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Abstract: Autonomous vehicles (AV) face significant challenges in navigating adverse weather,
particularly rain, due to the visual impairment of camera-based systems. In this study, we leveraged
contemporary deep learning techniques to mitigate these challenges, aiming to develop a vision model
that processes live vehicle camera feeds to eliminate rain-induced visual hindrances, yielding visuals
closely resembling clear, rain-free scenes. Using the Car Learning to Act (CARLA) simulation
environment, we generated a comprehensive dataset of clear and rainy images for model training and
testing. In our model, we employed a classic encoder-decoder architecture with skip connections and
concatenation operations. It was trained using novel batching schemes designed to effectively
distinguish high-frequency rain patterns from low-frequency scene features across successive image
frames. To evaluate the model’s performance, we integrated it with a steering module that processes
front-view images as input. The results demonstrated notable improvements in steering accuracy,
underscoring the model’s potential to enhance navigation safety and reliability in rainy weather
conditions.
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1. Introduction

Rain poses significant challenges to not only human visual perception, but also for autonomous
vehicles (AV) navigating roadways. Rain streaks can severely hinder camera-based objects and feature
detection systems employed by AV. Consequently, automotive manufacturers often deactivate
autonomous driving features during inclement weather. In response, research within the field of
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developing deraining deep learning models has seen a surge of interest in recent years. However, due

to the intricate nature of dynamic rain streaks and slowly changing background scenes, deraining

remains a challenging task.

We aim to address the deraining challenge for AV by: (1) Developing a deep learning based vision
model capable of removing rain streaks, yielding results that resemble a clear, rain-free image, (2)
using a data centric approach to devise and analyze different batching schemes to enhance model
training and inference performance, and (3) utilizing an established steering angle predication model
to validate the benefits of deraining in improving AV’s steering performance.

The datasets for this study are generated from the Car Learning to Act (CARLA) simulator. Three
datasets are prepared for model training, validation, and testing purposes. Each dataset comprises of
rainy images as the input and corresponding clear images as the label. The training dataset includes
diverse maps and environments to improve the model’s generalization. Moreover, the validation and
testing datasets are derived from maps not used in the training dataset. Deraining, akin to denoising, is
a common machine learning task, exemplified by methods like denoising autoencoder [1].

However, the challenge of removing rain streaks from an ego vehicle's camera view differs
significantly from denoising static images due to the dynamic nature of sequential scenes captured by
these cameras. Here, rain streaks act as high-frequency signals (similar to noises), contrasting with the
low-frequency signals of camera scenes, which evolve slowly as the vehicle navigates roads.
Removing rain streaks while maintaining the integrity of scenes is analogous to filtering out high-
frequency signals. In order to harness the distinct dynamics of these signal types, two novel batching
schemes are employed and compared to the conventional batching to assess their impact on the model
training and the resultant deraining performance. The first batching scheme uses paired images that
are sequential in time and sequential in batch (STSB), while the second batching scheme uses paired
images that are sequential in time and random in batch (STRB). In contrast, the traditional batching
scheme relies on image pairs that are random in time and random in batch (RTRB), where the temporal
cue is lost within each batch.

The model architecture devised in this study draws inspiration from two influential architectures:
The Deep Convolutional Generative Adversarial Network (DCGAN) [2] and the U-Net [3]. DCGAN,
renowned for its applications in computer vision such as image generation [4-6], style transfer [7,8],
and data augmentation [9-11], serves as a foundational pillar in our approach. Moreover, U-Net,
initially developed for biomedical image segmentation, is important in modern diffusion models for
iterative image denoising [12—14]. To tackle the challenge of image deraining, we propose an encoder-
decoder architecture that extends the DCGAN to accommodate higher image resolutions while
integrating the skip-concatenation mechanism from U-Net to leverage multiscale perceptual views,
fostering context-aware denoising.

To illustrate the effectiveness of our model, we compare the derained images against both rainy
and ground-truth (clear) images. Additionally, we benchmark our model against PreNet [15], a seminal
work in the field. To quantitatively assess the performance of our deraining model, we employ PilotNet
[16], a steering angle predictor. Steering performance is evaluated under rainy, clear, and derained
conditions to demonstrate the advantages of our model in improving vehicle steering under adverse
weather conditions. In summary, the key contributions of this study are as follows:

e We introduce sequential batching schemes that facilitate cost-free learning of structured scenic
features against noisy rain streaks. This data-centric approach enhances both training stability and
inference performance.

e Inspired by DCGAN and U-Net, our proposed simple yet effective architecture surpasses the prior
work in removing rain streaks from images.

