

https://www.aimspress.com/journal/aci

Applied Computing and Intelligence

4(2): 282–299.

DOI: 10.3934/aci.2024017

Received: 23 November 2024

Revised: 25 December 2024

Accepted: 26 December 2024

Published: 30 December 2024

Research article

Enhancing autonomous vehicle safety in rain: a data centric approach

for clear vision

Mark A. Seferian and Jidong J. Yang*

Smart Mobility and Infrastructure Laboratory, College of Engineering, University of Georgia,

Athens, GA, 30602, USA

* Correspondence: Email: jidong.yang@uga.edu.

Academic Editor: Pasi Fränti

Abstract: Autonomous vehicles (AV) face significant challenges in navigating adverse weather,

particularly rain, due to the visual impairment of camera-based systems. In this study, we leveraged

contemporary deep learning techniques to mitigate these challenges, aiming to develop a vision model

that processes live vehicle camera feeds to eliminate rain-induced visual hindrances, yielding visuals

closely resembling clear, rain-free scenes. Using the Car Learning to Act (CARLA) simulation

environment, we generated a comprehensive dataset of clear and rainy images for model training and

testing. In our model, we employed a classic encoder-decoder architecture with skip connections and

concatenation operations. It was trained using novel batching schemes designed to effectively

distinguish high-frequency rain patterns from low-frequency scene features across successive image

frames. To evaluate the model’s performance, we integrated it with a steering module that processes

front-view images as input. The results demonstrated notable improvements in steering accuracy,

underscoring the model’s potential to enhance navigation safety and reliability in rainy weather

conditions.

Keywords: autonomous vehicles; vehicle safety; adverse weather navigation; deep learning; computer

vision; image deraining; batching schemes; CARLA simulator; steering performance

1. Introduction

Rain poses significant challenges to not only human visual perception, but also for autonomous

vehicles (AV) navigating roadways. Rain streaks can severely hinder camera-based objects and feature

detection systems employed by AV. Consequently, automotive manufacturers often deactivate

autonomous driving features during inclement weather. In response, research within the field of

https://www.aimspress.com/journal/aci

283

Applied Computing and Intelligence Volume 4, Issue 2, 282–299.

developing deraining deep learning models has seen a surge of interest in recent years. However, due

to the intricate nature of dynamic rain streaks and slowly changing background scenes, deraining

remains a challenging task.

We aim to address the deraining challenge for AV by: (1) Developing a deep learning based vision

model capable of removing rain streaks, yielding results that resemble a clear, rain-free image, (2)

using a data centric approach to devise and analyze different batching schemes to enhance model

training and inference performance, and (3) utilizing an established steering angle predication model

to validate the benefits of deraining in improving AV’s steering performance.

The datasets for this study are generated from the Car Learning to Act (CARLA) simulator. Three

datasets are prepared for model training, validation, and testing purposes. Each dataset comprises of

rainy images as the input and corresponding clear images as the label. The training dataset includes

diverse maps and environments to improve the model’s generalization. Moreover, the validation and

testing datasets are derived from maps not used in the training dataset. Deraining, akin to denoising, is

a common machine learning task, exemplified by methods like denoising autoencoder [1].

However, the challenge of removing rain streaks from an ego vehicle's camera view differs

significantly from denoising static images due to the dynamic nature of sequential scenes captured by

these cameras. Here, rain streaks act as high-frequency signals (similar to noises), contrasting with the

low-frequency signals of camera scenes, which evolve slowly as the vehicle navigates roads.

Removing rain streaks while maintaining the integrity of scenes is analogous to filtering out high-

frequency signals. In order to harness the distinct dynamics of these signal types, two novel batching

schemes are employed and compared to the conventional batching to assess their impact on the model

training and the resultant deraining performance. The first batching scheme uses paired images that

are sequential in time and sequential in batch (STSB), while the second batching scheme uses paired

images that are sequential in time and random in batch (STRB). In contrast, the traditional batching

scheme relies on image pairs that are random in time and random in batch (RTRB), where the temporal

cue is lost within each batch.

The model architecture devised in this study draws inspiration from two influential architectures:

The Deep Convolutional Generative Adversarial Network (DCGAN) [2] and the U-Net [3]. DCGAN,

renowned for its applications in computer vision such as image generation [4–6], style transfer [7,8],

and data augmentation [9–11], serves as a foundational pillar in our approach. Moreover, U-Net,

initially developed for biomedical image segmentation, is important in modern diffusion models for

iterative image denoising [12–14]. To tackle the challenge of image deraining, we propose an encoder-

decoder architecture that extends the DCGAN to accommodate higher image resolutions while

integrating the skip-concatenation mechanism from U-Net to leverage multiscale perceptual views,

fostering context-aware denoising.

