
http://www.aimsciences.org/journal/aimsaci

Applied Intelligence and Computing
3(1): 44–78
DOI: 10.3934/aci.2023004
Received: 14 September 2022
Revised: 05 January 2023
Accepted: 11 January 2023
Published: 06 February 2023

Survey

From basic approaches to novel challenges and applications in Sequential
Pattern Mining

Alessio Bechini1, Alessandro Bondielli2,3,∗, Pietro Dell’Oglio1 and Francesco Marcelloni1

1 Dept. of Information Engineering, University of Pisa, Italy; alessio.bechini@unipi.it,
pietro.delloglio@unifi.it, francesco.marcelloni@unipi.it

2 Dept. of Computer Science, University of Pisa, Italy; alessandro.bondielli@unipi.it
3 Dept. of Philology, Literature and Lingustics, University of Pisa, Italy;

alessandro.bondielli@unipi.it
* Correspondence: Email: alessandro.bondielli@unipi.it.

Academic Editor: Pasi Fränti

Abstract: Sequential Pattern Mining (SPM) is a branch of data mining that deals with finding
statistically relevant regularities of patterns in sequentially ordered data. It has been an active area
of research since mid 1990s. Even if many prime algorithms for SPM have a long history, the field
is nevertheless very active. The literature is focused on novel challenges and applications, and on the
development of more efficient and effective algorithms. In this paper, we present a brief overview
on the landscape of algorithms for SPM, including an evaluation on performances for some of them.
Further, we explore additional problems that have spanned from SPM. Finally, we evaluate available
resources for SPM, and hypothesize on future directions for the field.
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1. Introduction

Process mining is a family of techniques that emerged in recent years for the analysis of processes
based on event logs [98]. Process mining aims to generate, out of the observation of process logs,
factual knowledge possibly useful in several application contexts, supporting performance monitoring
tasks, improved exploitation of the available resources and, in particular, the automation of processes
themselves.

The input data of a process mining application is called an event log, i.e., a collection of
chronologically ordered records of events produced by the execution of a process, such as a business
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one, where specific nomenclatures and descriptions are typically used [67]. Each event in the
log refers to: i) a specific process instance, ii) an activity in such a process, along with related
information, and iii) a timestamp. Event logs can usually be obtained from any information system
that supports operational processes, from specific software monitoring applications, and from services
at the operating system level as well. Event logs can be pre-processed to have at our disposal the
essential information as formal sequences of events [67].

From a practical standpoint, and from a more general perspective, the goal of a process mining
algorithm is the identification, within a dataset (for example a number of event logs), of particular
sequences that show up a statistically significant number of times, in order to verify particular
potentially interesting recurrences [45]. The problem of the identification of such sequences has
been explored in the literature under different lights and different domains, leading to the classic
research problems known as Frequent Itemset Mining (FIM) and Sequential Pattern Mining (SPM),
along with various other derived sub-problems, such as the so-called High-Utility Sequential Pattern
Mining (HUSPM) and Frequent Episode Mining (FEM).

A pattern mining approach can be applied for data analysis in a large number of applications,
especially in data explorations that cannot take advantage of prior knowledge on the target problem.
FIM was first developed as a tool for market basket analysis to study the behaviour of customers
by considering what products are frequently bought together [2]. Any single purchasing event, or
transaction, can be modeled as a set of items, usually called itemset. The availability of databases
containing transactions led to the development of Association Rule Mining, which consists of finding
association rules in a transaction database [2,55]. SPM emerged as a research field addressing problems
where itemsets are a suitable means to describe events but, additionally, it is crucial taking into account
their sequential ordering. In this setting, databases with sequences of itemsets can be analyzed with
techniques in the field of Sequential Rule Mining, with the purpose of discovering sequential rules,
which are similar to association rules except that they takes into account the sequential ordering [29].

SPM has been exploited in a vast number of applications, including more refined market basket
analyses, as well as more complex and demanding tasks like intrusion detection from server logs:
intrusion patterns such as brute force attempts at cracking a password can be uncovered by identifying
frequent sequences of certain operations.

Extensions on the SPM problem, such as HUSPM and FEM, have proven to be quite useful in
different contexts. For example, HUSPM includes utility as an additional dimension of the problem.
In the case of market basket analysis, this leads us to consider the profit generated by each specific
transaction, and to rank sequential patterns also according to this criterion, considering also the
economical perspective for the estimation of their importance [95]. FEM turns to be particularly suited
in cases where the system activity is described by a single long sequence rather than a collection of
different sequences. A typical example is represented by the activity log of a video-terminal, which
tracks the actions taken by users: pattern mining can be leveraged, for example, to mine recurring
patterns of usage that can be exploited in the context of robot process automation [18, 21].

