
http://www.aimsciences.org/journal/aimsaci

Applied Intelligence and Computing
3(1): 93–115
DOI: 10.3934/aci.2023006
Received: 09 December 2022
Revised: 14 March 2023
Accepted: 19 April 2023
Published: 15 May 2023

Research article

All-pairwise squared distances lead to more balanced clustering

Mikko I. Malinen∗and Pasi Fränti

Machine Learning Unit, School of Computing, University of Eastern Finland, Box 111, FIN-80101
Joensuu, FINLAND; mmali@cs.uef.fi, franti@cs.uef.fi
* Correspondence: Email: mmali@cs.uef.fi.

Academic Editor: Chih-Cheng Hung

Abstract: In clustering, the cost function that is commonly used involves calculating all-pairwise
squared distances. In this paper, we formulate the cost function using mean squared error and show
that this leads to more balanced clustering compared to centroid-based distance functions, like the sum
of squared distances in k-means. The clustering method has been formulated as a cut-based approach,
more intuitively called Squared cut (Scut). We introduce an algorithm for the problem which is faster
than the existing one based on the Stirling approximation. Our algorithm is a sequential variant of a
local search algorithm. We show by experiments that the proposed approach provides better overall
optimization of both mean squared error and cluster balance compared to existing methods.

Keywords: clustering; balanced clustering; squared cut; scut; max k-cut problem

1. Introduction

Agglomerative clustering is the second most popular clustering algorithm after k-means. It operates
by a series of local optimal merge operations until the desired number of clusters is reached. Classical
choices for the merge cost function include single link, complete link and average link but none of these
are particularly good for most data. Ward’s method [1] is a much better choice, and it has been used to
minimize the same total squared error (TSE) cost function as k-means but with better optimization of
the cost function.

Agglomerative clustering also has another advantage over k-means as there is a variant that does not
require calculating the centroids: all pairwise distances (APD) within the clusters. This can be very
handy in cases where the mean of the data cannot be easily calculated. These can include strings [2],
time series [3] or GPS trajectories [4]. Furthermore, it has been shown that APD is just a scaled variant
of TSE when using squared Euclidean distance.

http://http://www.aimsciences.org/journal/aimsaci
http://dx.doi.org/10.3934/aci.2023006

94

Our first contribution is to show that APD will lead to more balanced clustering than TSE. This is
important because, while the balance property can be a desired property in some applications, it can
also cause the detection of real clusters to fail when some of the clusters are much larger (or smaller)
than others. In [5], they wanted all clusters to be roughly the same size to make results easier to
analyze but in [6] the balanced tendency caused a smaller country (Iceland) to merge into a larger
country, thereby failing to detect the real clusters.

Our second contribution is to show that APD can also be formulated as a cut-based clustering. We
give alternate proof for Hyugens’ theorem and show that the APD of a cluster is equal to its TSE
multiplied by its size (APD = n·TSE). We also propose a cut-based variant called Squared Cut (Scut)
and present a fast sequential variant of k-means to minimize the cost function. This algorithm is
significant due to the slowness of agglomerative algorithms, which are lower bound by O(n2) in their
exact form.

The rest of the paper is organized as follows. In Section 2, we review the existing cost functions for
traditional and balanced clustering. In Section 3, we present how clustering and cut-based methods are
connected and present an alternative proof for Huygens’ theorem. This theorem is important because
it demonstrates the similarity between different representations of the APD cost function. In Section
4, we present a k-means-based algorithm for minimizing APD. In Section 5, Scut is extended to lp

2
k-clustering. Experiments and conclusions are then given in Sections 6 and 7, respectively.

2. Cost functions for traditional and balanced clustering

In this section, we introduce different cost functions and algorithms for traditional and balanced
clustering. The choice of algorithm depends on the selected cost function, which is an important factor.
By far the most common cost function in clustering is the total squared error (TSE), or equivalently,
the mean squared error (MSE):

TS E =

n∑
i=1

||xi −CPi ||
2
2 (1)

MS E =
TS E

n
(2)

where xi is a data point, C j is the centroid of cluster j and Pi is the label of the cluster which xi is
assigned to. These can be generalized to other p-norms, even to infinite norms (p = ∞). Reference [7]
discussed how the infinity norm criterion could be used in practice. Instead of taking the maximum,
the infinity norm was approximated by a p-norm with a high value of p. This is because a p-norm has
an analytic formulation that can then be optimized.

A balancing constraint can be given along with the cost function [8],

n j = b
n
k
c or n j = d

n
k
e ∀ j = 1..k, (3)

where n j denotes the size of the cluster j.

2.1. k-Means clustering

The Euclidean sum-of-squares clustering (k-means clustering) aims at finding the best grouping of
n points in k clusters and it has been shown to be an NP-hard problem [9]. The clusters are represented

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

95

by center points (centroids), and the aim is to minimize the mean squared error (MSE), calculated
as the mean distance of the points from their nearest centroid, or, equivalently, to minimize the total
squared error (TSE), calculated as the sum of the squared distances of the points from their centroids.
k-Means clustering minimizes

TS E = TS E1 + TS E2 + ... + TS Ek, (4)

where TS Ei is the total squared error of the ith cluster. This can also be written as

TSE = n1 · MS E1 + n2 · MS E2 + ... + nk · MS Ek, (5)

where n j is the number of points in cluster j and MS E j is the mean squared error of the jth cluster.
The TSE and MSE for a single cluster j are calculated as

TS E j =
∑
xi∈P j

||xi −C j||
2 (6)

MS E j =
TS E j

n j
. (7)

When k and dimensionality d are constant, the k-means clustering problem (minimizing TSE) can
be solved in polynomial O(nkd+1) time [10]. Although polynomial, this is still slow, and suboptimal
algorithms are therefore used. The k-means algorithm [11] is fast and simple, although its worst-case
number of iterations is O(nkd). The advantage of k-means is that it finds a local optimum starting
from any initial centroid location by a simple iterative two-step procedure. A drawback of k-means is
that it cannot always find the global optimum. This is one of the reasons why slower agglomerative
clustering [12–14], or more complex variants of k-means [15–17], is used.

Gaussian mixture models (EM algorithm) [18, 19] and cut-based methods [20, 21] have also been
used. Recent research has considered clustering using analytic functions [7] and fitting the data into
the model before fitting the model to the data [22].