To illustrate the effectiveness of our model, we compare the derained images against both rainy

and ground-truth (clear) images. Additionally, we benchmark our model against PreNet [15], a seminal

work in the field. To quantitatively assess the performance of our deraining model, we employ PilotNet

[16], a steering angle predictor. Steering performance is evaluated under rainy, clear, and derained

conditions to demonstrate the advantages of our model in improving vehicle steering under adverse

weather conditions. In summary, the key contributions of this study are as follows:

• We introduce sequential batching schemes that facilitate cost-free learning of structured scenic

features against noisy rain streaks. This data-centric approach enhances both training stability and

inference performance.

• Inspired by DCGAN and U-Net, our proposed simple yet effective architecture surpasses the prior

work in removing rain streaks from images.

284

Applied Computing and Intelligence Volume 4, Issue 2, 282–299.

• The efficacy of our deraining model is validated through steering performance evaluation using

PilotNet, where steering angles predicted from derained images closely match those from clear

images.

2. Deraining

A number of deep learning models have been proposed to address the deraining challenge. DID-

MDN [17] utilized a multi-dilation network to capture rain streaks of varying sizes using dilated

convolutions to capture long-range dependences in rain streak patterns. JORDER [18] jointly addresses

rain detection and removal within a unified framework by extracting rain discriminative features.

PReNet [15] used a modified progressive residual network (PRN) to remove rain streaks by

progressively refining the deraining results through multiple stages. DerainNet [19] employed a deep

convolutional neural network (CNN) [20] to directly learn the mapping relationship between rainy and

clear images. Restormer [21] used a multiscale hierarchal design incorporating efficient transformer

blocks, such as multi-Dconv head transposed attention and gated-Dconv feed-forward network to

derain images. KBnet [22] argued against transformer models as they lack desirable inductive bias of

convolutions. Instead, it incorporated a kernel basis attention model to adaptively aggregate spatial

information and a multi-axis feature fusion to encode and fuse diverse features for image restoration.

Other researchers in the field have adopted GAN [23] based architectures for image deraining.

DerainCycleGAN [24] used an unsupervised attention guided rain streak extractor, two generators,

and two discriminators to derain images. ID-CGAN [25] integrated skip-connections and DenseNet

Block that uses per-pixel loss and perceptual loss to improve deraining performance. PAN [26]

employed a perceptual adversarial loss and hidden trainable layers. FS-GAN [27] incorporated feature-

supervision on generator layers to contribute gradient information for optimization to improve image

deraining. IGAN [28] followed a divide-and-conquer strategy to divide image deraining into rain

locating, removal, and detail refinement sub-tasks.

In contrast to researchers who focused on model architecture, we emphasize a data centric

approach using cost-free batching schemes to improve image deraining performance. For proof of

concept, we devise a simple encoder-decoder architecture with end-to-end training for direct image

deraining and style transfer.

3. Data collection

Data collection and curation is pivotal in our data-centric approach, profoundly shaping the

training of our model. We aim to achieve three objectives: (1) Capturing both rainy images and their

corresponding clear counterparts as an ego vehicle navigates roads, facilitating direct end-to-end

training with sequential images; (2) ensuring diversity in the driving environments captured within the

datasets; and (3) acquiring steering wheel angle data alongside image data to enable quantitative

evaluation of deraining on steering performance.

3.1. CARLA simulator

To collect necessary data for model training and testing, Car Learning to Act (CARLA) [29], a

simulator for autonomous driving research, is utilized. CARLA is a powerful open-source simulator

that contains various digital assets, such as vehicles, sensors to capture data, and pre-made maps that

include a diverse selection of environments. CARLA also has an extensive API, offering flexibility in

setting the time of day, controlling weather conditions, and gathering necessary vehicle data. However,

285

Applied Computing and Intelligence Volume 4, Issue 2, 282–299.

one glaring issue with CARLA is its simulated rain effects. The original rain effects in CARLA based

on the 0.9.14 release were unrealistic when compared to real rain. Consequently, modifying the rain

effects in CARLA to closely reflect real-world rainy conditions becomes necessary. To modify the

rain effects, a custom-built version of CARLA is created using the Unreal Editor to modify the rain

asset file to reflect real-world rain effects. Figure 1 shows a comparison of a real-world heavy rain

image, the original CARLA heavy rain image, and the modified CARLA heavy rain image.