Some literature reviews exist around this subject, describing algorithms and approaches for SPM.
The two main surveys of the field focused primarily on the classical algorithms and techniques known
at the time [32, 70] and, in the second of the two, with a clear didactic objective. Several other works
related to the topic have been proposed, but with different perspectives. Significant examples are a
complete review of Parallel SPM [37], and an exhaustive 25 years review of FIM [62]. However, the
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continuous advancements in the field shed new light both on perspective advancements as well as on
the role of more established methods. In this paper we present a consistent account of the approaches
proposed in the literature that are related to SPM, along with a brief experimental analysis aimed at
characterizing their efficiency and effectiveness. With the aim of providing a more comprehensive
overview of the field, some techniques related to SPM have been covered as well, focusing specifically
on FEM, a current promising line of research. In addition to this, we explore available resources for
SPM.

We must notice that several problems in data mining and machine learning require to operate on
sequential data, such as traffic, stock market and weather-related data to name a few. Even if several
types of investigations can be carried out on sequential data by means of pattern mining methods
like the ones described in this paper, it is important to underline that in general they do not address
predictive aspects, but deal instead with descriptive aspects such as spotting out data regularities
(expected or not), thus contributing to a deeper comprehension of the target phenomenon. Other
approaches, belonging for example to the fields of Machine Learning and Time Series Forecasting,
can be used in prediction problems.

The paper is organised as follows. The basic concepts underlying SPM are introduced in Section 2.
In Section 3, an overview of the different types of algorithms for SPM is proposed. Section 4 describes
some research fields closely related to SPM. Among them, FEM is particularly important and it is
covered in Section 5. Notable resources and open-source software available for SPM are presented in
Section 6. Finally, Section 7 outlines possible future perspectives on SPM, and Section 8 draws proper
conclusions.

2. Fundamentals of Sequential Pattern Mining

SPM is a branch of data mining that deals with finding statistically relevant regularities among data
samples whose values are expressed through ordered sequences. SPM is based on FIM, which was
originally introduced in Market Basket Analysis to identify sets of products that are frequently bought
together [2]. The problem studied by FIM does not explicitly consider the temporal ordering of records
to be analyzed, and it is defined as follows.

Let us consider a transactional database D, consisting in a set of transactions {ti}. Any single
transaction, i.e. the basic record in the database, is typically identified by a Transaction ID (TID)
and corresponds to a set of objects (items or symbols) out of a set of possible items I = {i1, i2, ..., in}.
For example, regarding the sales in a shop, each transaction represents a receipt, and thus the items
purchased by a particular customer. In this case, I is the set of all the items sold by the shop. A subset
X ⊆ I, containing k items, is called an itemset.

It should be noted that no constraint applies to the data types of the elements in the set I, which
can be also heterogeneous. In practice, several algorithms (for both FIM and SPM) ask to operate
over I and to scan the relative itemsets according to a total order over their members (for example,
the lexicographic order); thus, often such items are kept in the supporting data structures in the order
required. The proportion of transactions in D that contain the itemset X is called the support of X,
typically denoted as supp(X,D) (or just supp(X), whenever D is implicitly given). To consider an
itemset as frequent within D, and thus of interest, it must exceed a minimum support threshold minsupp.
An itemset X is therefore frequent if supp(X) ≥ minsupp in D. The support, and consequently the
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minimum support threshold, can take values in the range [0, 1]. Typically, in FIM algorithms it is
possible to specify the actual value for the minsupp parameter, so that more (lower minsupp) or fewer
(higher minsupp) elements would be considered as frequent. The objective of FIM is thus defined as
the identification of all the itemsets within a specific transaction database whose support is at least
minsupp.

Whenever the temporal ordering of transactions is relevant for the analysis goals, different
approaches must be devised. SPM has been proposed as an extension of FIM to handle also temporally
ordered sequences of itemsets. The problem studied by SPM is defined as follows. A sequence
database SeqD = {S 1, S 2, ..., S j} is made of j sequences, and each of them is supposed to be generated
by a distinct “source.” A sequence is identified by a Sequence ID (SID) and it consists of an ordered list
of elements: in the most general case, an element is an itemset (usually, a non-empty one). In the shop
example, a sequence could represent the successive different visits to the shop of a given customer.
Each visit corresponds to a transaction, and therefore has a corresponding itemset, which, as in the
previous case of FIM, may contain one or more objects (items or symbols).

Usually, the ordered elements of the sequence (i.e., the itemsets) are referred to as events. Given a
sequence S = 〈E1, E2, ..., En〉, the corresponding length |S | can be defined as the number of events in S .
On the basis of the total number of objects it contains, a sequence is referred to as a k-sequence, with
k =

∑n
i=1 |Ei|. Consider the example sequence s = 〈{milk, cereals}, {beer, bread,meat}, {detergent}〉.

The sequence contains three events, i.e. three distinct visits of a customer to the shop. The length of
the sequence is therefore |S | = 3, and it is a 6-sequence containing k = 2 + 3 + 1 = 6 purchased items.
Practical examples of sequence databases are available in [32].