Applied Computing and Intelligence Volume 4, Issue 2, 282-299.



284

e The efficacy of our deraining model is validated through steering performance evaluation using
PilotNet, where steering angles predicted from derained images closely match those from clear
images.

2. Deraining

A number of deep learning models have been proposed to address the deraining challenge. DID-
MDN [17] utilized a multi-dilation network to capture rain streaks of varying sizes using dilated
convolutions to capture long-range dependences in rain streak patterns. JORDER [18] jointly addresses
rain detection and removal within a unified framework by extracting rain discriminative features.
PReNet [15] used a modified progressive residual network (PRN) to remove rain streaks by
progressively refining the deraining results through multiple stages. DerainNet [19] employed a deep
convolutional neural network (CNN) [20] to directly learn the mapping relationship between rainy and
clear images. Restormer [21] used a multiscale hierarchal design incorporating efficient transformer
blocks, such as multi-Dconv head transposed attention and gated-Dconv feed-forward network to
derain images. KBnet [22] argued against transformer models as they lack desirable inductive bias of
convolutions. Instead, it incorporated a kernel basis attention model to adaptively aggregate spatial
information and a multi-axis feature fusion to encode and fuse diverse features for image restoration.

Other researchers in the field have adopted GAN [23] based architectures for image deraining.
DerainCycleGAN [24] used an unsupervised attention guided rain streak extractor, two generators,
and two discriminators to derain images. ID-CGAN [25] integrated skip-connections and DenseNet
Block that uses per-pixel loss and perceptual loss to improve deraining performance. PAN [26]
employed a perceptual adversarial loss and hidden trainable layers. FS-GAN [27] incorporated feature-
supervision on generator layers to contribute gradient information for optimization to improve image
deraining. IGAN [28] followed a divide-and-conquer strategy to divide image deraining into rain
locating, removal, and detail refinement sub-tasks.

In contrast to researchers who focused on model architecture, we emphasize a data centric
approach using cost-free batching schemes to improve image deraining performance. For proof of
concept, we devise a simple encoder-decoder architecture with end-to-end training for direct image
deraining and style transfer.

3. Data collection

Data collection and curation is pivotal in our data-centric approach, profoundly shaping the
training of our model. We aim to achieve three objectives: (1) Capturing both rainy images and their
corresponding clear counterparts as an ego vehicle navigates roads, facilitating direct end-to-end
training with sequential images; (2) ensuring diversity in the driving environments captured within the
datasets; and (3) acquiring steering wheel angle data alongside image data to enable quantitative
evaluation of deraining on steering performance.

3.1. CARLA simulator

To collect necessary data for model training and testing, Car Learning to Act (CARLA) [29], a
simulator for autonomous driving research, is utilized. CARLA is a powerful open-source simulator
that contains various digital assets, such as vehicles, sensors to capture data, and pre-made maps that
include a diverse selection of environments. CARLA also has an extensive API, offering flexibility in
setting the time of day, controlling weather conditions, and gathering necessary vehicle data. However,
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one glaring issue with CARLA is its simulated rain effects. The original rain effects in CARLA based
on the 0.9.14 release were unrealistic when compared to real rain. Consequently, modifying the rain
effects in CARLA to closely reflect real-world rainy conditions becomes necessary. To modify the
rain effects, a custom-built version of CARLA is created using the Unreal Editor to modify the rain
asset file to reflect real-world rain effects. Figure 1 shows a comparison of a real-world heavy rain
image, the original CARLA heavy rain image, and the modified CARLA heavy rain image.
Real rain image Original CARLA rain effect = Modified CARLA rain effect
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Figure 1. Visualization of heavy rain effect when compared to original CARLA rain effect
and modified CARLA rain effect.

The rain streaks in the real-world image can be described as thin with a light grey color, while
the original CARLA rain effect is drastic in comparison. The rain streaks are thick rectangular pixels,
with a dark grey color to them. After modifying the rain asset file, the rain streaks are thinner, lighter
in color, closely resembling real-world rain effect.