Figure 1. Visualization of heavy rain effect when compared to original CARLA rain effect

and modified CARLA rain effect.

The rain streaks in the real-world image can be described as thin with a light grey color, while

the original CARLA rain effect is drastic in comparison. The rain streaks are thick rectangular pixels,

with a dark grey color to them. After modifying the rain asset file, the rain streaks are thinner, lighter

in color, closely resembling real-world rain effect.

3.2. Image data

The datasets for the model training required a rainy input image and a corresponding clear label

image. It was essential that the simulation runs were synchronized to capture the clear and rainy images

at the exact frame. To synchronize the frames, a Python script was developed to ensure that the ego

vehicle followed a predefined path in CARLA. This script sets the simulation in synchronous mode to

manually call the simulation to move forward a time step. This ensures that frames across different

simulation runs were identical. The forward-view images were captured through the CARLA spectator

view that was attached to the hood of the ego vehicle. In the simulation runs, no other moving vehicles

were present, and all traffic lights were set to green when the ego vehicle approached to prevent

repetitive, standstill images for extended periods of time. The time of day was set to Noon for

generating both the clear and rainy road scene images.

CARLA offers various pre-made maps that can be used to create image datasets containing diverse

road scenes. The aerial views of the maps used are shown in Figure 2.

For the training datasets, the following five distinct maps were included: Town01, Town03,

Town04, Town07, and Town10. Town01 featured a small river surrounded by a mix of commercial

and residential buildings in a forest terrain. Town03 was an urban landscape with metro tracks, a blend

of commercial and residential buildings, and a roundabout. Town04 offered highway roads winding

through a mountainous terrain with an exit to a small town.

Town07 presented a rural countryside setting with narrow winding roads, farming structures, and

cornfields. Town10 provided a downtown environment with skyscrapers, residential complexes, and

an ocean view. For the validation dataset, Town02 was selected. For the testing dataset, Town05 was

chosen due to its larger size and comprehensive environmental characteristics, such as highways,

residential and commercial zones, skyscrapers, tree-lined streets, and metro tracks. Consequently, the

286

Applied Computing and Intelligence Volume 4, Issue 2, 282–299.

training dataset comprised 32,000 images (16,000 clear images and 16,000 rainy images). The

validation dataset contained 3,200 images, while the testing dataset consisted of 4,000 images.

Figure 2. Aerial views of the CARLA maps used. Town01, 03, 04, 07, and 10 for training;

Town02 for validation; and Town05 for testing.

3.3. Steering angle data

To capture the steering angle data for each map in CARLA, we recorded the steering angle of the

vehicle at each frame. It is worth noting that the CARLA API allowed only for capturing the drive

287

Applied Computing and Intelligence Volume 4, Issue 2, 282–299.

wheel angles. However, the PilotNet model outputted steering wheel angles. Thus, a conversion from

drive wheel angles (P) to steering wheel angles (S) was applied by multiplying the drive wheel angles

by the steering wheel ratio (R). The resultant steering wheel angles for each map were saved along

with the corresponding frame number. This data was used for assessing the effect of deraining on

steering performance.

4. Data-centric approach

This study emphasizes the data-centric aspect rather than the model architecture design,

highlighting the critical role of data batching in learning distinct signals at different frequencies to

enhance autonomous vehicle vision.

4.1. Data preparation and batching schemes

Data preparation is vital, as it significantly influences model training. Initially, all images were

center cropped and resized to 256x256. Normalization was omitted due to its adverse effect on the

quality of derained images. The training process involved correctly pairing rainy input images with

their corresponding clear images as ground truth. This was accomplished by creating two separate

folders and using the frame number to correctly pair them together.

Three distinct batching schemes were implemented using a customized dataloader. The first

scheme, termed Sequential in Time and Sequential in Batch (STSB), paired two sequential frames of

rainy and clear images from each of the five training maps within a batch. This scheme operated

sequentially both in time and batch, as illustrated in Figure 3, where Frames 1 and 2 of rainy and clear

images from each map formed the first batch, followed by Frames 3 and 4 in the second batch. This

process was repeated until all images were utilized. However, since not all maps contained an equal

number of images, once the images from one map were depleted, another remaining map was randomly

chosen to fill the batch.

Figure 3. Batching Scheme 1: Sequential in time and sequential in batch (STSB).

288

Applied Computing and Intelligence Volume 4, Issue 2, 282–299.

