through a mountainous terrain with an exit to a small town. 

Town07 presented a rural countryside setting with narrow winding roads, farming structures, and 

cornfields. Town10 provided a downtown environment with skyscrapers, residential complexes, and 

an ocean view. For the validation dataset, Town02 was selected. For the testing dataset, Town05 was 

chosen due to its larger size and comprehensive environmental characteristics, such as highways, 

residential and commercial zones, skyscrapers, tree-lined streets, and metro tracks. Consequently, the 
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training dataset comprised 32,000 images (16,000 clear images and 16,000 rainy images). The 

validation dataset contained 3,200 images, while the testing dataset consisted of 4,000 images. 

 

Figure 2. Aerial views of the CARLA maps used. Town01, 03, 04, 07, and 10 for training; 

Town02 for validation; and Town05 for testing. 

3.3. Steering angle data 

To capture the steering angle data for each map in CARLA, we recorded the steering angle of the 

vehicle at each frame. It is worth noting that the CARLA API allowed only for capturing the drive 
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wheel angles. However, the PilotNet model outputted steering wheel angles. Thus, a conversion from 

drive wheel angles (P) to steering wheel angles (S) was applied by multiplying the drive wheel angles 

by the steering wheel ratio (R). The resultant steering wheel angles for each map were saved along 

with the corresponding frame number. This data was used for assessing the effect of deraining on 

steering performance. 

4. Data-centric approach 

This study emphasizes the data-centric aspect rather than the model architecture design, 

highlighting the critical role of data batching in learning distinct signals at different frequencies to 

enhance autonomous vehicle vision. 

4.1. Data preparation and batching schemes 

Data preparation is vital, as it significantly influences model training. Initially, all images were 

center cropped and resized to 256x256. Normalization was omitted due to its adverse effect on the 

quality of derained images. The training process involved correctly pairing rainy input images with 

their corresponding clear images as ground truth. This was accomplished by creating two separate 

folders and using the frame number to correctly pair them together. 

Three distinct batching schemes were implemented using a customized dataloader. The first 

scheme, termed Sequential in Time and Sequential in Batch (STSB), paired two sequential frames of 

rainy and clear images from each of the five training maps within a batch. This scheme operated 

sequentially both in time and batch, as illustrated in Figure 3, where Frames 1 and 2 of rainy and clear 

images from each map formed the first batch, followed by Frames 3 and 4 in the second batch. This 

process was repeated until all images were utilized. However, since not all maps contained an equal 

number of images, once the images from one map were depleted, another remaining map was randomly 

chosen to fill the batch. 

 
Figure 3. Batching Scheme 1: Sequential in time and sequential in batch (STSB). 
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The second novel batching scheme, Sequential in Time and Random in Batch (STRB), maintained 

the paring of two sequential frames but introduced randomness in batch loading. This meant that within 

each batch, the frames were shuffled randomly rather than following a strict sequential order. This is 

demonstrated in Figure 4, where sequential frames from each map are paired, but their order within 

each batch is randomized. 

The third batching scheme, Random in Time and Random in Batch (RTRB), represented 

conventional batching, as shown in Figure 5. In this scheme, both the frame pairs and their order within 

each batch were randomly selected. 

 

Figure 4. Batching Scheme 2: Sequential in time and random in batch (STRB). 

 

Figure 5. Batching Scheme 3: Random in time and random in batch (RTRB). 
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4.2. Model architecture 

Our model architecture followed a classic encoder-decoder design, where the encoder and 

decoder were adapted from the discriminator and generator of DCGAN to enable higher resolution 

images. Particularly, the original DCGAN architecture handled 64x64 images. Additional convolution 

blocks were added to allow for 256x256 images. Skip-concatenation [3] was adopted between 

convolutional blocks with same spatial resolution in the encoder and the decoder. This design enabled 

direct flow of hierarchical, multiscale features from the encoder to the decoder, enabling context-aware 

image generation, which was crucial in tasks like deraining, where understanding the fundamental 

structure of the road scene was essential for removing rain streaks and enhancing image clarity. 