The extension of the concept of support to sequences requires the introduction of some additional
definitions. A sequence s2 is said to be a sub-sequence of the sequence s1 if it can be derived from
s1 by deleting some objects without changing the order of the remaining objects [32]. Formally, s2 =

〈B1, B2, ..., Bn〉 is a sub-sequence of s1 = 〈A1, A2, ..., Am〉 if and only if there exist n integers {hi}i=1...n

with 1 ≤ h1 < h2 < · · · < hn ≤ m such that B1 ⊆ Ah1 , B2 ⊆ Ah2 , ...Bn ⊆ Ahn . This is indicated by
the notation s2 v s1, and we can say that s1 contains s2 or, likewise, s1 is a super-sequence of s2.
The definition of sub-sequences let us generalize the notion of “support”: the support of a sequence
s within the database SeqD is the proportion, over the size of SeqD, of those sequences that contain
s, i.e. supp(s, SeqD) = |{s′ | s′ ∈ SeqD ∧ s v s′}| / |SeqD|. It must be noted that sometimes in the
literature the support is considered the plain count of super-sequences of S in SeqD.

Given a minimum support threshold minsupp, a sequence s in a sequential database SeqD is called
a frequent sequential pattern (or “sequential pattern” for short) if supp(s) ≥ minsupp. The objective of
SPM is therefore the identification of the sequential patterns within a given database of sequences [1],
i.e. its SPM set.

Tables 1 and 2 show, respectively, an example sequence database and the sequential patterns mined
from it for a specific value of threshold minsupp. For the sake of generality, in the example we adopted
“placeholders” for the item names (a, b, c, and so on). Thus, such a general sequence database
can represent a large number of cases, depending on what the items refer to: transactions made by
customers in a store, points of interest visited by groups of tourists in a city, interactions of a user with
a computer, and so on. We used 7 items, that are included in 11 distinct itemsets (denoted by curly
brackets), with events distributed across 4 different sequences of assorted lengths.

The goal of SPM is to find the patterns of events that occur in the dataset with a support greater
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Table 1. An example of a sequence database (horizontal format).

Seq. ID Sequence of events (itemsets)

1 {a,c}, {b,c}, {c}, {d,e,f},{g}
2 {a,b},{c}, {f}, {d,e,g}
3 {a},{b}, {f,g},{c}, {b,c}, {d,e,f}
4 {b},{f,g}

than the threshold minsupp. In our case, we set minsupp to 2. Thus, all the patterns of events with
a support equal or greater than 2 are taken as sequential patterns. In order to determine them, it is
sufficient to compute the support (i.e., how many times the actual pattern appears in the sequences of
the database) for each sequence and sub-sequence of the database. Table 2 shows the support values
for several sequences of events: in particular, sequential patterns are indicated in bold.

Table 2. A subset of sequences from the database in Table 1 and their support. Sequential
patterns with minsupp ≥ 2 are indicated in bold.

Pattern Support

{c} 3
{b} 2
{b,c} 2
{d,e,f} 2
{b},{f,g} 2
{a},{b},{f,g} 1
{a,c},{b,c} 1
{c},{f},{d,e,g} 1
... ...

SPM is a complex and computationally demanding problem, and this is not surprising, just
considering the simple fact that a k-sequence has 2k sub-sequences, which is a huge search space for
SPM algorithms. Typically, SPM algorithms explore the search space by generating new candidates
(i.e., new sequences), and identifying their support within the database. Candidate generation is
typically accomplished in two ways: sequence extension (s-extension), and itemset extension (i-
extension). In an s-extension, an S p sequence is extended by adding a new event containing a single
item, while in an i-extension a new item is added to the last S p event.

As far as specific search approaches are concerned, there are typically two categories of algorithms
for SPM, namely depth-first and breadth-first. With breadth first algorithms, the database is typically
scanned for sequential patterns of increasing length. First sequence patterns of length 1 are identified,
then length 2, up to a length k which determines the maximum sequence length in the database. As
for depth-first algorithms, they typically organize the search space in a prefix tree structure. The
first level of the tree includes sequences with single events. Then, their children are generated via
s-extensions and i-extensions, until no more candidates can be generated. Finally, the support of all
the generated sequences is computed with respect to the actual data in order to identify the frequent
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sequential patterns [32].