3.2. Image data

The datasets for the model training required a rainy input image and a corresponding clear label
image. It was essential that the simulation runs were synchronized to capture the clear and rainy images
at the exact frame. To synchronize the frames, a Python script was developed to ensure that the ego
vehicle followed a predefined path in CARLA. This script sets the simulation in synchronous mode to
manually call the simulation to move forward a time step. This ensures that frames across different
simulation runs were identical. The forward-view images were captured through the CARLA spectator
view that was attached to the hood of the ego vehicle. In the simulation runs, no other moving vehicles
were present, and all traffic lights were set to green when the ego vehicle approached to prevent
repetitive, standstill images for extended periods of time. The time of day was set to Noon for
generating both the clear and rainy road scene images.

CARLA offers various pre-made maps that can be used to create image datasets containing diverse
road scenes. The aerial views of the maps used are shown in Figure 2.

For the training datasets, the following five distinct maps were included: TownO1, Town03,
Town04, TownQ7, and Town10. TownOQ1 featured a small river surrounded by a mix of commercial
and residential buildings in a forest terrain. Town03 was an urban landscape with metro tracks, a blend
of commercial and residential buildings, and a roundabout. Town04 offered highway roads winding
through a mountainous terrain with an exit to a small town.

TownO7 presented a rural countryside setting with narrow winding roads, farming structures, and
cornfields. Town10 provided a downtown environment with skyscrapers, residential complexes, and
an ocean view. For the validation dataset, Town02 was selected. For the testing dataset, Town05 was
chosen due to its larger size and comprehensive environmental characteristics, such as highways,
residential and commercial zones, skyscrapers, tree-lined streets, and metro tracks. Consequently, the
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training dataset comprised 32,000 images (16,000 clear images and 16,000 rainy images). The
validation dataset contained 3,200 images, while the testing dataset consisted of 4,000 images.
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Figure 2. Aerial views of the CARLA maps used. Town01, 03, 04, 07, and 10 for training;
Town02 for validation; and TownO05 for testing.

3.3. Steering angle data

To capture the steering angle data for each map in CARLA, we recorded the steering angle of the
vehicle at each frame. It is worth noting that the CARLA API allowed only for capturing the drive
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wheel angles. However, the PilotNet model outputted steering wheel angles. Thus, a conversion from
drive wheel angles (P) to steering wheel angles (S) was applied by multiplying the drive wheel angles
by the steering wheel ratio (R). The resultant steering wheel angles for each map were saved along
with the corresponding frame number. This data was used for assessing the effect of deraining on
steering performance.

4. Data-centric approach

This study emphasizes the data-centric aspect rather than the model architecture design,
highlighting the critical role of data batching in learning distinct signals at different frequencies to
enhance autonomous vehicle vision.

4.1. Data preparation and batching schemes

Data preparation is vital, as it significantly influences model training. Initially, all images were
center cropped and resized to 256x256. Normalization was omitted due to its adverse effect on the
quality of derained images. The training process involved correctly pairing rainy input images with
their corresponding clear images as ground truth. This was accomplished by creating two separate
folders and using the frame number to correctly pair them together.

Three distinct batching schemes were implemented using a customized dataloader. The first
scheme, termed Sequential in Time and Sequential in Batch (STSB), paired two sequential frames of
rainy and clear images from each of the five training maps within a batch. This scheme operated
sequentially both in time and batch, as illustrated in Figure 3, where Frames 1 and 2 of rainy and clear
images from each map formed the first batch, followed by Frames 3 and 4 in the second batch. This
process was repeated until all images were utilized. However, since not all maps contained an equal
number of images, once the images from one map were depleted, another remaining map was randomly
chosen to fill the batch.
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Figure 3. Batching Scheme 1: Sequential in time and sequential in batch (STSB).
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The second novel batching scheme, Sequential in Time and Random in Batch (STRB), maintained
the paring of two sequential frames but introduced randomness in batch loading. This meant that within
each batch, the frames were shuffled randomly rather than following a strict sequential order. This is
demonstrated in Figure 4, where sequential frames from each map are paired, but their order within
each batch is randomized.