Figure 6 shows the proposed deraining model architecture with distinct blocks denoted by 

different colors. Figure 7 further elaborates on computational details of each colored block. Batch 

Norm [30] was applied to all layers except the decoder output and encoder input. In line with the 

principle of design simplicity [31], the model exclusively used convolutional layers, where down-

sampling was achieved by increasing the stride. ReLU was predominately used as nonlinearity across 

convolution layers, while Tanh was used for the decoder output and sigmoid was employed for the 

encoder output. 

 

Figure 6. Model Architecture. The decoder transposed convolutions (in purple) are 

modified by concatenating with corresponding convolution block from the encoder, 

followed by 1x1 convolution to resize the channel dimension. 

 

Figure 7. Computational modules of colored block in Figure 6 (k: kernel size; S: Stride; P: Padding). 
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5. Model training and evaluation 

For each batching scheme, the deraining model was trained with 100 epochs, a batch size of 10, 

and a learning rate of 0.0002. We use MSE loss and Adam Optimizer [32] with parameters β1=0.5 and 

β2=0.999. All experiments are conducted on a workstation using an AMD Ryzen 9 7950x CPU, 32GB 

of Ram, and Nvidia GeForce RTX 4090 24GB. 

5.1. Batching scheme performance 

To evaluate the performance of different batching schemes, train, validation, and test losses are 

summarized in Table 1. 

Table 1. MSE loss comparison of different batching schemes. 

Batch Scheme Train Loss Validation Loss Test Loss 

STSB 

STRB 

RTRB Reference 

0.0122 

0.0012 

0.0014 

0.0821 

0.0130 

0.0164 

0.0132 

0.0106 

0.0115 

Note: bold indicates the best performance. 

As shown in Table 1, the STRB batching scheme performs the best, followed by RTRB and STSB. 

For visual comparison, Figure 8 shows the derained images from the three batching schemes. 

 

Figure 8. Visualization of deraining results of a single frame. 

Notably, STSB has lingering grey and white spots in the sky and pavement areas, where solid 

color or gradient of color are expected.  In contrast, RTRB shows improvement over STSB, with the 

absence of grey spots. However, some artifacts (e.g., a white spot) exist in the sky area and structural 

information (e.g., the light post) is lost. STRB, on the other hand, performs extremely well in 

comparison, preserving both pixel-level information as well as structural features. For further 
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comparison, three consecutive derained images for each of the three batching schemes are shown in 

Figure 9. 

 

Figure 9. Visualization of deraining results of three consecutive frames. 

It becomes apparent that RTRB struggles with slight environmental movements as the car 

navigates down the road. Also, the overall image quality exhibits watery visuals with significant loss 

of details, especially in object structures, such as traffic lights and trees. For STSB, various grey spots 

are present in the image, which likely arise from less diverse backgrounds due to sequential batching. 

In contrast, STRB harnesses the advantages of both sequential frames and random batching, resulting 

in improved images with pixel-level and structural integrity. 

In summary, STRB is a novel batching scheme that utilizes random batching of sequential frames 

to derain images. This strategy enables the model to effectively capture the distinct dynamics of 

raindrops against slowly changing roadway scenes, resulting in superior deraining performance when 

compared to the traditional RTRB approach. By using sequential frames, STRB can better understand 

the rain dynamics between the consecutive frames to adaptively remove rain streaks while preserving 

the scene details and integrity. On the other hand, the randomness in the batch increases diversity in 

scenes within each batch, mitigating overfitting and bias toward any particular scenes. As such, the 

STRB batching scheme effectively preserves both structural and pixel-level details when deraining 

images. 

5.2. Comparison of deraining results 

With the STRB batching scheme demonstrating the highest effectiveness for deraining, we 

compare our model’s deraining performance to PreNet, the baseline model used in this study. For a 

qualitative assessment, three distinct roadway scenes are used for comparison. For each scene, four 
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images are presented, including the original rainy image, the ground-truth image, the PReNet derained 

image, and the derained image from our work. As shown in Figures 10–12, our model with the STRB 

batching scheme consistently outperforms PReNet. 

 

Figure 10. Scene 1: AV approaching traffic lights. 

