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Abstract: Computational tools have been used in structural engineering design for numerous 
objectives, typically focusing on optimizing a design process. We first provide a detailed literature 
review for optimizing truss structures with metaheuristic algorithms. Then, we evaluate an effective 
solution for designing truss structures used in structural engineering through a method called the 
mountain gazelle optimizer, which is a nature-inspired meta-heuristic algorithm derived from the 
social behavior of wild mountain gazelles. We use benchmark problems for truss optimization and a 
penalty method for handling constraints. The performance of the proposed optimization algorithm 
will be evaluated by solving complex and challenging problems, which are common in structural 
engineering design. The problems include a high number of locally optimal solutions and a 
non-convex search space function, as these are considered suitable to evaluate the capabilities of 
optimization algorithms. This work is the first of its kind, as it examines the performance of the 
mountain gazelle optimizer applied to the structural engineering design field while assessing its 
ability to handle such design problems effectively. The results are compared to other optimization 
algorithms, showing that the mountain gazelle optimizer can provide optimal and efficient design 
solutions with the lowest possible weight. 

Keywords: mountain gazelle optimizer (MGO) algorithms; optimal design; truss structures 
 

https://www.aimspress.com/journal/aci
https://dx.doi.org/10.3934/aci.2023007


117 

 

Applied Computing and Intelligence  Volume 3, Issue 2, 116–144 

1. Introduction  

Optimization involves determining the best values for a system's design parameters to minimize 
or maximize the fitness function while satisfying all constraints. Challenges in optimization are 
encountered across various industries, academic fields and research areas. There are different 
strategies for optimization, including exact algorithms and heuristic and metaheuristic algorithms. 
The former category, exact algorithms, requires fewer complex computations, making it quicker to 
execute but potentially less useful and practical. Conversely, the second category, metaheuristic 
algorithms, displays random or stochastic characteristics and makes an informed search decision in 
some intelligent areas [1]. 

A meta-heuristic algorithm is a high-level strategy used to guide the search for a solution to an 
optimization problem. These algorithms are often used when the complexity of the problem cannot 
be processed by traditional computational optimization methods, for which a known solution does 
not exist. There are many examples of meta-heuristic algorithms that are used for structure problems, 
such as genetic algorithms (GAs) [2], an artificial bee colony (ABC) [3], the chaotic coyote 
algorithm [4], ant colony optimization (ACO) [5], the artificial gorilla troops optimizer (AGTO) [6], 
big bang–big crunch (BB-BC) [7] and the stochastic paint optimizer (SPO) [8].  

The meta-heuristic algorithms vary in the different types, such as hybrid, multi-objective and 
improved versions. Some of the existing hybrid versions include the invasive weed optimization 
shuffled with frog-leaping algorithms (SFLA-IWO) [9], the particle swarm optimization with genetic 
algorithms (PSO-GA) [10], the optimality criterion with genetic algorithms (OC-GA) [11], the 
cuckoo search with stochastic paint optimizers (CSSPO) [12] and moth-flame optimization with 
simulated annealing (MFO-SA) [13].  

On the other hand, some of the well-known multi-objective versions, which can solve problems 
with multiple aims or goals, include thermal exchange optimization (MOTEO) [14], the stochastic 
paint optimizer (MOSPO) [15], chaos game optimization (MOCGO) [16], teaching-learning based 
optimization (MOTLBO) [17], moth-flame optimization (MMFO) [18], the chimp optimizer 
(MOCO) [19], the arithmetic optimization algorithm (MAOA) [20], atomic orbital search 
(MOAOS) [21], the search group algorithm (MOSGA) [22] and the artificial hummingbird algorithm 
(MOAHA) [23].  

In addition, enhanced versions of meta-heuristic algorithms include the chaotic stochastic paint 
optimizer (CSPO) [24], improved chicken swarm optimization (ICSO) [25] and the advanced neural 
network algorithm (ANNA) [26]. These algorithms have also been developed for use in structural 
engineering design and other fields [27–30]. These algorithms improve a candidate solution 
iteratively through a series of random or probabilistic moves guided by some form of heuristic or 
rule of thumb.  

The overarching goal of the algorithms is to converge on a near-optimal or optimal solution 
within a reasonable amount of time. Two significant components of any meta-heuristic algorithm are 
exploration and exploitation. Exploration refers to generating diverse solutions to explore the search 
space on a global scale. Furthermore, exploitation means focusing on the search in a local region by 
exploiting the information that a current good solution is found in this region. Meta-heuristic 
algorithms must maintain an adequate balance between the exploration and exploitation tendencies to 
be competitive in terms of robustness and performance [31]. 

While the simplicity and flexibility of meta-heuristic algorithms make algorithms most 
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appealing, it is impossible to guarantee that in any given problem, a globally optimal solution can be 
found in any given problem. This is because most algorithms are presented as stochastic 
optimizations, meaning the final solution depends heavily on various kinds of generated random 
variable fields [32]. 

Structural optimization has ushered in advanced methodologies, transcending the confines of 
traditional analysis, which often relied solely on a designer's experience and intuition. The evolution 
of digital computing capabilities has significantly empowered and enabled the application of 
contemporary optimization algorithms. Consequently, designers can now ascertain optimal solutions 
in a time-efficient manner, solutions that might have remained elusive when only conventional 
methods were employed [33].  

Trusses in structural engineering are a structural form of members subjected to pure tension or 
compression. Members are connected by means of pin joints to create rigid structures. The joints are 
subjected to external forces. Trusses are deemed efficient because they ensure a consistent stress 
level across the entire cross-section of each member, depending on the loading conditions. 

Deterministic and random methods are the two major categories of optimization 
problem-solving techniques. Optimization issues that are linear, continuous, differentiable and 
convex are well-handled by deterministic methods. The drawback of these methods is that they are 
unable to solve problems that are nonlinear, nonconvex, nondifferentiable, high dimensional, 
NP-hard (non-deterministic polynomial-time hardness) and involve discrete search spaces. 