The second novel batching scheme, Sequential in Time and Random in Batch (STRB), maintained

the paring of two sequential frames but introduced randomness in batch loading. This meant that within

each batch, the frames were shuffled randomly rather than following a strict sequential order. This is

demonstrated in Figure 4, where sequential frames from each map are paired, but their order within

each batch is randomized.

The third batching scheme, Random in Time and Random in Batch (RTRB), represented

conventional batching, as shown in Figure 5. In this scheme, both the frame pairs and their order within

each batch were randomly selected.

Figure 4. Batching Scheme 2: Sequential in time and random in batch (STRB).

Figure 5. Batching Scheme 3: Random in time and random in batch (RTRB).

289

Applied Computing and Intelligence Volume 4, Issue 2, 282–299.

4.2. Model architecture

Our model architecture followed a classic encoder-decoder design, where the encoder and

decoder were adapted from the discriminator and generator of DCGAN to enable higher resolution

images. Particularly, the original DCGAN architecture handled 64x64 images. Additional convolution

blocks were added to allow for 256x256 images. Skip-concatenation [3] was adopted between

convolutional blocks with same spatial resolution in the encoder and the decoder. This design enabled

direct flow of hierarchical, multiscale features from the encoder to the decoder, enabling context-aware

image generation, which was crucial in tasks like deraining, where understanding the fundamental

structure of the road scene was essential for removing rain streaks and enhancing image clarity.

Figure 6 shows the proposed deraining model architecture with distinct blocks denoted by

different colors. Figure 7 further elaborates on computational details of each colored block. Batch

Norm [30] was applied to all layers except the decoder output and encoder input. In line with the

principle of design simplicity [31], the model exclusively used convolutional layers, where down-

sampling was achieved by increasing the stride. ReLU was predominately used as nonlinearity across

convolution layers, while Tanh was used for the decoder output and sigmoid was employed for the

encoder output.

Figure 6. Model Architecture. The decoder transposed convolutions (in purple) are

modified by concatenating with corresponding convolution block from the encoder,

followed by 1x1 convolution to resize the channel dimension.

Figure 7. Computational modules of colored block in Figure 6 (k: kernel size; S: Stride; P: Padding).

290

Applied Computing and Intelligence Volume 4, Issue 2, 282–299.

5. Model training and evaluation

For each batching scheme, the deraining model was trained with 100 epochs, a batch size of 10,

and a learning rate of 0.0002. We use MSE loss and Adam Optimizer [32] with parameters β1=0.5 and

β2=0.999. All experiments are conducted on a workstation using an AMD Ryzen 9 7950x CPU, 32GB

of Ram, and Nvidia GeForce RTX 4090 24GB.

5.1. Batching scheme performance

To evaluate the performance of different batching schemes, train, validation, and test losses are

summarized in Table 1.

Table 1. MSE loss comparison of different batching schemes.

Batch Scheme Train Loss Validation Loss Test Loss

STSB

STRB

RTRB Reference

0.0122

0.0012

0.0014

0.0821

0.0130

0.0164

0.0132

0.0106

0.0115

Note: bold indicates the best performance.

As shown in Table 1, the STRB batching scheme performs the best, followed by RTRB and STSB.

For visual comparison, Figure 8 shows the derained images from the three batching schemes.

Figure 8. Visualization of deraining results of a single frame.

Notably, STSB has lingering grey and white spots in the sky and pavement areas, where solid

color or gradient of color are expected. In contrast, RTRB shows improvement over STSB, with the

absence of grey spots. However, some artifacts (e.g., a white spot) exist in the sky area and structural

information (e.g., the light post) is lost. STRB, on the other hand, performs extremely well in

comparison, preserving both pixel-level information as well as structural features. For further

291

Applied Computing and Intelligence Volume 4, Issue 2, 282–299.

comparison, three consecutive derained images for each of the three batching schemes are shown in

Figure 9.

Figure 9. Visualization of deraining results of three consecutive frames.

It becomes apparent that RTRB struggles with slight environmental movements as the car

navigates down the road. Also, the overall image quality exhibits watery visuals with significant loss

of details, especially in object structures, such as traffic lights and trees. For STSB, various grey spots

are present in the image, which likely arise from less diverse backgrounds due to sequential batching.

In contrast, STRB harnesses the advantages of both sequential frames and random batching, resulting

in improved images with pixel-level and structural integrity.