 

Figure 11. Scene 2: AV driving through residential area. 
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Figure 12. Scene 3: AV approaching 4-way stop. 

While PReNet successfully removes the rains streaks from the rainy image, the resulting image 

quality drastically decreases. Additionally, the environment retrains the original gray, colorless 

appearance of the rainy image. Our model, on the other hand, has not only removed the rain streaks of 

the image, but also retained the environmental details to mimic a clear sunny day. As a result, the 

derained image views from our model show much greater visibility than those from PReNet. It is 

important to note that our model was trained to learn direct mapping between rainy images and 

corresponding clear, sunny images. Implicitly, our model learns to tackle two tasks simultaneously: (1) 

Removing rain streaks and (2) style-transferring from rainy weather conditions to clear and sunny 

weather conditions. 

When comparing the derained image to the ground-truth, there is a slight loss of detail, most 

notably in the leaves of trees in the second scene. However, the overall image quality remains sufficient 

for driving-relevant feature and object detections, such as the lane markings, the “STOP” text on the 

road, and roadside structures are visible. One area where the model struggles is with skyscrapers (as 

seen in Scene 3 of Figure 12), where some segments of the building are missing or distorted. Despite 

these, the model performs remarkably well at deraining images, representing a leap forward compared 

to the prior work. It is important to emphasize that our primary objective of this study is to mitigate 

the adverse effects of rain while ensuring that essential features remain visible for real-time driving 

tasks rather than achieving a perfect high-resolution reconstruction of all scene details. While the latter 

could potentially be addressed by scaling up the network with architectural enhancements, such 

improvements would increase computational costs and fall outside the scope of this study. 

5.3. Steering performance 

To quantify the benefits of image deraining achieved by our model, PilotNet was employed to 

predict steering angles for clear, rainy, and derained images. Since PilotNet was originally designed 

for lane-following tasks, scenarios involving intersections and sharp turns were excluded from the 
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analysis. The evaluation was conducted on a multi-lane highway comprising straight segments and 

gradual turns. As previously noted, the ground-truth steering angles were directly recorded from 

CARLA. 

It is important to acknowledge that even for clear images, PilotNet exhibits an inherent deviation 

from the ground-truth steering angles recorded in CARLA. For steering performance evaluation, the 

mean absolute error (MAE) was computed to measure the deviation under four conditions: Clear 

weather, heavy rain, light rain, and derained images. Table 2 presents the results, indicating an inherent 

error of 0.356 degrees for clear weather and a slightly higher error of 0.508 degrees under derained 

conditions. In comparison, both heavy and light rain conditions result in larger steering errors, with 

heavy rain showing a significantly worse performance. Notably, the steering error under heavy rain is 

more than twice that observed for light rain. 

Table 2. Mean absolute steering angle error. 

Condition Error (degree) 

Clear 

Heavy Rain 

Light Rain 

Derained 

0.356 (Inherent Error) 

1.204 

0.561 

0.508 

Figures 13 and 14 illustrate the live steering angle error relative to the ground truth over a 

simulation run for three scenarios: Clear, heavy rain, and derained. As shown in Figure 13, the heavy 

rain scenario exhibits three segments of significant deviation, corresponding to the three gradual turns 

in the simulation. During these turns, the heavy rain condition performs markedly worse, with errors 

reaching approximately 10 degrees. In contrast, the steering angles for the derained and clear scenarios 

remain closely aligned, demonstrating the positive impact of deraining on steering performance. 

Similarly, Figure 14 highlights that steering performance under light rain conditions is significantly 

better than under heavy rain, with errors reduced to within 5 degrees. This improvement further 

emphasizes the detrimental effects of heavy rain on steering accuracy and the potential of deraining to 

mitigate these challenges. 