These elements are among the characteristics of real-world optimization problems and have 
caused deterministic approaches to fail. Stochastic algorithms—particularly metaheuristic 
algorithms—have been developed to meet this challenge. By utilizing random search in the 
problem-solving space and relying on random operators, metaheuristic algorithms can offer suitable 
solutions to optimization problems.  

It is important to note that there is no assurance that a solution found using metaheuristic 
algorithms will be the best or globally optimal. Researchers have created numerous metaheuristic 
algorithms because of this fact and produce better solutions. The No Free Lunch (NFL) theorem [34] 
states that an algorithm can only be expected to offer optimal solutions for certain problems while it 
may deliver average results for others. This is why the ongoing search for more algorithms for truss 
optimization is necessary.  

Many researchers have found that metaheuristic algorithms are useful for designing and 
analyzing truss structures with numerous members [35]. However, the efficiency of optimization 
algorithms is problem-dependent, meaning that not all algorithms perform well in every scenario. 
Hence, it is crucial to evaluate and contrast the efficiency of the recently developed algorithm 
mountain gazelle optimizer (MGO) [36], which has not been utilized in structural optimization, by 
implementing it across various practical engineering problems. 

The motivation for this work is that mountain gazelles have demonstrated encouraging results in 
a different optimization area, making them a valuable candidate for consideration in the optimization 
of truss structures. 

Recently, Abdollahzadeh et al. [36] introduced MGO, a nature-inspired meta-heuristic algorithm 
inspired by wild mountain gazelles' social behavior and hierarchical structure. The algorithm utilizes 
mathematical formulations to emulate gazelle populations' hierarchical and social dynamics. This 
approach is intended to improve the search for optimal solutions to optimization problems. To this 
end, the application of MGO for structural optimization is proposed herein as a technique applied to 
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optimize truss structures.  
In summary, this paper makes several key contributions: 

• It compares four different metaheuristic algorithms on three design optimization problems. 
• It uses three space truss structures to evaluate the algorithms mentioned. 
• It includes comparing different methods using statistical results and convergence curves. 
• It found that the proposed MGO algorithm outperformed the other algorithms mentioned. 

The next section of this paper provides a detailed literature review of the optimization of truss 
structures with metaheuristic algorithms. Then, the application of MGO is presented and defined, 
followed by the problem definition, and results from the analysis of three truss structures are reported. 
Lastly, the conclusions are provided, introducing optimum design methodologies for designing truss 
structures using MGO compared to other optimization algorithms. The comparison is made with the 
arithmetic optimization algorithm (AOA) [37], material generation algorithm (MGA) [38] and 
crystal structure algorithm (CRY) [39]. 

2. Truss structures related works 

In recent years, metaheuristic algorithms have been utilized as an optimization technique for the 
optimum design of various structural systems. Optimal design of structures refers to finding the best 
design plan under an array of different constraints; such constraints may include the lightest weight, 
lowest cost, project construction time and/or maximum rigidity. Typically, the structure's behavior 
and the project's cost-effectiveness are critical, and the approach presented herein considers both in 
the optimization. Additionally, it ensures the structure's safety, reduces construction costs and 
minimizes the use of natural resources and materials.  

Degertekin [40] suggested two new harmony search (HS) algorithms, the efficient harmony 
search algorithm (EHS) and the self-adapting harmony search algorithm (SAHS), for the sizing 
optimization of truss structures. It is known that the HS algorithm is extremely sensitive to the tuning 
parameters even though the efficiency of the HS algorithm has been demonstrated in numerous 
engineering optimization applications. Four classic truss construction weight minimization issues 
were described to show the suggested algorithm efficiency. The outcomes of the current algorithms 
were contrasted with those of the HS algorithm and other meta-heuristic algorithms.  

Degertekin and Hayalioglu [41] optimized truss structures using a novel meta-heuristic search 
technique called teaching-learning based optimization (TLBO). The approach utilized the similarity 
between how students learn and how solutions to optimization issues are found. The teacher phase 
and learner phase are the two phases of the TLBO. The four design examples showed the method's 
applicability. Results for the design examples showed that while the TLBO occasionally produced 
slightly heavier designs than other meta-heuristic methods, for the most part, it achieved results that 
were at least as good compared to other meta-heuristic optimization methods in terms of 
convergence capability and optimum solutions.  

For the best truss structure design, a novel fusion of swarm intelligence and chaos theory was 
provided by Kaveh et al. [42]. The technique is known as the chaotic swarming of particles (CSP) 
and was inspired by the tendency to form swarms found in various animals and chaos theory. The 
CSP algorithm was used to optimize truss structures, and the outcomes were compared to those of 
the previous meta-heuristic algorithms to demonstrate the effectiveness of the new approach. 

The weight of truss constructions was reduced using the created flower pollination algorithm 
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(FPA) by Bekdas et al. [43] which also took into account design variables for sizing. Because 
flowering plants self-pollinate and cross-pollinate, the new algorithm may effectively combine local 
and global searches. It also employed an iterative constraint management strategy where trial designs 
were approved or disapproved depending on the permitted level of a constraint violation, which 
progressively decreased as the search process got closer to the optimum. More important, this 
approach searched to produce optimum designs that were always realizable. Three traditional 2D and 
3D truss structure sizing optimization tasks were used to test the novel approach. According to 
optimization findings, the suggested method was competitive with other cutting-edge metaheuristic 
algorithms. 

Recently, Jawad et al. [44] studied the combined optimization of truss structures using the 
artificial bee colony algorithm (ABC), a swarm intelligence-based optimization technique. The goal 
was to maximize truss structure architecture and member size under displacement, stress and 
buckling constraints. The foundation of the ABC is the simulation of honeybees' clever foraging 
activity. The design factors for shape and size optimization for the truss structure system were the 
cross-sectional areas of the members and the nodal coordinates of the joints. The problem constraints 
were regarded as the allowable stress, the Euler buckling stress and the displacement. Four 
benchmark structural optimization tasks put the ABC to the test. The outcomes showed that ABC is 
better than other algorithms regarding optimal weight, standard deviation and quantity of structural 
analyses. With a 100% success rate, ABC has had a strong performance.  