The third batching scheme, Random in Time and Random in Batch (RTRB), represented

conventional batching, as shown in Figure 5. In this scheme, both the frame pairs and their order within
each batch were randomly selected.
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Figure 4. Batching Scheme 2: Sequential in time and random in batch (STRB).
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Figure 5. Batching Scheme 3: Random in time and random in batch (RTRB).
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4.2. Model architecture

Our model architecture followed a classic encoder-decoder design, where the encoder and
decoder were adapted from the discriminator and generator of DCGAN to enable higher resolution
images. Particularly, the original DCGAN architecture handled 64x64 images. Additional convolution
blocks were added to allow for 256x256 images. Skip-concatenation [3] was adopted between
convolutional blocks with same spatial resolution in the encoder and the decoder. This design enabled
direct flow of hierarchical, multiscale features from the encoder to the decoder, enabling context-aware
image generation, which was crucial in tasks like deraining, where understanding the fundamental
structure of the road scene was essential for removing rain streaks and enhancing image clarity.

Figure 6 shows the proposed deraining model architecture with distinct blocks denoted by
different colors. Figure 7 further elaborates on computational details of each colored block. Batch
Norm [30] was applied to all layers except the decoder output and encoder input. In line with the
principle of design simplicity [31], the model exclusively used convolutional layers, where down-
sampling was achieved by increasing the stride. ReLU was predominately used as nonlinearity across
convolution layers, while Tanh was used for the decoder output and sigmoid was employed for the
encoder output.
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Figure 6. Model Architecture. The decoder transposed convolutions (in purple) are
modified by concatenating with corresponding convolution block from the encoder,
followed by 1x1 convolution to resize the channel dimension.
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Figure 7. Computational modules of colored block in Figure 6 (k: kernel size; S: Stride; P: Padding).
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5. Model training and evaluation

For each batching scheme, the deraining model was trained with 100 epochs, a batch size of 10,
and a learning rate of 0.0002. We use MSE loss and Adam Optimizer [32] with parameters B1=0.5 and
B2=0.999. All experiments are conducted on a workstation using an AMD Ryzen 9 7950x CPU, 32GB
of Ram, and Nvidia GeForce RTX 4090 24GB.

5.1. Batching scheme performance

To evaluate the performance of different batching schemes, train, validation, and test losses are
summarized in Table 1.
Table 1. MSE loss comparison of different batching schemes.

Batch Scheme Train Loss Validation Loss Test Loss
STSB 0.0122 0.0821 0.0132
STRB 0.0012 0.0130 0.0106
RTRB Reference 0.0014 0.0164 0.0115

Note: bold indicates the best performance.

As shown in Table 1, the STRB batching scheme performs the best, followed by RTRB and STSB.
For visual comparison, Figure 8 shows the derained images from the three batching schemes.

Original Rainy Image STSB
‘ »
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\‘:’ ¥
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STRB RTRB

Figure 8. Visualization of deraining results of a single frame.

Notably, STSB has lingering grey and white spots in the sky and pavement areas, where solid
color or gradient of color are expected. In contrast, RTRB shows improvement over STSB, with the
absence of grey spots. However, some artifacts (e.g., a white spot) exist in the sky area and structural
information (e.g., the light post) is lost. STRB, on the other hand, performs extremely well in
comparison, preserving both pixel-level information as well as structural features. For further
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comparison, three consecutive derained images for each of the three batching schemes are shown in
Figure 9.

STSB

RTRB

Figure 9. Visualization of deraining results of three consecutive frames.

It becomes apparent that RTRB struggles with slight environmental movements as the car
navigates down the road. Also, the overall image quality exhibits watery visuals with significant loss
of details, especially in object structures, such as traffic lights and trees. For STSB, various grey spots
are present in the image, which likely arise from less diverse backgrounds due to sequential batching.
In contrast, STRB harnesses the advantages of both sequential frames and random batching, resulting
in improved images with pixel-level and structural integrity.

In summary, STRB is a novel batching scheme that utilizes random batching of sequential frames
to derain images. This strategy enables the model to effectively capture the distinct dynamics of
raindrops against slowly changing roadway scenes, resulting in superior deraining performance when
compared to the traditional RTRB approach. By using sequential frames, STRB can better understand
the rain dynamics between the consecutive frames to adaptively remove rain streaks while preserving
the scene details and integrity. On the other hand, the randomness in the batch increases diversity in
scenes within each batch, mitigating overfitting and bias toward any particular scenes. As such, the
STRB batching scheme effectively preserves both structural and pixel-level details when deraining
images.