2.2. Balanced clustering

Balanced clustering is defined as a type of clustering where the points are evenly distributed between
the clusters. In other words, every cluster includes either bn/kc or dn/ke points. We define a balanced
clustering problem as a problem that aims at minimizing the imbalance, while also minimizing some
other cost function, such as MSE. The imbalance is measured by

imbalance =
∑

j

max(n j − d
n
k
e, b

n
k
c − n j). (8)

There is a need for balance, it is useful in workload balancing, wireless sensor networks and sightseeing
tour design. In traveling salesman problem a shortest route for the salesman through all the cities. For
example, in [8] a clustering algorithm is applied to the multiple traveling salesman problem [23]. The
algorithm clusters the cities so that each cluster can be solved by one salesman. The goal is to achieve
an equal workload among salesmen. The following is an example of partitioning a dataset for 4-TSP,
that is, there are four salesmen in Figure 1 [24].

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

96

Figure 1. Balanced clustering [24] leads to better parallel efficiency when solving large-scale
TSP problems. Subsolutions of a 4-TSP problem of the Santa Claus data in [24] are shown.

Clustering is used in wireless sensor networks for the energy efficiency of nodes and the lifetime of
the network [25, 26]. Targeting certain sizes of clusters is also useful [27, 28].

Balanced clustering, in general, is a two-objective optimization problem, in which the two aims can
be in conflict with each other: minimize a cost function such as MSE, and balance the cluster sizes
at the same time. Traditional clustering aims at minimizing the MSE completely without considering
cluster size balance. Balancing, on the other hand, would be trivial if we did not care about MSE,
which involves dividing the vectors into equal size clusters randomly. To optimize both, there are two
approaches: Balance-constrained and balance-driven clustering.

In balance-constrained clustering, cluster size balance is a mandatory requirement that must be
met, and minimizing MSE is a secondary criterion. In some applications, cluster size balance is not a
mandatory requirement. It is enough that cluster sizes are more balanced. In balance-driven clustering,
balanced clustering is an aim, but it is not mandatory. It is a compromise between the two goals,
namely the balance and the MSE. The solution is a weighted cost function between the MSE and the
imbalance, or it is a heuristic, which aims at minimizing MSE but indirectly creates a more balanced
result than optimizing MSE alone.

Next, we review the existing methods that aim to achieve balanced clustering. Bradley et al. [29]
presented a constrained k-means algorithm where the assignment step of k-means is implemented as a
linear programming problem in which a minimum number of points in a cluster is set as a constraint.
In [8], a balanced k-means algorithm using the Hungarian algorithm and fixed-size clusters is presented.
It solves the k-means assignment step as an assignment problem. It is a balance-constrained algorithm
that forces balanced clusters.

The method in [30] tried to find a partition close to a given partition, but so that the cluster
size constraints were fulfilled. Banerjee and Ghosh [31] presented an algorithm based on frequency
sensitive competitive learning (FSCL) where the centroids competed for the points. It multiplicatively
scaled the error (the distance from the data point to the centroid) by the number of times that a centroid
had won in the past. This meant that larger clusters were less likely to gain points in the future.
Althoff et al. [32] used FSCL, but their solution incorporated an additive distance bias instead of a
multiplicative distance bias. They reported that their algorithm was more stable for high-dimensional

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

97

feature spaces.
Banerjee and Ghosh [33] introduced a fast (O(kn log n)) algorithm for balanced clustering that used

three steps: sampling the given data, clustering the sampled data and populating the clusters with the
data points that were not sampled in the first step. Size regularized cut SRCut [34] is defined as the
sum of the inter-cluster similarity and a regularization term measuring the relative size of two clusters.
In [35], there was a term included in the cost function, which aimed at facilitating the balancing.
In [36], the size of the maximum-size cluster was minimized in a k-means-type algorithm.

There are also application-based solutions in networking [27] that aim to balance network loads.
With these solutions, the clustering is done through self-organization without central control. In [28],
energy-balanced routing between sensors was the goal; thus, only the most suitably balanced number
of nodes were cluster members. The classification of some algorithms into these two classes and the
types of the algorithms can be found in Table 1.

Table 1. Classification of some balanced clustering algorithms.

Balance-constrained Type of algorithm
Balanced k-means [8] k-means
Balanced size constraints [37] linear programming
Constrained k-means [29] k-means
Size constrained [30] integer linear programming
Balance-driven Type of algorithm
FSCL [31] assignment
FSCL additive bias [32] assignment
Cluster sampled data [33] k-means
Ratio cut [38] (spectral) divisive
Ncut [20] (spectral) divisive
Mcut [21] divisive
SRcut [34] divisive
Submodular fractional programming [35] submodular fractional programming
MinMax k-means [36] k-means

3. Cut-based methods

Cut-based clustering is a process where the dataset is cut into smaller parts based on similarity
S (xl, xs) or cost d(xl, xs) between pairs of points. The partitioning of a dataset into two parts A and B
can be indicated as cut(A, B), while the value of cut(A, B) is the total weight of all pairs of points where
one is from part A and the other is from part B:

cut(A, B) =
∑

xl∈A,xs∈B

wls. (9)

The weights w can be defined either as distances or similarities between the two points (see a summary
of their use in Figure 2). Unless otherwise noted, we use (squared) Euclidean distances in this paper.

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

98

Figure 2. Data representation types, conversions between them and methods and algorithms
to cluster each of them.

The cut(A, B) equals the total pairwise weights of A ∪ B subtracted by the pairwise weights within the
parts A and B:

cut(A, B) = W −W(A) −W(B), (10)

where W is the sum of all pairwise weights (here we assume that arc lengths are symmetric).

W =
1
2

∑
l,s

wls, (11)

where W(A) is the sum of the pairwise weights within part A:

W(A) =
1
2

∑
xl∈A,xs∈A,l,s

wls, (12)

where W(B) is defined similarly.

In cut-based clustering, the most common objective (cost or utility) functions are Minimum cut [39],
Maximum cut [40], Sparsest cut [41], Ratio cut [38] and Normalized cut, Ncut, [20]. In Minimum cut,
the points are partitioned into two parts, so that the cut is minimized. In Maximum cut, the cut is
maximized. In Sparsest cut, the value of the cut is divided by the minimum of the number of points
in the resulting parts. In Ratio cut, the cost of a cut is normalized by the number of points nA or nB,
while in Ncut, the cut is normalized by the similarities to all the other points in the dataset. These
normalizations favor balanced cuts [42], p. 401. In Mcut [21], the cost function aims at minimizing
cut(A,B), the similarity of A and B, while maximizing the similarities within the parts (W(A) and
W(B)) at the same time. Mcut tends to make balanced clusters, even when compared to Ratio cut and
Mcut [21]. A summary of these methods is in Table 2 and an example in Figure 3.