Structural optimization has also been completed using the recent political optimizer (PO) 
method proposed by Awad [45]. The algorithm, modeled after the multi-phased political process in 
parliamentary democracies, effectively balances exploration and exploitation by logically dividing 
the search agent population into political parties competing for dominance of constituencies. While 
preserving algorithmic speed and efficiency, this competitive-based population partitioning technique 
ensured that sufficient search space was adequately examined for the global optima. Three planar 
trusses—10 members, 18 members and 200 members—and four space trusses—22 members, 25 
members, 72 members and 942 members—with various loading circumstances and design 
restrictions had been taken into consideration in order to evaluate the algorithm's effectiveness 
statistically. The results showed that the PO algorithm outperforms all previously proposed 
state-of-the-art optimization methodologies for small to medium-sized structural systems in every 
aspect, including final optimized weight, algorithmic stability and convergence speeds.  

The search group algorithm (SGA), a metaheuristic optimization technique, was presented by 
Gonçalves et al. [46] to address truss structure optimization specifically. A selection of benchmark 
issues from the literature was used to illustrate the usefulness of the SGA. Due to truss complexity, 
problems were given special consideration, including topology optimization, discrete design 
variables and/or natural frequency limitations. The key finding of these numerical tests was that the 
SGA was capable of producing the lightest structures yet discovered for five of the six samples 
examined. In most instances, it also enhanced the statistics of the algorithm's independent runs. 
These findings highlight the SGA's strengths in this area and promote its continued improvement and 
use in solving applied engineering challenges. 

Most recently, in order to optimize space trusses with continuous design variables, 
Goodarzimehr et al. [47] seeks to offer a new hybrid technique that combines particle swarm 
optimization and genetic algorithm (PSOGA), resulting in an effective hybridization algorithm for 
solving optimization issues. These algorithms have demonstrated exceptional performance when it 
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comes to resolving optimization issues involving continuous variables. The PSO essentially 
simulates how individual birds communicate with one another to provide information about their 
position, velocity and fitness. The outcomes show that both exploration and exploitation were 
enhanced using the hybrid PSO algorithm. Hence, optimizing the weight of structural issues under 
stress and displacement constraints applies the PSO method. 

A dynamic variant of the water strider algorithm (DWSA) has been suggested by Kaveh 
et al. [48]. The dynamic water strider algorithm (DWSA) and WSA were both used to reduce the 
weight of various skeletal components. The water strider insect's territorial behavior, intelligent 
ripple communication, mating style, feeding mechanics and succession are all mimicked by the 
nature-inspired metaheuristic known as WSA. These algorithms' effectiveness was examined by 
optimizing various truss and frame constructions that were subject to various loading circumstances 
and limitations. When DWSA findings were compared to those of other approaches, it was clear that 
DWSA is an effective methodology for maximizing structural design and reducing structural weight 
while meeting all limitations. 

The most effective hybrid optimization approach for truss design has been provided by Kaveh 
et al. [49]. Based on the invasive weed optimization algorithm and the shuffled frog-leaping 
algorithm (ISO-SFLA), the suggested technique uses the shuffled frog-leaping algorithm to find 
optimal solution regions quickly. The invasive weed optimization takes advantage of global solutions. 
The novel hybrid method was used to improve several benchmark truss structures. In comparison to 
specific other approaches, this algorithm converged to better or at least equivalent solutions while 
using less structural analysis. The results were compared to those acquired previously utilizing other 
recently established metaheuristic optimization techniques. 

An enhanced chicken swarm optimization (CSO) technique for truss structure optimization was 
presented by Li et al. [25] in order to increase the effectiveness of the structural optimization design 
in truss computation. The idea of mixing chaotic strategy with reverse learning strategy was 
introduced in the initialization of the fundamental CSO algorithm to guarantee the capability of a 
global search. In order to more effectively mix global and local search, the inertia weighting element 
and the learning component were added to the chicken position updating mechanism. The differential 
evolution method was then used to maximize the algorithm's total individual position. This study 
offered a novel technique for optimizing truss structures. 

3. Problem definition 

Three truss structure optimization designs are solved using the MGO algorithm to evaluate the 
performance of the MGO algorithm compared to alternative metaheuristic algorithms. The 
alternative algorithms include the arithmetic optimization algorithm (AOA) [37], material generation 
algorithm (MGA) [38] and crystal structure algorithm (CRY) [39]. 

Population size and the maximum number of function evaluations were consistent with other 
algorithms for a fair comparison. Using a termination criterion based on the maximum number of 
function evaluations ensures a fair comparison. Each problem is tackled separately, with 30 runs 
conducted for each one. The parameters for each algorithm are modified based on a review of the 
existing literature. The algorithm was developed using MATLAB 2023a, and the trusses were solved 
using the direct stiffness method with SAP2000 v14.1 and API. The computer used for testing had an 
Apple M2 Max and 96 GB of RAM on a Macintosh Ventura operating system. Three specific truss 
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structure case studies are conducted: spatial structure with 25 members, spatial structure with 72 
members and dome structure with 120 members. Results are compared to other methods. 

The mathematical formulas for the size optimization of truss structures solved herein are 
presented in Eq. (1). The optimization aims to find the optimal cross-section (𝐴𝐴𝑖𝑖) values that 
minimize the structural weight of the 𝑊𝑊 while satisfying constraints on the design variable sizes 
and structural responses. The problem is formulated as follows: 

Minimize:          𝑊𝑊({𝑥𝑥})  =   ∑ 𝛾𝛾𝑖𝑖 .𝐴𝐴𝑖𝑖 . 𝐿𝐿𝑖𝑖(𝑥𝑥)𝑛𝑛𝑛𝑛
𝑖𝑖=1  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡:               𝛿𝛿𝑛𝑛𝑖𝑖𝑛𝑛 ≤ 𝛿𝛿𝑖𝑖 ≤ 𝛿𝛿𝑛𝑛𝑚𝑚𝑥𝑥              𝑖𝑖 = 1,2, . . . ,𝑛𝑛 