3. Algorithms for Sequential Pattern Mining

A large number of algorithms and implementations have been proposed in the literature for SPM,
and it has been proposed to group up them in few broad classes on the basis of the way the task is
performed [70]. For the sake of description clearness, in this paper we roughly follow the categorisation
recently adopted by Gan et al. [37], which comprises four different groups of SPM algorithms: apriori-
based, pattern-growth, hybrid, and constraint-based. In brief, apriori-based algorithms exploit the
antimonotonicity of the apriori property to prune infrequent sequences. Pattern growth algorithms
generally work by exploiting a projected database based on prefixes to count only occurrences of
actual patterns in the database. Hybrid algorithms incorporate notions from both apriori-based and
pattern growth ones to leverage their strengths and reduce their drawbacks. Finally, constraint-
based algorithms focus on a more specific problem, i.e. finding frequent patterns that satisfy certain
constraints, regardless of the used method. A graphical representation of the types of algorithms and
their relations is depicted in Figure 1. In this section we will discuss all of these categories, and
highlight the best or more popular implementations for each one.

Figure 1. Types of algorithms for SPM and their relationships.

It is worth underlining that we are currently focusing our attention on exact discovery of frequent
sequential patterns, i.e., all the ones whose support value is greater than or equal to the provided
minsupp (i.e., the minimum support threshold), which is a hyper-parameter for the algorithm. Thus,
given a sequence database and a value for minsupp (and possibly some constraints in specific
algorithms), any distinct algorithm must return exactly the same set of frequent sequential patterns.
All the proposed techniques may differ in the adopted computational approach, leading to different
execution times and memory footprints, but the identified sequential patterns will always be the
same [32]. Generally, the application of specific ideas and mechanisms in each algorithm requires
the adoption of proper data structures, designed on-purpose [70]. A summary of the main algorithms
described hereafter is reported in Table 3, which does not include those relative to specific re-
formulations of the SPM problem (mainly, constraint-based algorithms, which are summarized in Table
5).
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Table 3. Algorithms for SPM.

Name Type Description Year

Apriori [1] Apriori-based The first approach SPM 1995

GSP [93] Apriori-based Generalized SPM algorithm 1996

SPADE [120] Apriori-based Using equivalence classes to discovery sequential patterns 2001

LAPIN-SPAM [112] and LAPIN [113] Apriori-based SPM with last position induction 2004-2005

FreeSpan [43] Pattern Growth Using frequent pattern-projected to discover sequential patterns 2000

WAP-Tree [74] Pattern Growth SPM for web logs with the WAP-tree data structure 2000

PrefixSPAN [44] Pattern Growth Prefix-projected SPM 2001

FS-Miner [23] Pattern Growth SPM with suffix growth 2004

DFSP [57] Pattern Growth Mining frequent biological sequences 2014

HVSM [89] Hybrid First-Horizontal-last-Vertical scanning database SPM algorithm 2005

DISC-ALL [17] Hybrid Position induction and prefix growth SPM 2007

UDDAG [16] Hybrid Up-down directed acyclic graph for SPM 2010

3.1. Apriori-based algorithms

Apriori-based algorithms exploit a general property of sequences, known as the apriori property,
which states that “all non-empty subsets of a frequent itemset must also be frequent” (see for
example [64]). This means that, in turn, given an infrequent itemset, all of its supersets (i.e., the
itemsets that contain such itemset) will also be infrequent: this gives us the practical opportunity to
properly bound the exploration of the search space. Apriori-based algorithms typically use a breadth-
first search for sequences within the database.

Apriori-based algorithms can exploit horizontal and vertical formats for the database, which are
alternative ways to represent the same content. The former is the standard database representation,
as shown in the example in Table 1. The vertical representation of a sequence database is made of
the IDLists of all the single items: each IDList is relative to a specific item, and reports the sequences
where such an item appears and, for such sequences, in what events (itemsets) it is present. The vertical
representation of the dataset in Table 1 is presented in Table 4, where IDLists are reported in columns;
e.g., considering the IDList for item b, we can see that it appears in sequence 1 (event 2), in sequence
2 (event 1), in sequence 3 (events 2 and 5), and in sequence 4 (event 1). The support of a pattern can
be easily and directly calculated by checking the content of the IDLists of the pattern items.

An overview of apriori algorithms for SPM is presented below.

Apriori The first approach for SPM based on the apriori property was proposed by Agrawal and
Srikant [1]. It requires the generation of candidate sequences, and to check them against the database:
It makes use of the antimonotonicity of the apriori property to avoid unnecessary checks. Following
the definition, if a sequence a of length n is infrequent (i.e., its support is below the minimum
support threshold), then all sequences that contain a will also be infrequent, and can therefore be
discarded a priori in the search. Thus, by exploiting this property, it is possible to reduce the search
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Table 4. Vertical representation of the sequence database in Table 1. IDLists for the items
are represented by the table columns.