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

99

Table 2. Summary of some cut-based methods.

Method min Cost Weights Balanced
or max

Minimum cut [39] min weight similarity no
Maximum cut [43] max weight or dissimilarity no

number of edges
Sparsest cut [41] min number of edges adjacency no
Ratio cut [38] min weights similarity yes
Ncut [20] min weights similarity yes
Mcut [21] min weights similarity yes

0.33

0.75

1.00

1.00

0.250.50

0.33

0.50

0.33

Part B

1.00

Part A

W = 5.99
W(A) = 1
W(B) = 2.75
cut(A, B) = 2.24
RatioCut(A, B) ≈ 1.87
Ncut(A, B) ≈ 1.14
Mcut(A, B) ≈ 3.05

Figure 3. An example of a cut.

The methods optimize the following definitions:

MinimumCut(A, B) = minA,Ā cut(A, Ā) (13)
MaximumCut(A, B) = maxA,Ā cut(A, Ā) (14)

SparsestCut(A, B) =
cut(A, Ā)

min(|A|, |Ā|)
(15)

RatioCut(A, B) =
cut(A, Ā)

nA
+

cut(B, B̄)
nB

(16)

Ncut(A, B) =
cut(A, Ā)

W(A) + cut(A, Ā)
+

cut(B, B̄)
W(B) + cut(B, B̄)

(17)

Mcut(A, B) =
cut(A, B)

W(A)
+

cut(A, B)
W(B)

. (18)

where Ā is the complement point set of A, B̄ is the complement point set of B and W(A) is the
total similarities between the pairs of points within cluster A. Optimizing the cost functions (16)
and (17) aims at minimizing the cuts (the numerators), while at the same time maximizing the
denominators. Often one approximates this problem through relaxation, i.e., solving a nearby easier
problem. Relaxing Ncut leads to normalized spectral clustering, while relaxing RatioCut leads to
unnormalized spectral clustering [42]. There is also a relaxation based on semidefinite programming
for Ncut [44]. The methods Ncut, Ratio cut and Mcut, in their basic forms, cut the graph into two

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

100

cut(A1, Ā1) = 24
cut(A2, Ā2) = 24
1
2

∑
= 48/2 = 24

Figure 4. An example of MAX k-CUT, when k = 2.

parts. Although extensions exist, which recursively cut the graph into k parts, k > 2, these methods do
not consider cutting the graph simultaneously into more than two parts. In our method, which we will
introduce in the next sections, cutting into k parts is a standard procedure.

3.1. MAX k-CUT method

In the weighted MAX k-CUT problem [45] one partitions a graph into k subgraphs so that the sum
of the weights of the edges between the subgraphs is maximized. The weights are the distances. MAX
k-CUT aims at partitioning the data into k clusters A1, ..., Ak. Following the notation of Section 3 and
writing the factor 1/2 in order to avoid summing the weights twice, the MAX k-CUT problem is defined
as

max
A j,1≤ j≤k

1
2

k∑
j=1

cut(A j, Ā j). (19)

See an example of MAX k-CUT in Figure 4. This is an NP-hard problem [46] for general weights. If
we use Euclidean distance for the weights, then weighted MAX k-CUT results in the minimum intra-
cluster pairwise Euclidean distances among any k-CUT. This is due to the fact that when we maximize
what is taken off, we, at the same time, minimize what is left. If we use the squared Euclidean
distances, we end up minimizing intra-cluster pairwise squared Euclidean distances, see Equation 20.
With squared Euclidean distances as the weights, the problem is expected to remain NP-hard. NP-
hardness is proved for two cluster cases [47].

3.2. Scut

In this paper, we formulate all-pairwise squared distances using a cut-based method called Squared
cut (Scut). This method is called l2

2 k-clustering [48]. It is a special case of APD that uses squared
Euclidean distances. However, we formulate it by using the TSEs and MSEs of the clusters and show
that the method leads to more balanced solutions for clustering problem than TSE itself. It is formulated
as a cut-based method and it has been shown that it is a close relative to the MAX k-CUT method [49].
We present an algorithm for the problem that is more practical than the exhaustive Stirling search
proposed in [50] for l2

2 k-clustering. The algorithm is a sequential variant of the k-means algorithm,
with immediate updates directly optimizing the cost function.

A general k-clustering problem in [49] defined the cost by calculating all pairwise distances within
the clusters for an arbitrary weighted graph. The paper [51] studied the problem when the distances

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

101

Figure 5. Two different-sized clusters with the same MSE.

satisfied the triangle inequality. Schulman [48] gave probabilistic algorithms for l2
2 k-clustering. The

running time was linear if the dimensionality d = o(log n/ log log n) but otherwise it was nO(log log n).
De la Vega et al. [50] improved and extended Schulman’s results, giving a true polynomial time
approximation algorithm for arbitrary dimensions. However, even their algorithm was slow in practice.
We, therefore, present a faster algorithm for the Squared cut method.

In Scut, we form the graph by assigning the squared Euclidean distances as the weights of the
edges between every pair of points. In a single cluster j, the intra-cluster pairwise squared distances =

n j · TS E j. The generalization of this to all clusters is known as Huygens’ theorem. Huygens’ theorem
is crucial for our method because it relates the pairwise distances to the intra-clusters TSE, and thus, to
the Scut cost function:

Scut =

k∑
j=1

∑
xs,xt∈P jt>s

||xs − xt||
2
2 = n1 · TS E1 + n2 · TS E2 + ... + nk · TS Ek, (20)

where k is the number of clusters, xs and xt are point numbers s and t in part P j, n j is the number of
points and TS E j is the total squared error of the jth cluster. Note that this Scut cost tells what there is
inside the clusters, not what there is between the clusters. Based on (6), this may also be written as

Scut = n2
1 · MS E1 + n2

2 · MS E2 + ... + n2
k · MS Ek, (21)

where MS E j is the mean squared error of the jth cluster. In cut-notation, the cost function is the total
pairwise squared Euclidean weights minus the value of MAX k-CUT:

Scut = W − max
A j,1≤ j≤k

1
2

k∑
j=1

cut(A j, Ā j), (22)

where the A js are subsets of the dataset. From this, we conclude that using squared Euclidean distances
as weights and optimizing MAX k-CUT results in optimization of the Scut cost function (20). The
difference between the MAX k-CUT used in calculating Scut cost and MAX k-CUT in general is the
choice of the weights. Our cut-based method has an MSE-based cost function and tends to balance
clusters because of the n2

j factors in (21). This can be seen by the following simple example, where we
assume that the two clusters have the same mean squared error: MS E1 = MS E2 = MS E (Figure 5).
Their total errors are 22 · MS E1 = 4 · MS E and 102 · MS E2 = 100 · MS E. Adding one more
point increases the error by (n + 1)2 · MS E − n2 · MS E = (2n + 1) · MS E. In Figure 5, the cost
would increase by 5 · MS E if the point is added into cluster 1 and 21 · MS E if into cluster 2. The

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

102

cost function therefore always favors putting points into a smaller cluster which tends to make more
balanced clusters. The cost function leads to more balanced clustering in general. This is supported by
logical argument (Figure 5) and experimental evidence. We do not have proof that this will happen in
all cases. Due to the suboptimality of k-means, it is possible that different cost functions would lead to
different suboptimal solutions. The suboptimal solution obtained by TSE might be more balanced in
certain situations. However, we expect Scut to provide more balanced results than TSE in most cases.
Demonstration of the calculation of the cost can be found in Figures 6 and 7.