                    𝜎𝜎𝑛𝑛𝑖𝑖𝑛𝑛 ≤ 𝜎𝜎𝑖𝑖 ≤ 𝜎𝜎𝑛𝑛𝑚𝑚𝑥𝑥             𝑖𝑖 = 1,2, . . . ,𝑛𝑛 

                    𝜎𝜎𝑖𝑖𝑠𝑠 ≤ 𝜎𝜎𝑖𝑖𝑖𝑖 ≤ 0                 𝑖𝑖 = 1,2, . . . ,𝑛𝑛𝑠𝑠 

                   𝐴𝐴𝑛𝑛𝑖𝑖𝑛𝑛 ≤ 𝐴𝐴𝑖𝑖 ≤ 𝐴𝐴𝑛𝑛𝑚𝑚𝑥𝑥            𝑖𝑖 = 1,2, . . . ,𝑛𝑛𝑛𝑛 

(1) 

 

 

 

 

The optimization problem is formulated as follows: 𝑊𝑊({𝑥𝑥}) is the weight of the structure, n is 
the number of members in the structure, m is the number of nodes, ns is the number of compression 
elements and ng is the number of design variables or member groups. Here, 𝛾𝛾𝑖𝑖   is the material 
density of member 𝑖𝑖, 𝐿𝐿𝑖𝑖  is the length of member 𝑖𝑖, 𝑚𝑚𝑛𝑛𝑎𝑎 𝑊𝑊({𝑥𝑥}) is the cross-sectional area of 
member 𝑖𝑖 chosen between 𝐴𝐴min  and 𝐴𝐴max , where min and max indicate the lower and upper 
bounds, respectively. 𝜎𝜎𝑖𝑖  and 𝛿𝛿𝑖𝑖  are the stress and nodal deflection, respectively. The penalty 
function is as follows: 

𝑓𝑓𝑝𝑝𝑠𝑠𝑛𝑛𝑚𝑚𝑝𝑝𝑠𝑠𝑝𝑝 (𝑋𝑋) = (1 + 𝜀𝜀1. 𝜈𝜈)𝜀𝜀2                     𝜈𝜈 = � max[0, 𝜈𝜈𝑖𝑖]
𝑛𝑛
𝑖𝑖=1                     (2) 

where 𝜈𝜈 is the total amount of constraints violated, and constants 𝜀𝜀1 and 𝜀𝜀2 are chosen based on 
the exploration and exploitation rate of the search space. In this case, 𝜀𝜀1is set to 1, and 𝜀𝜀2 is chosen 
to minimize penalties and reduce cross-sections. At the start of the search process, 𝜀𝜀2 is set to 1.5 
and is then increased to 3. 

4. The mountain gazelle optimizer 

The algorithm, known as the mountain gazelle optimizer (MGO) [36], uses a mathematical 
model based on mountain gazelles' social behaviors and life patterns. It optimizes using four key 
aspects of gazelle life: bachelor male herds, maternity herds, solitary, territorial males and migration 
to find food. The MGO algorithm assigns each gazelle (𝑋𝑋𝑖𝑖) to a herd of maternity herds, bachelor 
male herds or solitary, territorial males during the optimization process. A new gazelle can be born 
from any of these herds.  

The best global solution in the MGO is represented by adult male gazelles in their herd 
territories. One-third of the search population is estimated to have the lowest cost, as the gazelles in 
the male bachelor herds are young and not yet mature enough to reproduce or lead the female 
gazelles. Gazelles represent other potential solutions in maternity herds, where strong gazelles with 
good solutions engage in both exploitation and exploration. This means that a solution can both 
move towards the best solution and perform exploration, as determined by the four mechanisms in 
the MGO model. 

In addition, other solutions offered to the general population are compared to gazelles in a herd. 
The strong gazelles with effective solutions are kept at the end of each cycle. Other solutions 
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introduced to the general population with a low cost are considered weak and eliminated from the 
entire population. The MGO's mathematical formulae for optimization are described as follows.  

4.1. Territorial solitary males (TSM) 

When male mountain gazelles mature and attain strength, they establish individual territories 
and display territorial behavior, with substantial spaces between territories. The conflict between 
adult male gazelles occurs over territory control or mating rights to the females. Young males attempt 
to take over the territory or female, while adult males strive to defend their territory. Eqs. (3) to (5) 
have been utilized to simulate the adult male's territory. 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑛𝑛𝑚𝑚𝑝𝑝𝑠𝑠𝑛𝑛𝑚𝑚𝑔𝑔𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠  − ��𝑟𝑟𝑖𝑖1 × 𝐵𝐵𝐵𝐵 − 𝑟𝑟𝑖𝑖2 × 𝑋𝑋(𝑠𝑠)� × 𝐹𝐹� × 𝐶𝐶𝑡𝑡𝑓𝑓𝑟𝑟       (3) 

𝐵𝐵𝐵𝐵 = 𝑋𝑋𝑟𝑟𝑚𝑚 × ⌊𝑟𝑟1⌋ + 𝑇𝑇𝑝𝑝𝑟𝑟 × ⌈𝑟𝑟2⌉, 𝑟𝑟𝑚𝑚 = ��
𝑁𝑁
3
�…𝑁𝑁�           (4) 

𝐹𝐹 = 𝑁𝑁1(𝐷𝐷) × 𝑠𝑠𝑥𝑥𝑝𝑝 �2 − 𝐼𝐼𝑠𝑠𝑠𝑠𝑟𝑟 × �
2

𝑇𝑇𝑚𝑚𝑥𝑥𝐼𝐼𝑠𝑠𝑠𝑠𝑟𝑟�
�           (5) 

In Eq. (3), the 𝑛𝑛𝑚𝑚𝑝𝑝𝑠𝑠 𝑛𝑛𝑚𝑚𝑔𝑔𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠  represents the position vector of the optimal global solution (adult 
male). The variables 𝑟𝑟𝑖𝑖1 and 𝑟𝑟𝑖𝑖2 are random integers, either 1 or 2. 𝐵𝐵𝐵𝐵 is the coefficient vector 
for the group of young males, calculated with Eq. (4). 𝐹𝐹 is calculated using Eq. (5). 𝐶𝐶𝑡𝑡𝑓𝑓𝑟𝑟  is a 
randomly chosen coefficient vector that is updated in each iteration to enhance search capability, 
computed using Eq. (6). 