In summary, STRB is a novel batching scheme that utilizes random batching of sequential frames

to derain images. This strategy enables the model to effectively capture the distinct dynamics of

raindrops against slowly changing roadway scenes, resulting in superior deraining performance when

compared to the traditional RTRB approach. By using sequential frames, STRB can better understand

the rain dynamics between the consecutive frames to adaptively remove rain streaks while preserving

the scene details and integrity. On the other hand, the randomness in the batch increases diversity in

scenes within each batch, mitigating overfitting and bias toward any particular scenes. As such, the

STRB batching scheme effectively preserves both structural and pixel-level details when deraining

images.

5.2. Comparison of deraining results

With the STRB batching scheme demonstrating the highest effectiveness for deraining, we

compare our model’s deraining performance to PreNet, the baseline model used in this study. For a

qualitative assessment, three distinct roadway scenes are used for comparison. For each scene, four

292

Applied Computing and Intelligence Volume 4, Issue 2, 282–299.

images are presented, including the original rainy image, the ground-truth image, the PReNet derained

image, and the derained image from our work. As shown in Figures 10–12, our model with the STRB

batching scheme consistently outperforms PReNet.

Figure 10. Scene 1: AV approaching traffic lights.

Figure 11. Scene 2: AV driving through residential area.

293

Applied Computing and Intelligence Volume 4, Issue 2, 282–299.

Figure 12. Scene 3: AV approaching 4-way stop.

While PReNet successfully removes the rains streaks from the rainy image, the resulting image

quality drastically decreases. Additionally, the environment retrains the original gray, colorless

appearance of the rainy image. Our model, on the other hand, has not only removed the rain streaks of

the image, but also retained the environmental details to mimic a clear sunny day. As a result, the

derained image views from our model show much greater visibility than those from PReNet. It is

important to note that our model was trained to learn direct mapping between rainy images and

corresponding clear, sunny images. Implicitly, our model learns to tackle two tasks simultaneously: (1)

Removing rain streaks and (2) style-transferring from rainy weather conditions to clear and sunny

weather conditions.

When comparing the derained image to the ground-truth, there is a slight loss of detail, most

notably in the leaves of trees in the second scene. However, the overall image quality remains sufficient

for driving-relevant feature and object detections, such as the lane markings, the “STOP” text on the

road, and roadside structures are visible. One area where the model struggles is with skyscrapers (as

seen in Scene 3 of Figure 12), where some segments of the building are missing or distorted. Despite

these, the model performs remarkably well at deraining images, representing a leap forward compared

to the prior work. It is important to emphasize that our primary objective of this study is to mitigate

the adverse effects of rain while ensuring that essential features remain visible for real-time driving

tasks rather than achieving a perfect high-resolution reconstruction of all scene details. While the latter

could potentially be addressed by scaling up the network with architectural enhancements, such

improvements would increase computational costs and fall outside the scope of this study.

5.3. Steering performance

To quantify the benefits of image deraining achieved by our model, PilotNet was employed to

predict steering angles for clear, rainy, and derained images. Since PilotNet was originally designed

for lane-following tasks, scenarios involving intersections and sharp turns were excluded from the

294

Applied Computing and Intelligence Volume 4, Issue 2, 282–299.

analysis. The evaluation was conducted on a multi-lane highway comprising straight segments and

gradual turns. As previously noted, the ground-truth steering angles were directly recorded from

CARLA.

It is important to acknowledge that even for clear images, PilotNet exhibits an inherent deviation

from the ground-truth steering angles recorded in CARLA. For steering performance evaluation, the

mean absolute error (MAE) was computed to measure the deviation under four conditions: Clear

weather, heavy rain, light rain, and derained images. Table 2 presents the results, indicating an inherent

error of 0.356 degrees for clear weather and a slightly higher error of 0.508 degrees under derained

conditions. In comparison, both heavy and light rain conditions result in larger steering errors, with

heavy rain showing a significantly worse performance. Notably, the steering error under heavy rain is

more than twice that observed for light rain.

Table 2. Mean absolute steering angle error.

Condition Error (degree)

Clear

Heavy Rain

Light Rain

Derained

0.356 (Inherent Error)

1.204

0.561

0.508

Figures 13 and 14 illustrate the live steering angle error relative to the ground truth over a

simulation run for three scenarios: Clear, heavy rain, and derained. As shown in Figure 13, the heavy

rain scenario exhibits three segments of significant deviation, corresponding to the three gradual turns

in the simulation. During these turns, the heavy rain condition performs markedly worse, with errors

reaching approximately 10 degrees. In contrast, the steering angles for the derained and clear scenarios

remain closely aligned, demonstrating the positive impact of deraining on steering performance.