Item IDLists
Seq. ID a b c d e f g

1 1 2 1, 2, 3 4 4 4 5
2 1 1 2 4 4 3 4
3 1 2, 5 4, 5 6 6 3, 6 3
4 - 1 - - - 2 2

space disregarding all the super-sequences of infrequent sequences. From an implementation point
of view, the authors propose three different variants of the algorithm: AprioriAll, AprioriSome, and
DynamicSome. They all exploit a breadth-first approach. Thus, they have to perform several passes
over the entire database of sequences to extract the frequent ones. In the first pass, candidate sequences
of unit length are identified, which occur at least minsupp times. Next, sequences of length 2 that
also contain the candidate sequences of length one, identified in the first pass, are analysed, and
so on. In AprioriAll, all frequent sequences are calculated at each step and the maximum length
sequences are retained for use in the next step. In AprioriSome, on the other hand, the longest frequent
sequences are calculated at each step, so that all the shorter sequences that are their sub-sequences
can be discarded. Finally, DynamicSome is similar to AprioriSome, but at each step the frequent
sequences are generated “on the fly,” i.e., considering the frequent sequences in the previous steps and
those obtained by scanning the dataset [1].

GSP The Generalized Sequential Pattern algorithm (or GSP [93]) exploits the apriori property as
well, addressing performance improvements over AprioriAll and introducing also three novelties
for better identifying interesting frequent sequences: time constraints (minimum and maximum gap
between transactions), sliding windows, and taxonomies. The time constraints between adjacent
elements aim to avoid considering adjacent elements that are too close to each other or too far apart in
time. Further, the sliding window mechanism allows for items in an element of a sequential pattern to
come from different transactions. Items that are present in a set of transactions within a user-specified
window can belong to the same pattern. Finally, user-defined taxonomies have the purpose to better
describe the items in the database. Aside from these key aspects, GSP is very similar to AprioriAll,
and proceeds with successive steps. First, k-sequences are identified for k = 1. Then, at each step,
candidate k + 1-sequences are generated and counted in the database, in order to prune infrequent
ones for subsequent steps. The empirical evaluations presented by the authors of GSP indicate that it
outperforms AprioriAll. Further improvements in efficiency have been obtained in PSP, a version of
GSP that makes use of a different supporting data structure [68]. GSP uses a horizontal representation
of the dataset.

SPADE All the algorithms presented so far proceed through successive multiple scans of the input
dataset: A possible reduction of the number of the required scans is expected to provide significant
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computational advantages. The SPADE algorithm [120] is certainly one of the most widely used
SPM algorithms that exploit the apriori property, and it has been designed to overcome the need to
scan the database several times. SPADE decomposes the problem into sub-problems using a set of
combinatorial properties. The final result can thus be achieved with no more than three scans of the
database. SPADE uses a vertical representation of the dataset.

The SPAM algorithm [6] is a depth-first algorithm very similar to SPADE: its main difference is
that it makes use of a vertical representation of the database rather than a horizontal one.

LAPIN-SPAM and LAPIN The LAPIN-SPAM algorithm [112] provides a number of
improvements over the approach proposed for SPAM [6]. The LAPIN algorithm [113], proposed a
couple of years later, uses a technique called last position induction. The idea is to exploit the last
position of an object i within the database to decide whether or not a k-sequence can be extended using
i.

3.2. Pattern growth algorithms

Most apriori-based techniques typically rely on identifying patterns by means of insertion and
deletion of new objects or events from the shortest patterns, and identifying their frequency in the
database. This is a rather costly approach, as at each iteration candidates are first generated and
then counted throughout the dataset. Pattern-growth algorithms attempt to address this limitation by
incrementally building up the patterns actually present in the database. A recursive approach is yet
quite costly. Thus, the use of a projected database was proposed, i.e., a compressed representation of
the original database composed of projected itemsets [44]. The idea behind this approach is that, to
test whether an itemset X is frequent, we can consider the X-projected database, i.e. a sub-database
that includes only transactions in which X appears. Following from this, and based on the assumption
that if an itemset X is infrequent, then any sequence whose projected itemset is a superset of X cannot
be a sequential pattern, we can prune large chunks of the database and exploit only the projected sub-
databases to perform further searches.

Pattern growth algorithms typically use a depth-first search of sequences within the database.
The following is an overview of the most commonly used SPM algorithms based on pattern growth.

FreeSpan One of the first proposed algorithms to exploit the idea of a projected sequence database
has been FreeSpan [43]. The idea behind FreeSpan is to use the frequent items to recursively
project the sequence databases into smaller ones, and use such databases to grow the subsequence
fragments. Thus, each frequent pattern to be tested is confined to its corresponding, smaller, projected
database [43].

PrefixSPAN Although its proposal dates back to the early 2000s, PrefixSPAN [44] is still one of
the pattern growth algorithms most widely used today. It initially identifies all frequent sequences
consisting of a single event with a single item. Given for example frequent items a, b, c, d, the algorithm
analyses all and only those sequences whose prefix is one of the frequent items, through a depth-first
search. Thus, the algorithm analyses all the sequences of the type 〈{a}, ..〉, then those of the type 〈{b}, ..〉
and so on. In this way, the need to iterate over the entire dataset several times is avoided. The authors
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have shown that the algorithm performs better than both GSP and FreeSpan. PrefixSPAN has also been
shown to perform better on larger databases [37]. PrefixSPAN-x is a variant of PrefixSPAN that keeps
its overall structure, introducing further artifices [26]. The idea behind the algorithm is to make it more
efficient, both in terms of time and memory, by removing all infrequent objects from the database.