To further illustrate the effects of deraining, Figures 15 and 16 present regression plots of 

predicted steering angles under derained conditions compared to those under corresponding clear 

conditions, for heavy rain and light rain scenarios, respectively. The vertical axis represents steering 

angles in clear conditions, while the horizontal axis represents steering angles under derained or rainy 

conditions. Each plot includes a regression line along with the corresponding R2 value. As shown in 

Figure 15, the regression for Clear vs. Derained conditions achieves an R2 value of 0.956, indicating a 

strong correlation. In contrast, the Clear vs. Heavy Rain regression shows nearly no correlation, as 

evidenced by the majority of points clustering along the vertical axis. This highlights that in heavy rain, 

the predicted steering angles fail to respond to curvy road segments. In essence, the vehicle "misses" 

visual cues in heavy rain, resulting in it continuing straight instead of turning as needed. Figure 16 

illustrates a similar comparison for light rain conditions, where the R2 value is 0.895, lower than that 

of the derained conditions. The steeper regression line for light rain indicates a tendency for under-

predicted steering angles, meaning the vehicle turns less than necessary in these conditions. These 

results underscore the effectiveness of our deraining model in improving steering performance, thereby 

enhancing the safety and reliability of autonomous vehicles in rainy weather. 
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Figure 13. Steering angle comparison error (heavy rain). 

 

Figure 14. Steering angle comparison error (light rain). 

 

Figure 15. Steering performance: Derained vs heavy rain regression plot. 
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Figure 16. Steering performance: Derained vs light rain regression plot. 

6. Conclusions 

Rain presents a formidable challenge for AV navigating roadways as rain streaks can severely 

impair camera-based objects and feature detection systems employed by AV. Addressing this issue is 

essential for enhancing AV performance and safety. 

We adopted a data-centric approach and introduced two novel batching schemes, STSB and 

STRB, to improve deraining performance, comparing them to the conventional RTRB batching 

scheme. STSB paired sequential images both in time and batch, while STRB paired sequential images 

in time but randomized them across batches. Our results demonstrated that STRB outperformed STSB, 

primarily due to its ability to incorporate diverse scenes across batches, reducing overfitting and bias 

compared to sequential scene batching. Additionally, STRB's use of sequential image pairs in time 

enabled it to better capture dynamic rain features over relatively static road scenes in successive frames. 

These advantages were evident in reduced training, validation, and testing losses, as well as in superior 

visual quality of derained images produced by STRB. 

The encoder-decoder model developed in this work extended the DCGAN architecture to handle 

higher-resolution images and incorporates skip-concatenation operations inspired by U-Net. This 

enabled context-aware image generation, effectively removing rain streaks and achieving weather style 

transfer. Visual comparisons of rainy, ground-truth (clear), and derained images confirmed the model’s 

ability to remove rain streaks while transforming rainy scenes into clear, sunny conditions. Compared 

to other methods, the proposed model demonstrated significantly superior performance. The practical 

benefits of the deraining model were quantitatively validated using PilotNet to predict AV steering 

angles on a highway section. Under heavy rain conditions, the AV lost steering control, deviating 

significantly from the ground-truth steering angles recorded under clear conditions. While light rain 

improved steering performance, it was under derained conditions that the steering angles closely 

matched those of clear weather, achieving an R2 value of 0.956. These results provide robust evidence 

of the model’s effectiveness in enhancing visibility and improving AV control in rainy conditions. 
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In conclusion, this study highlights the potential of a data-centric approach combined with deep 

learning models for joint image deraining and weather style transfer. While the model demonstrates 

strong performance, certain limitations remain. It addresses the removal of rain steaks but does not 

account for other weather-related challenges, such as raindrops on the windshield or splashes from 

preceding vehicles, which may further complicate visibility. Additionally, the simplicity of its 

architecture limits its ability to preserve finer image details. The use of CARLA-generated datasets, 

while effective, may not fully capture the diversity of real-world conditions. 

Future research could expand the scope to address a wider range of weather conditions, explore 

architectural enhancements, integrate sequential image frame modeling, and incorporate real-world 

driving datasets to improve robustness and adaptability. Furthermore, diffusion models [13,33] hold 

potential for real-time applications as their computational efficiency continues to improve, warranting 

further investigation. It is also important to note that we primarily focus on evaluating the efficacy of 

deraining in enhancing vehicle steering performance. However, the model holds potential to benefit 

other critical self-driving tasks, such as object detection, which should be explored in future work. 
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