Similarly, Figure 14 highlights that steering performance under light rain conditions is significantly

better than under heavy rain, with errors reduced to within 5 degrees. This improvement further

emphasizes the detrimental effects of heavy rain on steering accuracy and the potential of deraining to

mitigate these challenges.

To further illustrate the effects of deraining, Figures 15 and 16 present regression plots of

predicted steering angles under derained conditions compared to those under corresponding clear

conditions, for heavy rain and light rain scenarios, respectively. The vertical axis represents steering

angles in clear conditions, while the horizontal axis represents steering angles under derained or rainy

conditions. Each plot includes a regression line along with the corresponding R2 value. As shown in

Figure 15, the regression for Clear vs. Derained conditions achieves an R2 value of 0.956, indicating a

strong correlation. In contrast, the Clear vs. Heavy Rain regression shows nearly no correlation, as

evidenced by the majority of points clustering along the vertical axis. This highlights that in heavy rain,

the predicted steering angles fail to respond to curvy road segments. In essence, the vehicle "misses"

visual cues in heavy rain, resulting in it continuing straight instead of turning as needed. Figure 16

illustrates a similar comparison for light rain conditions, where the R2 value is 0.895, lower than that

of the derained conditions. The steeper regression line for light rain indicates a tendency for under-

predicted steering angles, meaning the vehicle turns less than necessary in these conditions. These

results underscore the effectiveness of our deraining model in improving steering performance, thereby

enhancing the safety and reliability of autonomous vehicles in rainy weather.

295

Applied Computing and Intelligence Volume 4, Issue 2, 282–299.

Figure 13. Steering angle comparison error (heavy rain).

Figure 14. Steering angle comparison error (light rain).

Figure 15. Steering performance: Derained vs heavy rain regression plot.

296

Applied Computing and Intelligence Volume 4, Issue 2, 282–299.

Figure 16. Steering performance: Derained vs light rain regression plot.

6. Conclusions

Rain presents a formidable challenge for AV navigating roadways as rain streaks can severely

impair camera-based objects and feature detection systems employed by AV. Addressing this issue is

essential for enhancing AV performance and safety.

We adopted a data-centric approach and introduced two novel batching schemes, STSB and

STRB, to improve deraining performance, comparing them to the conventional RTRB batching

scheme. STSB paired sequential images both in time and batch, while STRB paired sequential images

in time but randomized them across batches. Our results demonstrated that STRB outperformed STSB,

primarily due to its ability to incorporate diverse scenes across batches, reducing overfitting and bias

compared to sequential scene batching. Additionally, STRB's use of sequential image pairs in time

enabled it to better capture dynamic rain features over relatively static road scenes in successive frames.

These advantages were evident in reduced training, validation, and testing losses, as well as in superior

visual quality of derained images produced by STRB.

The encoder-decoder model developed in this work extended the DCGAN architecture to handle

higher-resolution images and incorporates skip-concatenation operations inspired by U-Net. This

enabled context-aware image generation, effectively removing rain streaks and achieving weather style

transfer. Visual comparisons of rainy, ground-truth (clear), and derained images confirmed the model’s

ability to remove rain streaks while transforming rainy scenes into clear, sunny conditions. Compared

to other methods, the proposed model demonstrated significantly superior performance. The practical

benefits of the deraining model were quantitatively validated using PilotNet to predict AV steering

angles on a highway section. Under heavy rain conditions, the AV lost steering control, deviating

significantly from the ground-truth steering angles recorded under clear conditions. While light rain

improved steering performance, it was under derained conditions that the steering angles closely

matched those of clear weather, achieving an R2 value of 0.956. These results provide robust evidence

of the model’s effectiveness in enhancing visibility and improving AV control in rainy conditions.

297

Applied Computing and Intelligence Volume 4, Issue 2, 282–299.

In conclusion, this study highlights the potential of a data-centric approach combined with deep

learning models for joint image deraining and weather style transfer. While the model demonstrates

strong performance, certain limitations remain. It addresses the removal of rain steaks but does not

account for other weather-related challenges, such as raindrops on the windshield or splashes from

preceding vehicles, which may further complicate visibility. Additionally, the simplicity of its

architecture limits its ability to preserve finer image details. The use of CARLA-generated datasets,

while effective, may not fully capture the diversity of real-world conditions.