5.2. Comparison of deraining results

With the STRB batching scheme demonstrating the highest effectiveness for deraining, we
compare our model’s deraining performance to PreNet, the baseline model used in this study. For a
qualitative assessment, three distinct roadway scenes are used for comparison. For each scene, four
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images are presented, including the original rainy image, the ground-truth image, the PReNet derained
image, and the derained image from our work. As shown in Figures 10-12, our model with the STRB
batching scheme consistently outperforms PReNet.

Original rainy image Ground truth image

Figure 10. Scene 1: AV approaching traffic lights.

Original rainy image Ground truth image

Figure 11. Scene 2: AV driving through residential area.
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Original rainy image Ground truth image

Derained image by PreNet = Derained image by our model
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Figure 12. Scene 3: AV approaching 4-way stop.

While PReNet successfully removes the rains streaks from the rainy image, the resulting image
quality drastically decreases. Additionally, the environment retrains the original gray, colorless
appearance of the rainy image. Our model, on the other hand, has not only removed the rain streaks of
the image, but also retained the environmental details to mimic a clear sunny day. As a result, the
derained image views from our model show much greater visibility than those from PReNet. It is
important to note that our model was trained to learn direct mapping between rainy images and
corresponding clear, sunny images. Implicitly, our model learns to tackle two tasks simultaneously: (1)
Removing rain streaks and (2) style-transferring from rainy weather conditions to clear and sunny
weather conditions.

When comparing the derained image to the ground-truth, there is a slight loss of detail, most
notably in the leaves of trees in the second scene. However, the overall image quality remains sufficient
for driving-relevant feature and object detections, such as the lane markings, the “STOP” text on the
road, and roadside structures are visible. One area where the model struggles is with skyscrapers (as
seen in Scene 3 of Figure 12), where some segments of the building are missing or distorted. Despite
these, the model performs remarkably well at deraining images, representing a leap forward compared
to the prior work. It is important to emphasize that our primary objective of this study is to mitigate
the adverse effects of rain while ensuring that essential features remain visible for real-time driving
tasks rather than achieving a perfect high-resolution reconstruction of all scene details. While the latter
could potentially be addressed by scaling up the network with architectural enhancements, such
improvements would increase computational costs and fall outside the scope of this study.

5.3. Steering performance

To quantify the benefits of image deraining achieved by our model, PilotNet was employed to
predict steering angles for clear, rainy, and derained images. Since PilotNet was originally designed
for lane-following tasks, scenarios involving intersections and sharp turns were excluded from the
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analysis. The evaluation was conducted on a multi-lane highway comprising straight segments and
gradual turns. As previously noted, the ground-truth steering angles were directly recorded from
CARLA.

It is important to acknowledge that even for clear images, PilotNet exhibits an inherent deviation
from the ground-truth steering angles recorded in CARLA. For steering performance evaluation, the
mean absolute error (MAE) was computed to measure the deviation under four conditions: Clear
weather, heavy rain, light rain, and derained images. Table 2 presents the results, indicating an inherent
error of 0.356 degrees for clear weather and a slightly higher error of 0.508 degrees under derained
conditions. In comparison, both heavy and light rain conditions result in larger steering errors, with
heavy rain showing a significantly worse performance. Notably, the steering error under heavy rain is
more than twice that observed for light rain.

Table 2. Mean absolute steering angle error.

Condition Error (degree)

Clear 0.356 (Inherent Error)
Heavy Rain 1.204

Light Rain 0.561

Derained 0.508

Figures 13 and 14 illustrate the live steering angle error relative to the ground truth over a
simulation run for three scenarios: Clear, heavy rain, and derained. As shown in Figure 13, the heavy
rain scenario exhibits three segments of significant deviation, corresponding to the three gradual turns
in the simulation. During these turns, the heavy rain condition performs markedly worse, with errors
reaching approximately 10 degrees. In contrast, the steering angles for the derained and clear scenarios
remain closely aligned, demonstrating the positive impact of deraining on steering performance.
Similarly, Figure 14 highlights that steering performance under light rain conditions is significantly
better than under heavy rain, with errors reduced to within 5 degrees. This improvement further
emphasizes the detrimental effects of heavy rain on steering accuracy and the potential of deraining to
mitigate these challenges.