In Eq. (4), 𝑋𝑋𝑟𝑟𝑚𝑚  refers to a random solution (young male) within the range of 𝑟𝑟𝑚𝑚. 𝑇𝑇𝑝𝑝𝑟𝑟  
represents the average number of randomly selected search agents. 𝑁𝑁 stands for the total number of 
gazelles, and 𝑟𝑟1 and 𝑟𝑟2 are random values between 0 and 1. In Eq. (5), 𝑁𝑁1 is a random number 
derived from a standard distribution in the dimensions of the problem. The exponential function is 
denoted as 𝑠𝑠𝑥𝑥𝑝𝑝. 𝑇𝑇𝑚𝑚𝑥𝑥𝐼𝐼𝑠𝑠𝑠𝑠𝑟𝑟 signifies the total number of iterations, and 𝐼𝐼𝑠𝑠𝑠𝑠𝑟𝑟 represents the current 
iteration number. 

𝐶𝐶𝑡𝑡𝑓𝑓𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧ (𝑚𝑚 + 1) + 𝑟𝑟3,

𝑚𝑚 × 𝑁𝑁2(𝐷𝐷),
𝑟𝑟4(𝐷𝐷),

𝑁𝑁3(𝐷𝐷) × 𝑁𝑁4(𝐷𝐷)2 × cos�(𝑟𝑟4 × 2) × 𝑁𝑁3(𝐷𝐷)�,

� 

 
 

       (6) 
 

𝑚𝑚 = −1 + 𝐼𝐼𝑠𝑠𝑠𝑠𝑟𝑟 × �
−1

𝑇𝑇𝑚𝑚𝑥𝑥𝐼𝐼𝑠𝑠𝑠𝑠𝑟𝑟�
        (7) 

In Eq. (6), 𝑚𝑚 is calculated using Eq. (7), while 𝑟𝑟3 and 𝑟𝑟4, are random numbers within the 
range of 0 and 1. 𝑁𝑁2, 𝑁𝑁3 and 𝑁𝑁4 are random numbers in the standard range and dimensions of the 
problem. In the problem dimensions, 𝑟𝑟4 is also a random number between 0 and 1. Finally, 𝑠𝑠𝑡𝑡𝑠𝑠 
represents the Cosine function.  

4.2. Maternity herds (MH) 

Maternity herds are crucial in the life cycle of mountain gazelles, as they give birth to strong 
male gazelles. Male gazelles can also be involved in the delivery of gazelles and young males trying 
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to claim females, which is modeled using Eq. (8).  

𝑇𝑇𝐵𝐵 = �𝐵𝐵𝐵𝐵 + 𝐶𝐶𝑡𝑡𝑓𝑓1,𝑟𝑟� + �𝑟𝑟𝑖𝑖3 × 𝑛𝑛𝑚𝑚𝑝𝑝𝑠𝑠𝑛𝑛𝑚𝑚𝑔𝑔𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠 − 𝑟𝑟𝑖𝑖4 × 𝑋𝑋𝑟𝑟𝑚𝑚𝑛𝑛𝑎𝑎 � × 𝐶𝐶𝑡𝑡𝑓𝑓1,𝑟𝑟       (8) 

In Eq. (8), 𝐵𝐵𝐵𝐵 represents the impact factor vector of young males, calculated using Eq. (4). 
𝑛𝑛𝑚𝑚𝑝𝑝𝑠𝑠𝑛𝑛𝑚𝑚𝑔𝑔𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠  stands for the best global solution (adult male) in the current iteration. Finally, 𝑋𝑋𝑟𝑟𝑚𝑚𝑛𝑛𝑎𝑎  is 
the vector position of a randomly selected gazelle from the entire population. 

4.3. Bachelor male herds (BMH) 

As male gazelles grow stronger, they establish their own territory and compete to control female 
gazelles. Young males fight against adult males for the territory and possession of the females, 
sometimes resulting in violent confrontations.  

𝐵𝐵𝑇𝑇𝐵𝐵 = (𝑋𝑋(𝑠𝑠) − 𝐷𝐷) + �𝑟𝑟𝑖𝑖5 × 𝑛𝑛𝑚𝑚𝑝𝑝𝑠𝑠𝑛𝑛𝑚𝑚𝑔𝑔𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠 − 𝑟𝑟𝑖𝑖6 × 𝐵𝐵𝐵𝐵� × 𝐶𝐶𝑡𝑡𝑓𝑓𝑟𝑟    (9) 

𝐷𝐷 = �|𝑋𝑋(𝑠𝑠)| + �𝑛𝑛𝑚𝑚𝑝𝑝𝑠𝑠𝑛𝑛𝑚𝑚𝑔𝑔𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠 �� × (2 × 𝑟𝑟6 − 1)  (10) 

This behavior is represented mathematically in Eq. (9) using variables such as 𝑋𝑋(𝑠𝑠) (the 
position of the gazelle in the current iteration), 𝐷𝐷 (calculated using Eq. (10)), 𝑟𝑟𝑖𝑖5 and 𝑟𝑟𝑖𝑖6 (random 
integers 1 or 2), 𝐵𝐵𝐵𝐵  (the impact factor of the young male herd, calculated using Eq. (4)), 
𝑛𝑛𝑚𝑚𝑝𝑝𝑠𝑠𝑛𝑛𝑚𝑚𝑔𝑔𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠  (the position of the male gazelle, the best solution) and 𝑟𝑟6 (a random number between 
0 and 1). Eq. (10) uses 𝑋𝑋(𝑠𝑠) and 𝑛𝑛𝑚𝑚𝑝𝑝𝑠𝑠𝑛𝑛𝑚𝑚𝑔𝑔 𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠  (the positions of the gazelle vectors in the current 
iteration and the best solution, respectively). 