DFSP The Depth-First SPelling (DFSP) algorithm [57] has been specifically designed for mining
frequent biological sequences such as DNA and, on this particular task, it performs better than
PrefixSPAN.

FS-Miner Web logs represent an interesting target for frequent sequence mining, and FS-Miner
is an algorithm developed to operate in this specific setting [23]. The algorithm scans the database
twice: In the first place, it identifies the support of sub-sequences of length two; Subsequently, other
potentially frequent super-sequences are identified starting from these. These are then represented in a
tree structure (FS-Tree) that simplifies the mining operations for the identification of frequent patterns.

WAP-Tree Similarly to FS-Miner, WAP-Tree [74] uses a tree structure and requires only two scans
of the database. However, in this case only the support of sequences of length one is calculated during
the first scan. Once the tree is generated, it is recursively scanned to identify frequent super-sequences.
Several improvements over WAP-tree have been proposed in the literature, including PLWAP [24], a
version that does not require to recursively scan the tree.

3.3. Hybrid algorithms

In addition to apriori-based and pattern growth algorithms, other hybrid approaches aim to leverage
the strengths of both Apriori-based techniques and pattern growth ones, whereas reducing their
downsides. It is in fact true that pattern-growth based algorithms have improved on some critical
aspects that hindered the performances of a simpler apriori-like approach. Nevertheless, several issues
emerged for pattern growth ones. For example, some algorithms such as PrefixSpan have a high
computational cost because of the method used to construct the projected database of sequences. The
research on “hybrid algorithms” is therefore aimed at identifying and exploiting the strengths of both
apriori and pattern-growth algorithms to optimise the pattern search procedure. Hereafter we overview
the most relevant hybrid algorithms for SPM.

HVSM The structure of HVSM (first-Horizontal-last-Vertical scanning database Sequential pattern
Mining algorithm) [89] follows the typical approach of the SPAM algorithm. In fact, HVSM
considers the database as a vertical bitmap. It first extends the itemsets horizontally, extracting all
the itemset sequences; subsequently, it extends them vertically, and generates the candidate sequences.
Experiments have shown that the HVSM algorithm can search for frequent sequences faster than the
SPAM algorithm, especially when using very large sequence and/or transaction databases [89].

DISC-All Disc-All (DIrect Sequence Comparison) [17] allows frequent sequences to be mined
without necessarily having to calculate the support of less frequent sequences. This algorithm does not
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Table 5. Algorithms for Constraint-based SPM.

Name Type Description Year

SPIRIT [38] Constraint-based SPM with regular expression constraints. 2002

CLaSP [41] Closed An efficient algorithm for mining frequent closed sequences. 2013

CloFAST [36] Closed closed SPM using sparse and vertical IDLists. 2016

BIDE [100] Closed efficient mining of frequent closed sequences. 2004

CCSpan [121] Closed Mining closed contiguous sequential patterns. 2015

NetNCSP [106] Closed Nonoverlapping closed sequential pattern mining. 2020

MSPX [63] Maximal Efficient mining of maximal sequential patterns using multiple samples. 2005

MaxSP [28] Maximal Mining maximal sequential patterns without candidate maintenance. 2013

VMSP [30] Maximal Efficient vertical mining of maximal sequential patterns. 2014

QCSP [27] Top-K Mining top-k quantile-based cohesive sequential patterns. 2018

AprioriQSP [52] Quantitative Sequences SPM with quantities. 2007

PrefixSpanQSP [44] Quantitative Sequences Mining sequential patterns efficiently by prefix-projected pattern growth. 2001

Q-VIPER [20] Quantitative Sequences Quantitative vertical bitwise algorithm to mine frequent pattern. 2022

rely on the antimonotonicity property [17]. In fact, it applies an early pruning approach for infrequent
sequences, while taking into account other sequences of the same length.

UDDAG UDDAG (UpDown Directed Acyclic Graph) [16] exploits bidirectional pattern growth,
using suffixes and prefixes to extract frequent sequences to improve on the performances of other
pattern growth-based algorithms, especially in terms of scalability (i.e., at increasing sizes of minsupp
and for length-k patterns with larger k).