Future research could expand the scope to address a wider range of weather conditions, explore

architectural enhancements, integrate sequential image frame modeling, and incorporate real-world

driving datasets to improve robustness and adaptability. Furthermore, diffusion models [13,33] hold

potential for real-time applications as their computational efficiency continues to improve, warranting

further investigation. It is also important to note that we primarily focus on evaluating the efficacy of

deraining in enhancing vehicle steering performance. However, the model holds potential to benefit

other critical self-driving tasks, such as object detection, which should be explored in future work.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools for this article.

Conflict of interest

Jidong J. Yang is an editorial board member for Applied Computing and Intelligence and was not

involved in the editorial review and the decision to publish this article.

References

1. P. Vincent, H. Larochelle, Y. Bengio, P. A. Manzagol, Extracting and composing robust features

with denoising autoencoders, Proceedings of the 25th International Conference on Machine

Learning, 2008, 1096–1103. https://doi.org/10.1145/1390156.1390294

2. A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional

generative adversarial networks, arXiv: 1511.06434. https://arxiv.org/abs/1511.06434

3. O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image

segmentation, In: Medical image computing and computer-assisted intervention–MICCAI 2015,

Cham: Springer, 2015, 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

4. T. Karras, T. Aila, S. Laine, J. Lehtinen, Progressive growing of gans for improved quality,

stability, and variation, arXiv: 1710.10196. https://doi.org/10.48550/arxiv.1710.10196

5. A. Brock, J. Donahue, K. Simonyan, Large scale GAN training for high fidelity natural image

synthesis, arXiv: 1809.11096. https://doi.org/10.48550/arXiv.1809.11096

6. H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, et al., Stackgan: text to photo-realistic

image synthesis with stacked generative adversarial networks, Proceedings of the IEEE

International Conference on Computer Vision (ICCV), 2017, 5907–5915.

7. T. Karras, S. Laine, T. Aila, A style-based generator architecture for generative adversarial

networks, Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2019, 4396–4405. https://doi.org/10.1109/CVPR.2019.00453

8. W. Xu, C. Long, R. Wang, G. Wang, Drb-gan: a dynamic resblock generative adversarial network

for artistic style transfer, Proceedings of the IEEE/CVF International Conference on Computer

Vision (ICCV), 2021, 6383–6392.

https://doi.org/10.1145/1390156.1390294
https://arxiv.org/abs/1511.06434
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.48550/arxiv.1710.10196
https://doi.org/10.48550/arXiv.1809.11096
https://doi.org/10.1109/CVPR.2019.00453

298

Applied Computing and Intelligence Volume 4, Issue 2, 282–299.

9. H. Zhen, Y. Shi, J. Yang, J. Vehni, Co-supervised learning paradigm with conditional generative

adversarial networks for sample-efficient classification, Appl. Comput. Intell., 3 (2023), 13–26.

https://doi.org/10.3934/aci.2023002

10. S. Motamed, P. Rogalla, F. Khalvati, Data augmentation using generative adversarial networks

(GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images,

Informatics in Medicine Unlocked, 27 (2021), 100779. https://doi.org/10.1016/j.imu.2021.100779

11. A. Jadli, M. Hain, A. Chergui, A. Jaize, DCGAN-based data augmentation for document

classification, Proceedings of IEEE 2nd International Conference on Electronics, Control,

Optimization and Computer Science (ICECOCS), 2020, 1–5.

https://doi.org/10.1109/icecocs50124.2020.9314379

12. A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, et al., Zero-shot text-to-image

generation, Proceedings of the 38th International Conference on Machine Learning, 2021, 8821–

8831.

13. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, High-resolution image synthesis with

latent diffusion models, Proceedings of IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2022, 10684–10695. https://doi.org/10.1109/CVPR52688.2022.01042

14. B. Xia, Y. Zhang, S. Wang, Y. Wang, X. Wu, Y. Tian, et al., Diffir: efficient diffusion model for

image restoration, Proceedings of IEEE/CVF International Conference on Computer Vision

(ICCV), 2023, 13049–13059. https://doi.org/10.1109/ICCV51070.2023.01204

15. D. Ren, W. Zuo, Q. Hu, P. Zhu, D. Meng, Progressive image deraining networks: a better and

simpler baseline, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2019, 3937–3946. https://doi.org/10.1109/CVPR.2019.00406

16. M. Bojarski, D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, et al., End to end learning

for self-driving cars, arXiv: 1604.07316. https://doi.org/10.48550/arXiv.1604.07316