4.4. Migration to Search for Food (MSF) 

Mountain gazelles roam to find food and migrate due to their high speed and jumping ability. 
The behavior is modeled in Eq. (11) as follows: 

𝑇𝑇𝑇𝑇𝐹𝐹 = (𝑠𝑠𝑠𝑠 − 𝑝𝑝𝑠𝑠) × 𝑟𝑟7 + 𝑝𝑝𝑠𝑠     (11) 
where 𝑠𝑠𝑠𝑠 and 𝑝𝑝𝑠𝑠 represent the upper and lower limits of the problem, and 𝑟𝑟7 is a random integer 
between 0 and 1.  

The TSM, MH, BMH and MSF mechanisms are applied to all gazelles to generate new 
generations. After each era, the gazelles are ranked, and the best ones, with high-quality and low-cost 
solutions, are kept while the old and weak ones are removed from the population. The best gazelle is 
the adult male who owns the territory. The MGO general flowchart and pseudo-code are depicted in 
Figures 1 and 2. MGO can make optimization more accessible to engineers and designers who may 
not have specialized knowledge in optimization techniques by being easier to use or implement than 
existing methods. 
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Figure 1. MGO flowchart. 

Algorithm  
Pseudo-code of MGO 

Inputs: The population size 𝑁𝑁 and the maximum number of iterations 𝑇𝑇 
Outputs: Gazelle's location and fitness potential 
Create a random population using 𝑋𝑋𝑖𝑖(𝑖𝑖 = 1,1, . . . ,𝑁𝑁) 
Calculate Gazelle's fitness levels 
   While the stopping condition is not met 
           For each Gazelle (𝑋𝑋𝑖𝑖) 
                Calculate TSM using Eq. (3) 
                Calculate MH using Eq. (8) 
                Calculate BMH using Eq. (9) 
                Calculate MSF using Eq. (11) 
                Calculate the fitness values of TSM, MH, BMH and MSF, then add them to the habitat 
            End For 
       Sort the entire population in ascending order 
       Update 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝑚𝑚𝑔𝑔𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠  
       Save the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝑚𝑚𝑔𝑔𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠  in the maximum number of populations  
    End While 
Return 𝑋𝑋𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝑚𝑚𝑔𝑔𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠  

 
Figure 2. Pseudo-Code of MGO [36]. 
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5. Truss structures 

For each truss structure described below, the MGO solution results are compared with the 
existing metaheuristic methods available in the literature. To this end, the statistical approaches 
required several independent optimization runs to be conducted in this work, where a total of 30 runs 
were performed. The truss structural details were complementary to these optimization runs. 

5.1. Spatial structure with 25 members 

The first truss structure in this work is a spatial truss structure with 25-member elements. 
Structural members are made of steel with yield stresses of ±40 𝑘𝑘𝑠𝑠𝑖𝑖 and a modulus of elasticity of 
104 𝑘𝑘𝑠𝑠𝑖𝑖. The density of steel material is 0.1 𝑝𝑝𝑠𝑠/𝑖𝑖𝑛𝑛3. Table 1 presents a classification of the members 
by number, indicating each member's beginning and end node. Figure 3 illustrates a schematic view 
of the structure with dimensions, as well as truss member and node numbering. Each node is 
constrained by a maximum displacement limit of ±0.35 inches in each direction, where Table 2 
shows the corresponding axial load restrictions for each group. The cross-sectional areas for the 
members ranged from 0.01 to 3.4 square inches. Table 3 shows the allowable stress for each 
element.  

The convergence history of the MGO for the best run and the average runs against the other 
algorithms (AOA, MGA and CRY) is provided in Figure 4. The figures show the superior capability 
of MGO for solving this truss design optimization, clearly outperforming the other methods as the 
number of iterations quickly reduces. 

 
 

Table 1. Element group number. 

 
 

Table 2. Load Condition for 25-member truss. 
 
 
 
 
 
              

 
 
 
 
 
 

G1 G2 G3 G4 G5 G6 G7 G8 
1:(
 

2:(1,4) 6:(2,4) 10:(6,3) 12:(3,4) 14:(3,10) 18:(4,7) 22:(10,6) 
 3:(2,3) 7:(2,5) 

 
11:(5,4) 13:(6,5) 15:(6,7) 19:(3,8) 23:(3,7) 

 4:(1,5) 8:(1,3) 
 

  16:(4,9) 20:(5,10) 24:(4,8) 
 5:(2,6) 9:(1,6)   17:(5,8) 21:(6,9) 25:(5,9) 

Node. No      𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 𝑪𝑪𝑳𝑳𝑪𝑪𝑪𝑪 𝟏𝟏 (𝑲𝑲𝑲𝑲𝑲𝑲𝑪𝑪) 
 
 

     𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 𝑪𝑪𝑳𝑳𝑪𝑪𝑪𝑪 𝟐𝟐 (𝑲𝑲𝑲𝑲𝑲𝑲𝑪𝑪) 
         𝑃𝑃𝑥𝑥        𝑃𝑃𝑝𝑝         𝑃𝑃𝑔𝑔          𝑃𝑃𝑥𝑥         𝑃𝑃𝑝𝑝         𝑃𝑃𝑔𝑔  

1 0 20 -5  1 10 -5 
2 0 -20 

 
-5  0 10 

 
-5 

3 0 0 
 

0  0.5 0 
 

0 
6 0 0 0  0.5 0 0 
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Table 3. Compressive and tensile limitations of 25-member truss. 
 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

Figure 3. Schematic view of spatial structure with 25 members. 

 

 

 

Element 
Group 

Compressive stress Limitations Ksi 
(MPa) 

Tensile stress 
Limitations Ksi (MPa) 

1:  A1 35.092 (241.96)   40.0 (275.80) 
2: A2 - A5 11.590 (79.0913) 40.0 (275.80) 

3: A6 - A9 17.305 (119.31) 40.0 (275.80) 

4: A10 - A11 35.092 (241.96) 40.0 (275.80) 

5: A12 - A13 35.092 (241.96) 40.0 (275.80) 

6: A14 - A17 6.759 (46.603) 40.0 (275.80) 

7: A18 - A21 6.959 (47.982) 40.0 (275.80) 

8: A22 - A25 11.082 (76.410) 40.0 (275.80) 
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Figure 4. Best run and average run convergence curve's spatial structure with 25 
members with different methods 

Table 4. The MGO results of spatial structure with 25 members. 