3.4. Constraint-based algorithms

Beside investigations on specific data structures and techniques for more and more efficient
identification of frequent sequential patterns, the literature has seen a rather large interest for particular
problems that require the introduction of specific constraints for the frequent patterns’ retrieval.
Constraint-based SPM algorithms (CSPM) focus on finding sets of sequence patterns that satisfy a
given constraint C. Formally, a constraint C for the SPM task is a predicate C(·) that determines
whether a sequence in the SPM set can be considered as acceptable or not [76]. The retrieval
procedure must select only the sequences that satisfy the constraint, thus yielding a more compact
result, hopefully containing the more interesting sequences.

A general way to express a constraint may be the adoption of regular expressions, as it has been
proposed for the family of algorithms known as SPIRIT (Sequential Pattern mIning with Regular
expressIon consTraints) [38]. Other types of constraints have been identified [70,75]: on the item type,
on aggregate functions of items, on the pattern length, and model-based constraints (i.e., sub-pattern or
super-pattern of a given pattern); whenever events are associated with timestamps, it could be possible
to specify time span, time difference between adjacent events, and so on. Moreover, gap constraints
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have been studied in particular, and they correspond, in the specification of the target pattern, to the
possible presence of a number of events (in a given range) between two adjacent, given events [105].

It is often required to meet specific criteria on the number of occurrences of a pattern in a sequence,
with respect to any timing constraint that may have been imposed. There exist five different counting
techniques that have been classified into three groups by the authors of [70]. The first group consists
of the CEVT technique (count event), which searches for the given sequence in the entire sequence
timeline. The second group consists of the CWIN (count windows) and CMINWIN (count minimum
windows) techniques. They deal with counting the number of windows in which a given sequence
occurs. The last group consists of the CDIST (count distinct) and CDIST O (count distinct with the
possibility of overlap) [70].

Often CSPM algorithms leverage specific properties of the imposed constraint, like monotonicity
(if C(S ) is false, then the same result applies to all sub-sequences of S ) or anti-monotonicity (if C(S )
is false, the same holds for all super-sequences of S ); in case none of such properties is satisfied,
the development of the CSPM algorithms becomes more challenging [47]. CSPM algorithms can be
organised into several widely studied subgroups, discussed below. In the following, we focus among
others on closed and maximal sequential pattern mining (and sequential generators as well), top-k
sequential patterns, and quantitative sequences [37]. We summarize constraint-based algorithms in
Table 5.

3.4.1. Closed and maximal SPM

Often not all the sequences in an SPM set are relevant to the user, and it would be reasonable keeping
only a significant subset of them, considering that if a sequence is frequent, then its sub-sequences are
frequent as well. One of the critical issues with the algorithms presented so far is their tendency to
extract redundant patterns, especially for very low minsupp values, or in presence of pattern-enriched
databases [121]. To alleviate this problem, it has been proposed to define sets of Closed Sequential
Patterns (CSPs) and Maximal Sequential Patterns (MSPs). A CPS set S closed contains the sequences in
the SPM set S freq that have no super-sequences with the same support in it; formally [111], S closed =

{s | s ∈ S freq ∧ @ s′ ∈ S freq s.t. s v s′ ∧ supp(s) = supp(s′)}. Obviously, the CPS set is contained in the
SPM set. Similarly, the MSP set S maxf contains all the maximally frequent sequences, i.e. those in the
SPM set with no super-sequences in it [63]; formally, S maxf = {s | s ∈ S freq ∧ @ s′ ∈ S freq s.t. s v s′}.
Clearly, the MPS set is contained in the CPS set.

Yan et al. [111], along with introducing the definition of CSP set, proposed also the CloSPAN
(Closed Sequential PAtterN mining) algorithm for determining the closed sequential patterns. By
leveraging the founding ideas of both SPADE [6] and CloSPAN [111], the CLaSP algorithm [41]
exploits a vertical data representation and pruning strategies to improve its efficiency over CloSPAN.
Similarly, CloFAST [36] uses a vertical database layout and sparse id-lists to identify closed sequential
patterns. The BIDE algorithm (the acronym stands for “BI-Directional Extension based frequent closed
sequence mining”) [100] adopts techniques for an effecting pruning of the search space, yet keeping
low the memory requirements. Yet another proposal to cope with redundancy in results is represented
by CCSpan (Closed Contiguous Sequential pattern mining) [121], which is intended to obtain an
even more compact set of patterns as a result, yet avoiding any information loss. More recently,
the exploitation of a NetTree data structure led to the implementation of the NetNCSP (Nettree for
Nonoverlapping Closed Sequential Pattern) algorithm [106].
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The rationale for pursuing the identification of an MSP set lies in the need to properly prune the
result set, avoiding confusion to end users and facilitating the interpretation of the algorithm outcome.
Moreover, it is worth noticing that a very large result set could also affect the task performance in
terms of both execution time and memory. Among the various proposals specialised in retrieving
maximal sequential patterns we can mention MSPX [63], which uses multiple samples to exclude all
those sequences that are less frequent. MaxSP (Maximal Sequential Pattern mining) [28] computes all
maximal sequential patterns with no need to store intermediate candidate sequences in main memory.
VMSP (Vertical mining of Maximal Sequential Patterns) [30] has been the first vertical algorithm
for mining maximal sequential patterns, obtaining state-of-the-art performances in terms of execution
time.