4

2

1

1

53

4

4

4

Part B

Scut = 2 + 1 + 1 = 4

Part A

Scut = 1
1

Figure 6. Calculation of the cost. Edge weights are squared Euclidean distances.

Figure 7. Calculation of the cost by TS Es. Edge weights are squared Euclidean distances.
The blue dots are centroids.

3.3. Proof of Huygens’ theorem

We provide here an alternative, simpler and new proof of Huygens’ theorem. An earlier proof can
be found in Späth’s book [52], p. 52. The name Huygens is mentioned in connection with this theorem
in [9]. Our proof is based on differentiation:

By xvt we denote the point v, feature t and by Scuti we denote the pairwise intra-cluster squared
distances. For a single cluster i,

TS Ei =
∑

u

(
∑

t

((xut −

∑
v xvt

ni
)2)),

Scuti =

ni∑
u=1

ni∑
v=u+1

∑
t

(xut − xvt)2.

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

103

Huygens’ theorem for one cluster i is

Scuti = ni · TS Ei.

⇔
ni∑

u=1

ni∑
v=u+1

∑
t

(xut − xvt)2

= ni ·
∑

u

(
∑

t

((xut −

∑
v xvt

ni
)2)).

Our proof of Huygens’ theorem is achieved by differentiating TS Ei and Scuti with respect to xst, the
feature t of point s and by showing that these differ only by the factor ni. Both of the differentiations
use the chain rule:

∂TS Ei

∂xst
= 2
∑
u,s

(xut −

∑
v xvt

ni
) · −

1
ni

+ 2(xst −

∑
v xvt

ni
) · (1 −

1
ni

)

= 2
∑

u

(xut −

∑
v xvt

ni
) · −

1
ni

+ 2(xst −

∑
v xvt

ni
)

= 2
∑

u

(xut) · −
1
ni

+ 2 ·
∑

v xvt

ni
+ 2(xst −

∑
v xvt

ni
)

= 2
∑

u

(xut · −
1
ni

) + 2xst.

= 2 · (xst −
∑

u

(xut ·
1
ni

))

Next, we calculate the other derivative:

∂Scuti

∂xst
= 2 ·

ni∑
v=s+1

(xst − xvt) · 1 + 2 ·
s−1∑
u=1

(xut − xst) · −1

= 2 · ((ni − (s + 1) + 1) · xst +

ni∑
v=s+1

(−xvt) +

s−1∑
u=1

(−xut) + (s − 1) · xst)

= 2 · ((ni − s + s − 1) · xst +

ni∑
u=1

(−xut) + xst)

= 2 · (ni · xst −
∑

u

xut)

Thus
∂Scuti

∂xst
= ni ·

∂TS Ei

∂xst
. (23)

In addition, we know that TS Ei and Scuti are both equal to 0 when the points are at the same location
as the centroid. Based on this and (23), we conclude that Huygens’ theorem holds. �

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

104

Algorithm 1 Sequential k-means algorithm for Scut
Input: dataset X, number of clusters k, number of points n
Output: partitioning of points P

Create some initial partitioning P.
changed← TRUE
while changed do

changed← FALSE
for i = 1 to n do

for l = 1 to k do
if ∆Scut < 0 then

move point i to cluster l
update centroids and TS Es of previous cluster and cluster l
changed← TRUE

end if
end for

end for
end while
Output partitioning of points P.

4. Approximating Scut

4.1. k-means variant for Scut

We next define the sequential k-means variant for the Scut method. In the algorithm, points are
repeatedly re-partitioned to the cluster that provides the lowest value for the Scut cost function. The
partitioning of the points is done one by one, and a change of cluster will cause an immediate update
of the two affected clusters (their centroid and size). We use the fact that calculating the pairwise
total squared distance within clusters is the same as calculating the Scut cost function in TSE form
(20). We next derive a fast O(1) update formula which calculates how much the value of the cost
function changes when one point is moved from one cluster to another. We keep on moving points
to other clusters as long as the cost function decreases, see Algorithm 1. This may require repeating
the process of going through the points multiple times before stopping. The approximation ratio is the
same as in the subsequent Equation (30), where αk > 1 − k−1, which is derived in [46]. The update
formula follows the merged cost in the agglomerative clustering algorithm [12]. It includes the change
of TSE when adding a point, the change of TSE when removing a point and the change of the overall
cost with respect to the cost function (20).

∆TS Eadd =
nA

nA + 1
· ||CA − xi||

2 (24)

∆TS Eremove =
nB − 1

nB
· ||

nB

nB − 1
·CB +

1
nB − 1

· xi − xi||
2

=
nB − 1

nB
||

nB

nB − 1
·CB +

nB

nB − 1
· xi||

2

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

105

nB = 9
TS EB = 25
∆TS Eremove =

9
9−1 · 2

2 = 4.5

nA = 3
TS EA = 3
∆TS Eadd =

3
3+1 · 4

2 = 12

Figure 8. Changing point from cluster B to A decreases Scut cost by 10. TS E increases, but
because cluster A has many points fewer than cluster B, the Scut cost decreases.

=
nB

nB − 1
· ||CB − xi||

2 (25)

The total cost before the move with respect to the two clusters is

Scutbe f ore = nA · TS EA + nB · TS EB, (26)

where nA and nB are the number of points in the clusters A and B. CA and CB are the centroid locations,
and xi is the data point involved in the operation. The total cost after the move is

Scuta f ter = (nA + 1) · (TS EA + ∆TS Eadd) + (nB − 1) · (TS EB − ∆TS Eremove) (27)

From these we get the change in cost:

∆Scut = Scuta f ter − Scutbe f ore (28)
= TS EA − TS EB + (nA + 1) · ∆TS Eadd − (nB − 1) · ∆TS Eremove. (29)

See an example of a point changing its cluster in Figure 8, where the changes in the TSEs are
∆TS Eadd = 12 and ∆TS Eremove = 4.5. The change in the cost function ∆Scut = −10.