 
 

Group Member AOA CRY MGA MGO 
1 (A1) 0.210 0.010 1.441 0.010 
2 (A2 - A5) 1.915 1.895 2.165 1.879 
3 (A6 - A9) 3.400 3.324 2.613 3.106 
4 (A10 - A11) 0.010 0.010 0.167 0.010 
5 (A12 - A13) 0.324 0.010 0.298 0.010 
6 (A14 - A17) 0.597 0.606 0.860 0.653 
7 (A18 - A21) 1.576 1.630 1.731 1.728 
8 (A22 - A25) 2.661 2.690 2.636 2.661 
Optimum weight (lb.) 555.88 548.37 571.10 545.72 
Average weight (lb.) 578.68 556.72 612.96 548.01 
Standard deviation 17.46 5.51 21.00 2.12 
Number of analyses 1000 7000 1000 2300 
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Table 4 Summarizes the optimum outcome of the several optimization runs using MGO and 
other alternative methods to solve the spatial structure with 25 members problem. The minimum 
acceptable weight for the truss is determined to be the MGA's target weight. To understand the 
MGA's strength in predicting the optimal weight of the structure, several alternative metaheuristics 
are obtained to have a better perspective on the capabilities of the MGO.  

As reported in Table 4, we can see that the MGA is able to predict a weight of 545.72 𝑝𝑝𝑠𝑠. In 
this design example, the maximum number of function evaluations was limited to 10,000, and 
MGO obtained the best results with just 2300 function evaluation numbers. According to the 
statistical results, close similarities are observed between the mean of multiple runs by MGO and the 
best run. Also, 30 independent runs are shown in Figure 5. The MGO resulted in the lightest estimate 
for the mean weight of the spatial structure with 25 members (548.01 𝑝𝑝𝑠𝑠), followed by AOA. In the 
case of the 25-member truss structure, the MGO algorithm provides the lowest standard deviation 
(SD), equal to 2.12, whereas the CRY method can deliver only an SD of 5.51. Figure 6 presents the 
design constraints, including stresses in each truss member and displacements that occurred in each 
member, for the best optimization run performed by the MGO. This figure also puts the capacity of 
the MGO method in constraint handling technique into context. 
 

 
 

Figure 5. The 30 Independent runs for spatial structure with 25 members with MGO. 
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Figure 6. Stress and Displacement ratio for spatial structure with 25 members with MGO. 
 

5.2. Spatial structure with 72 members 

This design's truss structure comprises 72 truss members pinned to the ground at four nodes. 
Structural members are made of steel with yield stresses of ±25 𝑘𝑘𝑠𝑠𝑖𝑖 and a modulus of elasticity of 
104 𝑘𝑘𝑠𝑠𝑖𝑖. The density of steel material is 0.1 𝑝𝑝𝑠𝑠/𝑖𝑖𝑛𝑛3. Each member's minimum and maximum 
permissible cross-section area is 0.10 𝑖𝑖𝑛𝑛2 and 4.00 𝑖𝑖𝑛𝑛2. Figure 7 presents a schematic view of the 



131 

 

Applied Computing and Intelligence  Volume 3, Issue 2, 116–144 

structure with truss members, node numbering and overall dimensions. The convergence history of 
the MGO for the best run and average runs against all other methods is shown in Figure 8, indicating 
that the MGO method ranks first based on the number of iterations completed to reach an optimum 
solution.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Schematic view of spatial structure with 72 members. 

 
Table 5 presents the best solution achieved via 30 optimization runs performed by the MGO, in 

addition to the statistical findings. The MGO's results are compared to the other optimization 
techniques, and it is determined that 379.95 𝑝𝑝𝑠𝑠 is the minimum weight this example can support. In 
addition, MGO has more reasonable statistical findings, with a mean of 382.54 𝑝𝑝𝑠𝑠 and SD of 
2.04 𝑝𝑝𝑠𝑠. However, while taking into account the standard deviation, the MGO algorithm provided the 
lowest SD, the CRY method achieved the second lowest SD value of equal to 33.74, while the MGA 
algorithm arrived at the highest SD value of 85.17 for the 72-member truss structure.  
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Figure 8. Best run and average run convergence curve spatial structure with 72 members 
with different methods. 
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Table 5. The MGO results of spatial structure with 72 members. 
 

 
 
 
 
 
 
 
 
 

Figure 9 presents the design constraints, including stresses in each truss member and 
displacements that occurred in each member, for the best optimization run performed by the MGO. 
This figure also puts the capacity of the MGO method in constraint handling technique into context. 
The 30 independent runs for MGO are shown in Figure 10. According to this figure, the best eight 
and mean weights of all runs are depicted, as well as all other obtained weights. 

 
 
 
 
 
 
 
 

Group Member AO
 

CRY MGA MGO 
1 (A1 - A4) 2.1

 
2.221 0.931 1.824 

2 (A5 - A12) 0.7
 

0.404 0.434 0.515 
3 (A13 - A16) 0.1

 
0.100 0.507 0.100 

4 (A17 - A18) 0.1
 

0.100 0.100 0.100 
5 (A19 - A22) 1.5

 
1.410 1.745 1.245 

6 (A23 - A30) 0.4
 

0.447 0.714 0.536 
7 (A31 - A34) 0.1

 
0.105 0.783 0.100 

8 (A35 - A36) 1.0
 

0.114 0.882 0.100 
9 (A37 - A40) 0.7

 
0.332 1.579 0.554 

10 (A41 - A48) 0.3
 

0.754 0.629 0.520 
11 (A49 - A52) 1.3

 
0.100 0.683 0.100 

12 (A53 - A54) 0.1
 

0.175 0.100 0.100 
13 (A55 - A58) 0.1

 
0.471 2.398 0.156 

14 (A59 - A66) 1.1
 

0.534 0.903 0.538 
15 (A67 - A70) 0.5

 
0.765 0.104 0.380 

16 (A71 - A72) 0.1
 

0.953 0.521 0.592 
Optimum weight (lb.) 545

 
432.97 687.77 379.95 

Average weight (lb.) 643
 

485.69 881.59 382.54 
Standard deviation 64.