To further illustrate the effects of deraining, Figures 15 and 16 present regression plots of
predicted steering angles under derained conditions compared to those under corresponding clear
conditions, for heavy rain and light rain scenarios, respectively. The vertical axis represents steering
angles in clear conditions, while the horizontal axis represents steering angles under derained or rainy
conditions. Each plot includes a regression line along with the corresponding R? value. As shown in
Figure 15, the regression for Clear vs. Derained conditions achieves an R? value of 0.956, indicating a
strong correlation. In contrast, the Clear vs. Heavy Rain regression shows nearly no correlation, as
evidenced by the majority of points clustering along the vertical axis. This highlights that in heavy rain,
the predicted steering angles fail to respond to curvy road segments. In essence, the vehicle "misses"
visual cues in heavy rain, resulting in it continuing straight instead of turning as needed. Figure 16
illustrates a similar comparison for light rain conditions, where the R? value is 0.895, lower than that
of the derained conditions. The steeper regression line for light rain indicates a tendency for under-
predicted steering angles, meaning the vehicle turns less than necessary in these conditions. These
results underscore the effectiveness of our deraining model in improving steering performance, thereby
enhancing the safety and reliability of autonomous vehicles in rainy weather.
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Figure 15. Steering performance: Derained vs heavy rain regression plot.
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Figure 16. Steering performance: Derained vs light rain regression plot.
6. Conclusions

Rain presents a formidable challenge for AV navigating roadways as rain streaks can severely
impair camera-based objects and feature detection systems employed by AV. Addressing this issue is
essential for enhancing AV performance and safety.

We adopted a data-centric approach and introduced two novel batching schemes, STSB and
STRB, to improve deraining performance, comparing them to the conventional RTRB batching
scheme. STSB paired sequential images both in time and batch, while STRB paired sequential images
in time but randomized them across batches. Our results demonstrated that STRB outperformed STSB,
primarily due to its ability to incorporate diverse scenes across batches, reducing overfitting and bias
compared to sequential scene batching. Additionally, STRB's use of sequential image pairs in time
enabled it to better capture dynamic rain features over relatively static road scenes in successive frames.
These advantages were evident in reduced training, validation, and testing losses, as well as in superior
visual quality of derained images produced by STRB.

The encoder-decoder model developed in this work extended the DCGAN architecture to handle
higher-resolution images and incorporates skip-concatenation operations inspired by U-Net. This
enabled context-aware image generation, effectively removing rain streaks and achieving weather style
transfer. Visual comparisons of rainy, ground-truth (clear), and derained images confirmed the model’s
ability to remove rain streaks while transforming rainy scenes into clear, sunny conditions. Compared
to other methods, the proposed model demonstrated significantly superior performance. The practical
benefits of the deraining model were quantitatively validated using PilotNet to predict AV steering
angles on a highway section. Under heavy rain conditions, the AV lost steering control, deviating
significantly from the ground-truth steering angles recorded under clear conditions. While light rain
improved steering performance, it was under derained conditions that the steering angles closely
matched those of clear weather, achieving an R? value of 0.956. These results provide robust evidence
of the model’s effectiveness in enhancing visibility and improving AV control in rainy conditions.
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In conclusion, this study highlights the potential of a data-centric approach combined with deep
learning models for joint image deraining and weather style transfer. While the model demonstrates
strong performance, certain limitations remain. It addresses the removal of rain steaks but does not
account for other weather-related challenges, such as raindrops on the windshield or splashes from
preceding vehicles, which may further complicate visibility. Additionally, the simplicity of its
architecture limits its ability to preserve finer image details. The use of CARLA-generated datasets,
while effective, may not fully capture the diversity of real-world conditions.

Future research could expand the scope to address a wider range of weather conditions, explore
architectural enhancements, integrate sequential image frame modeling, and incorporate real-world
driving datasets to improve robustness and adaptability. Furthermore, diffusion models [13,33] hold
potential for real-time applications as their computational efficiency continues to improve, warranting
further investigation. It is also important to note that we primarily focus on evaluating the efficacy of
deraining in enhancing vehicle steering performance. However, the model holds potential to benefit
other critical self-driving tasks, such as object detection, which should be explored in future work.
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