4.2. Approximation ratio

We can provide an approximation ratio εk for Scut using the known approximation ratio αk = 1−k−1

for MAX k-CUT [46]. The approximation ratio of MAX k-CUT is calculated using the sum of pairwise
weights that were cut off (MAX k-CUT) while Scut uses the sum of remaining weights, see Figure 9.
We can derive εk from αk for the expected case as follows:

εk =
Scut
Scut∗

(30)

=
W − MAX k − CUT
W − MAX k − CUT∗

(31)

=
W − MAX k − CUT

W − 1
αk
· MAX k − CUT

(32)

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

106

<
W − MAX k − CUT

W − 1
1−k−1 · MAX k − CUT

(33)

Since we have a lower bound for αk, it is possible to get an upper bound for εk. However, this bound
is dataset-specific and also depends on the number of clusters (k). In practice, the denominator of (30)
becomes very small in all of the cases we tested, so the upper bound does not have much practical
relevance.

Figure 9. Derivation of the approximation ratio.

5. lp
2 k-Clustering

A generalization of the Scut cost function (20) is lp
2 k-Clustering, i.e., all-pairwise powered distances

as cost. So far, in this article, we have dealt with the case where p = 2, but p can have other values,
like p = 1 or p = 3. It is a known fact that, in centroid-based clustering, when using absolute values
in distance calculations (this corresponds to p = 1 here), the outlier points tend not to be put in one-
point clusters compared to when squared distances are used. Thus we believe that here p = 1 tends to
make less-balanced clusters and p > 2 tends to make more balanced clusters than the more common
p = 2. As an extreme, if we use p = ∞, we will get clusters where the points of point pairs with
the largest pairwise distances are in different clusters. We show that the relation corresponding to
Huygens’ theorem does not hold for this generalized cost function:
Theorem. Huygens’ theorem does not hold for powers higher than two because there exists a dataset
X for which the following holds:

∑
xs,xt∈P j

||xs − xt||
p , n j · (

∑
xs∈P j

||xs −

∑
xv∈P j

xv

n j
||p), p > 2. (34)

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

107

Proof. Consider a dataset of two points xs and xt, located at a distance of 1 from each other. Then

||xs − xt||
p > ||xs −

xs + xt

2
||p + ||xt −

xs + xt

2
||p, when p > 2,

i.e.,
1 > 2 · (0.5p + 0.5p), when p > 2.

So we have found an X for Equation 34. �

6. Experiments

We use datasets from the Machine Learning Unit in the School of Computing, University of Eastern
Finland [53]. The s-sets are synthetic, two-dimensional (2-d) and have increasingly overlapping
clusters with the postfix number, iris is a real dataset.

The benefits of balancing clustering algorithms are best seen when clustering is done for non-
balanced datasets. To compare how close the obtained clustering is to balance-constrained clustering
having equal distribution of sizes dn/ke and bn/kc, we measure the imbalance by calculating the
difference in the cluster sizes and a balanced n/k distribution using Equation (8) with 30 repeats.

Figure 10. k-Means leads to a large imbalance in cluster sizes whereas balance-constrained
clustering optimizes the distances poorly. Scut provides a good compromise between these
two objectives.

The results in Table 3 show that the fast Scut algorithm outperforms k-means when compared to the
Scut cost function (20) even with the balanced datasets, for which one could have expected k-means to
perform equally well. We use the centroid index (CI) to measure the success at cluster level [54, 55]
(S-sets). Given a ground truth solution (G) and clustering solution (C), the centroid index counts how
many real clusters are missing a center, or alternatively, how many clusters have too many centers. The
CI-value is the higher of the two numbers [54]. When CI = 0, it means that the clustering is correct.
The Tables 3 and 4 have a line indicating how many times the numbers in columns are best. Of course,
these indications do not have statistical meaning (not used in a formal statistical test), but these are just
indications.

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

108

Table 3. Means of Scut cost, means of MS E and means of CI validity indices of the proposed
Scut and k-means clustering for 30 runs. ’MS E’ and ’Scut’ and ’CI’ on the top of the table
refer to cost functions and ’k-means’ and ’Scut’ on the next level refer to algorithms.

Dataset MSE Scut CI
K-means Scut K-means Scut K-means Scut

s1 2.73 2.39 6.24 4.62 0.93 0.50
s2 3.27 3.11 6.41 5.50 0.87 0.57
s3 3.83 3.59 7.23 6.09 1.1 0.43
s4 3.38 3.19 5.96 6.09 0.87 0.17
a1 5.28 5.70 2.99 2.98 1.4 1.6
DIM32 10.0 2.27 11.7 1.49 0.20 0.0
unbalance 0.59 2.97 2.49 9.49 0.667 3.87

iris 9.83 9.34 8.25 6.99
thyroid 3.48 4.39 12.2 6.26
wine 2.77 2.65 3.10 2.57
breast 28.2 28.4 5.64 5.59
yeast·100 3.27 3.57 8.96 6.56
glass 1.51 1.78 14.7 7.56
wdbc 8.11 8.11 2.56 2.56
times best 7 8 2 13 2 5

The results in Table 4 show Scut yields more balanced results than k-means. See an example
clustering result in Figure 10 for the locations in the Finland dataset. A sightseeing designer would
perhaps like to divide the locations into two clusters so that in both clusters there would be a well-
balanced number of locations and that route lengths in clusters would be short. To interpret the figures
note that in Eastern Finland the density of locations is high in this dataset. From Figure 10 we see
that Scut balances better than k-means. The Scut cost is better in Scut than in k-means, because of
the balancing property of Scut. k-Means gives better MS E than Scut for this dataset. Figure 10
demonstrates an application area for the Scut method that justifies the usefulness of the method.

The results in Table 4 show that 85% of the clustering results are more balanced with the proposed
method than with the k-means method. They were equally balanced in 8% of the cases, and in the
remaining 8% of the cases, the k-means result was more balanced. We tried also with a semidefinite
programming-based algorithm, but it turned out to be too slow in practice: with 50 points, the
computing time is approximately 20 s, but with 150 points it is already about 7 hours. The memory
requirement for 150 points would also be very high: 4.4 GB. The results in Table 3 are therefore only
for the fast approximation algorithm because it is able to deal with considerably large datasets. For
calculations, we used a PC and Octave software.