 
33.74 85.17 2.04 

Number of analyses 100
 

9150 10000 6800 
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Figure 9. Stress and Displacement ratio for spatial structure with 72 members with MGO. 
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Figure 10. The 30 Independent runs for spatial structure with 72 members with MGO. 

5.3. Dome structure with 120 members 

The third truss design addresses minimizing the dome structure's weight with 120 members, as 
shown in Figure 11. Soh and Yang [50] studied this design case as a configuration optimization 
problem. The tensile and compressive stresses were established based on the AISC [51] code. The 
modulus of elasticity is 30450 𝑘𝑘𝑠𝑠𝑖𝑖 (210000 𝑇𝑇𝑃𝑃𝑚𝑚) , the density of the material is 0.288 𝑝𝑝𝑠𝑠/
𝑖𝑖𝑛𝑛3 (7971.810  𝑝𝑝𝑠𝑠/𝑖𝑖𝑛𝑛3) and the yield stress of steel used is 58.0 𝑘𝑘𝑠𝑠𝑖𝑖 (400 𝑇𝑇𝑃𝑃𝑚𝑚). The members of 
the dome are divided into seven groups. 

The dome is subjected to vertical loads on all unsupported joints, with a load of −13.49 kips 
(60 𝑘𝑘𝑁𝑁) at node 1, −6.744 𝑘𝑘𝑖𝑖𝑝𝑝𝑠𝑠 (30 𝑘𝑘𝑁𝑁) at nodes 2-14 and −2.248 𝑘𝑘𝑖𝑖𝑝𝑝𝑠𝑠 (10 𝑘𝑘𝑁𝑁) at remaining 
nodes. The minimum cross-sectional area of elements is 0.775 𝑖𝑖𝑛𝑛2 (5 𝑠𝑠𝑛𝑛2) and the constraints 
considered are stress based on the AISC [51] code and displacement constraints of 
±0.1969 𝑖𝑖𝑛𝑛 (5 𝑛𝑛𝑛𝑛). 
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Figure 11. Schematic view of dome structure with 120 members. 
 

Figure 12 shows the 30 independent runs carried out to solve the dome structure with 120 
members design using MGO. Results for the truss-optimized weight of MGO compared with AOA, 
MGA and CRY are presented in Table 6, showing that MGO obtains the optimal design. Similar to 
25-member and 72-member truss problems, the MGO method is able to predict the lowest weight for 
the structure. The authors calculate the results of the other three metaheuristics algorithms in Table 6 
to compare algorithm strengths against the MGO. As reported, the MGO is able to calculate an 
overall weight of 33281.68 𝑝𝑝𝑠𝑠 for the truss, which is again the lowest compared to other methods, 
such as CRY, which is able to predict an overall weight of 34052.17 𝑝𝑝𝑠𝑠.  

In terms of the statistical findings, the MGO can provide a mean of 33418.16 𝑝𝑝𝑠𝑠 and an SD of 
121.10; these values have been computed most accurately up to this point for this particular truss 
design. Hence, the MGO algorithm can provide reasonable and economical results, as represented in 
Figure 13, showing that the MGO can calculate the most optimum weight for the structure. The 
results of achieved stresses and displacement within the members using MGO optimization runs for 
load cases are presented in Figure 14. The figures define stress and displacement limits, and the 
capability of the constraint-handling approach is in perspective. 
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Figure 12. Best run and average runs convergence curves dome structure with 120 
members with different methods. 

 
 

Table 6. The MGO results in dome structure with 120 members. 
 

 
 
 
 
 
 
 
 
 
 

Group Member AO
 

CRY MGA MGO 
1 3.99

 
3.134 3.589 3.026 

2 20.0
 

12.330 8.594 15.051 
3 4.96

 
5.276 6.170 4.982 

4 3.70
 

3.269 3.935 3.116 
5 7.41

 
9.413 11.411 8.280 

6 3.43
 

3.687 5.764 3.590 
7 2.57

 
2.765 4.206 2.496 

Optimum weight (lb.) 3692
 

34052.17 41028.10 33281.68 
Average weight (lb.) 4188

 
36872.80 44354.35 33418.16 

Standard deviation 3266
 

1148.37 2526.17 121.10 
Number of analyses 1000

 
10000 10000 2650 
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Figure 13. Best run and average runs convergence curves dome structure with 120 
members with different methods. 
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Figure 14. Stress and Displacement ratio for dome structure with 120 members with MGO. 
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6. Conclusions 

This work introduces the Mountain Gazelle Optimizer (MGO), which is a nature-inspired 
meta-heuristic algorithm, as a truss optimization method. After a detailed literature review of the 
optimization of truss structures with metaheuristic algorithms, MGO is used to solve three different 
benchmark truss design examples with different orientations and geometries under predefined 
loading conditions, namely trusses with 25-, 72- and 120-member elements. MGO results are 
compared with the AOA, MGA and CRY. A penalty method was complementary to incorporate 
constraint handling. Several runs using optimization algorithms were carried out to get accurate 
statistical data to compare the results between the selected metaheuristic algorithms. In all three truss 
designs, the MGO algorithm provided reasonable results with the most optimum structural weight 
compared to other metaheuristic algorithms and the lowest number of function evaluations, which is 
considered the minimum value for problems with higher complexity. MGO can reduce the time 
required to design and analyze truss structures by finding solutions more quickly than existing 
methods based on the convergence rate. It can lead to more economical structures by finding better 
solutions with low standard deviation that are more cost-effective and lighter. This work is the first 
evidence showing how MGO effectively solves and optimizes structural engineering problems, such 
as trusses. Moreover, this work can be expanded to other structural engineering optimization 
problems, including binary and multi-objective versions of MGO.  
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