17. H. Zhang, V. M. Patel, Density-aware single image de-raining using a multi-stream dense network,

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018,

695–704. https://doi.org/10.1109/CVPR.2018.00079

18. W. Yang, R. T. Tan, J. Feng, J. Liu, Z. Guo, S. Yan, Deep joint rain detection and removal from

a single image, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2017, 1357–1366. https://doi.org/10.1109/CVPR.2017.183

19. X. Fu, J. Huang, X. Ding, Y. Liao, J. Paisley, Clearing the skies: a deep network architecture for

single-image rain removal, IEEE Trans. Image Process., 26 (2017), 2944–2956.

https://doi.org/10.1109/tip.2017.2691802

20. Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, et al., Backpropagation

applied to handwritten zip code recognition, Neural Comput., 1 (1989), 541–551.

https://doi.org/10.1162/neco.1989.1.4.541

21. S. Zamir, A. Arora, S. Khan, M. Hayat, F. Khan, M. Yang, Restormer: efficient transformer for

high-resolution image restoration, Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2022, 5728–5739.

https://doi.org/10.1109/cvpr52688.2022.00564

22. Y. Zhang, D. Li, X. Shi, D. He, K. Song, X. Wang, et al., Kbnet: kernel basis network for image

restoration, arXiv: 2303.02881. https://doi.org/10.48550/arXiv.2303.02881

23. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al., Generative

adversarial networks, Commun. ACM, 63 (2020), 139–144. https://doi.org/10.1145/3422622

https://doi.org/10.3934/aci.2023002
https://doi.org/10.1016/j.imu.2021.100779
https://doi.org/10.1109/icecocs50124.2020.9314379
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/ICCV51070.2023.01204
https://doi.org/10.1109/CVPR.2019.00406
https://doi.org/10.48550/arXiv.1604.07316
https://doi.org/10.1109/CVPR.2018.00079
https://doi.org/10.1109/CVPR.2017.183
https://doi.org/10.1109/tip.2017.2691802
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/cvpr52688.2022.00564
https://doi.org/10.48550/arXiv.2303.02881
https://doi.org/10.1145/3422622

299

Applied Computing and Intelligence Volume 4, Issue 2, 282–299.

24. Y. Wei, Z. Zhang, Y. Wang, M. Xu, Y. Yang, S. Yan, et al., Deraincyclegan: rain attentive

cyclegan for single image deraining and rainmaking, IEEE Trans. Image Process., 30 (2021),

4788–4801. https://doi.org/10.1109/TIP.2021.3074804

25. H. Zhang, V. Sindagi, V. M. Patel, Image de-raining using a conditional generative adversarial

network, IEEE Trans. Circ. Syst. Vid., 30 (2020), 3943–3956.

https://doi.org/10.1109/tcsvt.2019.2920407

26. C. Wang, C. Xu, C. Wang, D. Tao, Perceptual adversarial networks for image-to-image

transformation, IEEE Trans. Image Process., 27 (2018), 4066–4079.

https://doi.org/10.1109/TIP.2018.2836316

27. P. Xiang, L. Wang, F. Wu, J. Cheng, M. Zhou, Single-image de-raining with feature-supervised

generative adversarial network, IEEE Signal Proc. Let., 26 (2019), 650–654.

https://doi.org/10.1109/LSP.2019.2903874

28. Y. Ren, M. Nie, S. Li, C. Li, Single image de-raining via improved generative adversarial nets,

Sensors, 20 (2020), 1591. https://doi.org/10.3390/s20061591

29. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, V. Koltun, CARLA: an open urban driving

simulator, arXiv: 1711.03938. https://doi.org/10.48550/arXiv.1711.03938

30. S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal

covariate shift, Proceedings of the 32nd International Conference on International Conference

on Machine Learning, 2015, 448–456.

31. J. Springenberg, A. Dosovitskiy, T. Brox, M. A. Riedmiller, Striving for simplicity: the all

convolutional net, arXiv: 1412.6806. https://doi.org/10.48550/arxiv.1412.6806

32. D. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv: 1412.6980.

https://doi.org/10.48550/arXiv.1412.6980

33. J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models, Proceedings of the 34th

International Conference on Neural Information Processing Systems, 2020, 6840–6851.

©2024 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

https://doi.org/10.1109/TIP.2021.3074804
https://doi.org/10.1109/tcsvt.2019.2920407
https://doi.org/10.1109/TIP.2018.2836316
https://doi.org/10.1109/LSP.2019.2903874
https://doi.org/10.3390/s20061591
https://doi.org/10.48550/arXiv.1711.03938
https://doi.org/10.48550/arxiv.1412.6806
https://doi.org/10.48550/arXiv.1412.6980