We next compare the resulting partition sizes of the Scut method and the k-means method, when
we have two groups of points of sizes 1 and 100. We assume that all pairwise distances are 1 within
each group, and we change the between groups distance from 5 to 10, see Figure 11. Imbalance is
calculated using (8). It starts to become lower with Scut, when the inter-partition distance is decreased
from 10, whereas with k-means it remains the same, see Figure 12.

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

109

Table 4. Mean imbalances and mean execution times of the proposed Scut and k-means
clustering for 30 runs. ’k-Means’ and ’Scut’ refer to algorithms.

Dataset Points Clusters Imbalance Time
n k k-means Scut k-means Scut

s1 5000 15 749 478 1.16s 180s
s2 5000 15 675 453 1.54s 236s
s3 5000 15 931 469 1.26s 227s
s4 5000 15 830 441 1.47s 244s

a1 3000 20 441 489 0.99s 220s
DIM32 1024 16 26 0 0.33s 33s
unbalance 6500 8 6146 2858 1.15s 127s

iris 150 3 21 4 0.12s 0.50s
thyroid 215 2 173 126 0.12s 0.66s
wine 178 3 50 23 0.13s 0.41s
breast 699 2 230 216 0.19s 0.76s
yeast·100 1484 10 727 300 0.66s 66s
glass 215 7 183 114 0.17s 2.96s
wdbc 569 2 546 546 0.17s 0.45s

times best 2 13 14 0

1 100

5-10

Figure 11. We change the distance of two groups of points between 5 and 10.

We made also an experiment where we plotted MSEs and imbalances for several algorithms
and datasets. The rationale for this is that we see which algorithms give both low MSEs and low
imbalances. The genetic algorithm [56] combines the properties of several clusterings in one generation
to make a better clustering for the next generation. It is the best representative for optimizing MSE.
In Scut, k-means* and repeated k-means, we chose the results with the best balance. In constrained
k-means, the cluster size parameters were set to balance=0, and MSE was then optimized. In Ncut we
used the implementation [57] by Cour, Yu and Shi from the University of Pennsylvania. We used 100
repetitions for all algorithms and chose the best results, see Figure 13. The genetic algorithm optimizes
MSE best, but the result is less balanced. Scut always provides a good balance, while balanced k-
means and constrained k-means always gave 0 imbalance. k-Means* and Ncut performed well with
one dataset. Overall, Scut performs well in both balance and MSE.

We made also an experiment to see how much edge weights are inter-partitional and how much are
intra-partitional. We calculated all-pairwise squared distances W for some datasets and the mean value
for the approximated MAX k-CUT obtained by 100 runs of the fast algorithm, see Table 5. We see the

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

110

5 6 7 8 9 10

Between cluster distance

20

40

60

80

100

Im
b

a
la

n
c
e

Scut

10

19

33
38

26

1 1 1 1 11

k-means

Figure 12. Imbalances for k-means and Scut with different inter-partition distance. The
number shown is the size of the smaller cluster.

0 2 4 6 8 10 12 14
2

2.5

3

3.5

4

4.5

5

5.5

6

balance

M
S

E

s1

Constr

GA

Ncut

Scut

K−means

0 4 8 12 16
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

balance

M
S

E

Ncut

GA

K−means

Constr

Scut

s4

0 10 20 30 40
2

3

4

5

6

balance

M
S

E

GA

Ncut

Scut

Constr
thyroid

K−means

0 4 8 12 16 20

1

1.5

2

balance

M
S

E

wine Ncut

K−means

GA

Constr

Scut

Figure 13. Joint comparison of imbalance and MSE.

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

111

Table 5. All pairwise square distances W and the mean value of 100 runs for the arcs of
approximated MAX k-CUT. Only significant numbers are shown.

Dataset number of W MAX k-CUT MAX k-CUT/W
clusters

thyroid 2 2.30 1.67 73%
breast 2 34 29 85%
wdbc 2 5.05 4.80 95%
iris 3 8.94 8.24 92%
s1 15 2.884 2.879 99.8%
DIM32 16 9.827 9.826 99.99%

surprising fact that, in most cases, the cut contains over 90% of all the edge weights. This yields a high
value for the upper bound of the approximation factor εk for the tested sets. This means that a good
guaranteed approximation cannot be made for many datasets in the way presented.

7. Conclusions

We have formulated the all-pairwise squared distances cost function as a cut-based method called
Squared cut (Scut) using TSE, MSE and cluster sizes. We showed that this method leads to more
balanced clustering. We used the solution of the MAX k-CUT problem to minimize the pairwise intra-
cluster squared distances and used Huygens’ theorem to show that this corresponds to minimizing
the cost function. We gave an alternate proof of Huygens’ theorem. Since Scut is expected to be
an NP-hard problem, it could not be solved optimally for practical-sized datasets. We, therefore,
introduced a sequential k-means algorithm to minimize the cost function directly. We showed through
experiments that the proposed approach provides better overall joint optimization of MSE and cluster
balance compared to other methods. We also treated the case of raising the distances to the pth power,
by showing that the relation corresponding to Huygens’ theorem does not hold in this case.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. J. H. Ward Jr, Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc., 58
(1963), 236–244. https://doi.org/10.1080/01621459.1963.10500845

2. T. Kohonen, Median strings, Pattern Recogn. Lett., 3 (1985), 309–313.
https://doi.org/10.1016/0167-8655(85)90061-3

3. V. Hautamäki, P. Nykänen, P. Fränti, Time-series clustering by approximate
prototypes, 19th International conference on pattern recognition, (2008), 1–4. IEEE.
https://doi.org/10.1109/ICPR.2008.4761105

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

http://dx.doi.org/https://doi.org/10.1080/01621459.1963.10500845
http://dx.doi.org/https://doi.org/10.1016/0167-8655(85)90061-3
http://dx.doi.org/https://doi.org/10.1109/ICPR.2008.4761105

112

4. P. Fränti, R. Mariescu-Istodor, Averaging gps segments: competition 2019, Pattern Recogn., 112
(2021), 107730. https://doi.org/10.1016/j.patcog.2020.107730

5. P. Fränti, S. Sieranoja, K. Wikström, T. Laatikainen, Clustering diagnoses from 58m patient visits
in Finland 2015-2018, 2022.

6. M. Fatemi, P. Fränti, Clustering nordic twitter users based on their connections, 2023.

7. M. I. Malinen, P. Fränti, Clustering by analytic functions, Inform. Sciences, 217 (2012), 31–38.
https://doi.org/10.1016/j.ins.2012.06.018

8. M. I. Malinen, P. Fränti, Balanced k-means for clustering, in: Joint Int. Workshop on Structural,
Syntactic, and Statistical Pattern Recognition (S+SSPR 2014), LNCS 8621, Joensuu, Finland,
2014.

9. D. Aloise, A. Deshpande, P. Hansen, P. Popat, NP-hardness of Euclidean sum-of-squares
clustering, Mach. Learn., 75 (2009), 245–248. https://doi.org/10.1007/s10994-009-5103-0

10. M. Inaba, N. Katoh, H. Imai, Applications of Weighted Voronoi Diagrams and Randomization to
Variance-Based k-Clustering, ACM symposium on computational geometry (SCG 1994), (1994),
332–339. https://doi.org/10.1145/177424.178042

11. J. MacQueen, Some methods of classification and analysis of multivariate observations, Berkeley
Symp. Mathemat. Statist. Probab., 1 (1967), 281–297.

12. W. H. Equitz, A New Vector Quantization Clustering Algorithm, IEEE Trans. Acoust., Speech,
Signal Processing, 37 (1989), 1568–1575. https://doi.org/10.1109/29.35395

13. P. Fränti, O. Virmajoki, V. Hautamäki, Fast agglomerative clustering using a k-nearest neighbor
graph, IEEE T. Pattern Anal., 28 (2006), 1875–1881. https://doi.org/10.1109/TPAMI.2006.227

14. P. Fränti, O. Virmajoki, Iterative shrinking method for clustering problems, Pattern Recogn., 39
(2006), 761–765. https://doi.org/10.1016/j.patcog.2005.09.012

15. P. Fränti, Efficiency of random swap clustering, Journal of Big Data, 5 (2018), 1–29.
https://doi.org/10.1186/s40537-018-0122-y

16. B. Fritzke, Breathing k-means, arXiv:2006.15666.

17. C. Baldassi, Recombinator-k-means:an evolutionary algorithm that exploits k-means++ for
recombination, IEEE T. Evolut. Comput., 26 (2022), 991–1003.

18. A. P. Dempster, N. M. Laird, D. B. Rubin, Maximun likelihood from incomplete data via the EM
algorithm, J. R. Stat. Soc. B, 39 (1977), 1–38. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x

19. Q. Zhao, V. Hautamäki, I. Kärkkäinen, P. Fränti, Random swap EM algorithm for finite mixture
models in image segmentation, IEEE International Conference on Image Processing (ICIP),
(2009), 2397–2400. https://doi.org/10.1109/ICIP.2009.5414459

20. J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE T. Pattern Anal., 22 (2000), 888–
905. https://doi.org/10.1109/34.868688

21. C. H. Q. Ding, X. He, H. Zha, M. Gu, H. D. Simon, A min-max cut algorithm for graph partitioning
and data clustering, IEEE International Conference on Data Mining (ICDM), (2001), 107–114.

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

http://dx.doi.org/https://doi.org/10.1016/j.patcog.2020.107730
http://dx.doi.org/https://doi.org/10.1016/j.ins.2012.06.018
http://dx.doi.org/https://doi.org/10.1007/s10994-009-5103-0
http://dx.doi.org/https://doi.org/10.1145/177424.178042
http://dx.doi.org/https://doi.org/10.1109/29.35395
http://dx.doi.org/https://doi.org/10.1109/TPAMI.2006.227
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2005.09.012
http://dx.doi.org/https://doi.org/10.1186/s40537-018-0122-y
http://dx.doi.org/https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
http://dx.doi.org/https://doi.org/10.1109/ICIP.2009.5414459
http://dx.doi.org/https://doi.org/10.1109/34.868688

113

22. M. I. Malinen, P. Fränti, K-means*: Clustering by gradual data transformation, Pattern Recogn.,
47 (2014), 3376–3386. https://doi.org/10.1016/j.patcog.2014.03.034

23. R. Nallusamy, K. Duraiswamy, R. Dhanalaksmi, P. Parthiban, Optimization of non-linear multiple
traveling salesman problem using k-means clustering, shrink wrap algorithm and meta-heuristics,
International Journal of Nonlinear Science, 9 (2010), 171–177.

24. R. Mariescu-Istodor, P. Fränti, Solving the large-scale tsp problem in 1 h: Santa claus challenge
2020, Front. Robot. AI, (2021), 1–20. https://doi.org/10.3389/frobt.2021.689908

25. D. W. Sambo, B. O. Yenke, A. Förster, P. Dayang, Optimized clustering algorithms for large
wireless sensor networks: A review, Sensors, 19 (2019), 322.

26. J. Singh, R. Kumar, A. K. Mishra, Clustering algorithms for wireless sensor networks: A review,
International Conference on Computing for Sustainable Global Development (INDIACom),
(2015), 637–642.

27. Y. Liao, H. Qi, W. Li, Load-Balanced Clustering Algorithm With Distributed Self-
Organization for Wireless Sensor Networks, IEEE Sens. J., 13 (2013), 1498–1506.
https://doi.org/10.1109/JSEN.2012.2227704

28. L. Yao, X. Cui, M. Wang, An energy-balanced clustering routing algorithm for wireless sensor
networks, IEEE World Congress on Computer Science and Information Engineering, 3 (2009),
316–320.

29. P. S. Bradley, K. P. Bennett, A. Demiriz, Constrained k-means clustering, Tech. rep., MSR-TR-
2000-65, Microsoft Research, 2000.

30. S. Zhu, D. Wang, T. Li, Data clustering with size constraints, Knowledge-Based Syst., 23 (2010),
883–889. https://doi.org/10.1016/j.knosys.2010.06.003

31. A. Banerjee, J. Ghosh, Frequency sensitive competitive learning for balanced clustering on
high-dimensional hyperspheres, IEEE Transactions on Neural Networks, 15 (2004), 702–719.
https://doi.org/10.1109/TNN.2004.824416

32. C. T. Althoff, A. Ulges, A. Dengel, Balanced clustering for content-based image browsing, in:
GI-Informatiktage 2011, Gesellschaft für Informatik e.V., 2011.

33. A. Banerjee, J. Ghosh, On scaling up balanced clustering algorithms, SIAM International
Conference on Data Mining, (2002), 333–349. https://doi.org/10.1137/1.9781611972726.20

34. Y. Chen, Y. Zhang, X. Ji, Size regularized cut for data clustering, Advances in Neural Information
Processing Systems, 2005.

35. Y. Kawahara, K. Nagano, Y. Okamoto, Submodular fractional programming
for balanced clustering, Pattern Recogn. Lett., 32 (2011), 235–243.
https://doi.org/10.1016/j.patrec.2010.08.008

36. G. Tzortzis, A. Likas, The minmax k-means clustering algorithm, Pattern Recogn., 47 (2014),
2505–2516. https://doi.org/10.1016/j.patcog.2014.01.015

37. W. Tang, Y. Yang, L. Zeng, Y. Zhan, Optimizing mse for clustering with balanced size constraints,
Symmetry, 11 (2019), 338. https://doi.org/10.3390/sym11030338

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

http://dx.doi.org/https://doi.org/10.1016/j.patcog.2014.03.034
http://dx.doi.org/https://doi.org/10.3389/frobt.2021.689908
http://dx.doi.org/https://doi.org/10.1109/JSEN.2012.2227704
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2010.06.003
http://dx.doi.org/https://doi.org/10.1109/TNN.2004.824416
http://dx.doi.org/https://doi.org/10.1137/1.9781611972726.20
http://dx.doi.org/ https://doi.org/10.1016/j.patrec.2010.08.008
http://dx.doi.org/ https://doi.org/10.1016/j.patrec.2010.08.008
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2014.01.015
http://dx.doi.org/https://doi.org/10.3390/sym11030338

114

38. L. Hagen, A. B. Kahng, New spectrxal methods for ratio cut partitioning and clustering, IEEE T.
Computer-Aided D., 11 (1992), 1074–1085. https://doi.org/10.1109/43.159993

39. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms (2nd ed.), MIT
Press and McGraw-Hill, 2001.

40. M. X. Goemans, D. P. Williamson, Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming, J. ACM, 42 (1995), 1115–1145.
https://doi.org/10.1145/227683.227684

41. S. Arora, S. Rao, U. Vazirani, Expander flows, geometric embeddings and graph partitioning, J.
ACM, 56 (2009), 1–37. https://doi.org/10.1145/1502793.1502794

42. U. von Luxburg, A tutorial on spectral clustering, Stat. Comput., 17 (2007), 395–416.
https://doi.org/10.1007/s11222-007-9033-z

43. M. R. Garey, D. S. Johnson, Computers and intractability: A guide to the theory of NP-
completeness, W. H. Freeman, 1979.

44. T. D. Bie, N. Cristianini, Fast sdp relaxations of graph cut clustering, transduction, and other
combinatorial problems, J. Mach. Learn. Res., 7 (2006), 1409–1436.

45. A. Frieze, M. Jerrum, Improved approximation algorithms for max-k-cut and max bisection,
Algorithmica, 18 (1997), 67–81. https://doi.org/10.1007/BF02523688

46. W. Zhu, C. Guo, A local search approximation algorithm for max-k-cut of graph and hypergraph,
International Symposium on Parallel Architectures, Algorithms and Programming, (2011), 236–
240. https://doi.org/10.1109/PAAP.2011.35

47. A. V. Kel’manov, A. V. Pyatkin, On the complexity of some quadratic euclidean
2-clustering problems, Comput. Math. Math. Phys., 56 (2016), 491–497.
https://doi.org/10.1134/S096554251603009X

48. L. J. Schulman, Clustering for edge-cost minimization, Ann. ACM Symp. on Theory of Computing
(STOC), (2000), 547–555. https://doi.org/10.1145/335305.335373

49. S. Sahni, T. Gonzalez, P-complete approximation problems, J. ACM, 23 (1976), 555–565.
https://doi.org/10.1145/321958.321975

50. W. F. de la Vega, M. Karpinski, C. Kenyon, Y. Rabani, Approximation schemes for
clustering problems, ACM symposium on Theory of computing (STOC ’03), (2003), 50–58.
https://doi.org/10.1145/780542.780550

51. N. Guttmann-Beck, R. Hassin, Approximation algorithms for min-sum p-clustering, Discrete
Appl. Math., 89 (1998), 125–142. https://doi.org/10.1016/S0166-218X(98)00100-0

52. H. Späth, Cluster analysis algorithms for data reduction and classification of objects, Wiley, New
York, 1980.

53. P. Fränti, S. Sieranoja, Clustering datasets, University of Eastern Finland, 2020. Available from:
http://cs.uef.fi/sipu/datasets/.

54. P. Fränti, M. Rezaei, Q. Zhao, Centroid index: Cluster level similarity measure, Pattern Recogn.,
47 (2014), 3034–3045. https://doi.org/10.1016/j.patcog.2014.03.017

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

http://dx.doi.org/https://doi.org/10.1145/227683.227684
http://dx.doi.org/https://doi.org/10.1145/1502793.1502794
http://dx.doi.org/https://doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/https://doi.org/10.1007/BF02523688
http://dx.doi.org/ https://doi.org/10.1109/PAAP.2011.35
http://dx.doi.org/ https://doi.org/10.1134/S096554251603009X
http://dx.doi.org/ https://doi.org/10.1134/S096554251603009X
http://dx.doi.org/ https://doi.org/10.1145/335305.335373
http://dx.doi.org/https://doi.org/10.1145/321958.321975
http://dx.doi.org/ https://doi.org/10.1145/780542.780550
http://dx.doi.org/ https://doi.org/10.1145/780542.780550
http://dx.doi.org/https://doi.org/10.1016/S0166-218X(98)00100-0
http://cs.uef.fi/sipu/datasets/
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2014.03.017

115

55. S. Sieranoja, P. Fränti, Fast and general density peaks clustering, Pattern Recogn. Lett., 128 (2019),
551–558. https://doi.org/10.1016/j.patrec.2019.10.019

56. P. Fränti, Genetic algorithm with deterministic crossover for vector quantization, Pattern Recogn.
Lett., 21 (2000), 61–68. https://doi.org/10.1016/S0167-8655(99)00133-6

57. T. Cour, S. Yu, J. Shi, Normalized Cut Segmentation Code, 2004.

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Applied Computing and Intelligence Volume 3, Issue 1, 93–115

http://dx.doi.org/https://doi.org/10.1016/j.patrec.2019.10.019
http://dx.doi.org/https://doi.org/10.1016/S0167-8655(99)00133-6
http://creativecommons.org/licenses/by/4.0

	Introduction
	Cost functions for traditional and balanced clustering
	k-Means clustering
	Balanced clustering

	Cut-based methods
	MAX k-CUT method
	Scut
	Proof of Huygens' theorem

	Approximating Scut
	k-means variant for Scut
	Approximation ratio

	l2p k-Clustering
	Experiments
	Conclusions