Beyond closed and maximal sequence patterns, other sequences in the SPM set known as generator
sequential patterns, have been investigated [60]. We can observe that the elements of the SPM set
supported exactly by the same sequences in the database can be considered an equivalence class.
Clearly, all the sequences of such an equivalence class have the same support, and the “v” relationship
is a partial order over them. According to the “v” ordering, the set of maximal and minimal patterns
within an equivalence class are called closed patterns and generator patterns, respectively. Thus, the
set of generator sequential patterns, or GSP set, is the set of sequences in the SPM set that have no
subsequence with the same support in it; formally, S gen = {s | s ∈ S freq ∧ @ s′ ∈ S freq s.t. s′ v
s∧ supp(s) = supp(s′)}. It has been argued that the properties of the GSP set can be particularly useful,
and algorithms have been proposed to find them [54, 60, 77].

3.4.2. Top-k SPM

For particular cases, whenever a correct minimum support threshold is difficult to be ascertained
in advance, or when such a choice can heavily influence the obtainable results (for example, too
many patterns or uninformative ones), top-k sequential pattern mining has been proposed. Rather than
presenting a final result with all the sequential patterns that satisfy specific conditions of length and
minimum support, in this case the algorithms are aimed at returning only the k most frequent sequential
patterns within the dataset, ordered according to the relative support [32]. Several variations of this
approach have been proposed over the years; among the others, it is worth recalling an algorithm based
on constrained prefix-projected pattern growth that exploits a novel interestingness measure, which
computes the proportion of the occurrences of a pattern that are cohesive [27]. The Top-k approach
is often used in combination with other techniques and in SPM-related problems, such as frequent
episode mining [34] (see Section 5), or High-Utility mining [82] (see Section 4.1).

3.4.3. Quantitative sequences

For various applications, each item belonging to the events of sequences can be enriched with
a quantitative attribute, i.e., the actual quantity appearing in the transaction, with the purpose of
supporting the comparison of values [52]: such additional information can be extremely useful
to end users. For example, knowing quantities of items in a sales transaction and identifying
patterns that include quantitative information may be helpful in designing market campaigns. The
extension of SPM algorithms to deal with sequences with quantitative attributes is not straightforward,
and proper solutions must be designed to get to more complete, and potentially more informative
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results. Two different variants of traditional algorithms for quantitative SPM have been proposed [52],
namely Apriori-QSP, based on the Apriori-like algorithms, and PrefixSpanQSP, based instead on
PrefixSpan [44]. Q-VIPER addresses the problem in the context of Big Data [20].

3.4.4. Other approaches

Another interesting problem with solutions belonging to the typology of constraint-based
algorithms is known as Location-Item-Time Sequential (LIT) Pattern Mining, which has been
introduced by Tsai et al. [97]. The paradigmatic use case is the description of temporal and spatial
behaviour of visitors to some theme parks, which can be obtained by exploiting SPM methodologies.
An approach of a completely different type is based on a probabilistic model of the sequence database
[35]. The idea is to extract the most relevant patterns and to sort them by exploiting an associative
measure of significance (i.e., how much the end user may find them interesting) [35]. Yet another
type of constraint-based problem that emerged in recent years is the extraction/search of malicious
sequential patterns. In particular, a recently proposed algorithm [25] exploits an All-Nearest-Neighbor
classifier built specifically for malware detection tasks based on pattern search.

It is worth recalling a recent approach to further limit the results to the most (likely) important
sequences: NTP-Miner [107] uses a strategy where attributes are categorized in three different levels,
and gap constraints are considered as well in assessing the relevance of a result sequence. Notably,
attempts to efficiently obtain meaningful results have been done also for the problem of Negative SPM,
which aims to discover events that should have occurred but have not occurred [108].

Constraint-based strategies are widely used in several application fields. An approach based on
mining sequential patterns with flexible constraints of Massive Open Online Course (MOOC) platforms
enrollment has been proposed in [90]. In particular, the authors identified three constraints: the length
constraint to describe the effect of the length of enrollment sequences, the discreteness constraint to
describe the variance of enrollment dates, and the validity constraint for the enrollment times.

3.5. Parallelism in Sequential Pattern Mining

In recent years, the ever-increasing availability of large amounts of complex data has gone hand
in hand with the possibility to exploit computational resources across different devices. Hence,
research on Parallel SPM (PSPM) has attracted more and more attention [37]. The need to apply SPM
techniques to big data pushed towards the adoption of multiple computational units. New solutions
would thus resort to algorithms able to analyse and identify sequential patterns in a parallel fashion.
In many different fields of data mining, the MapReduce programming model proposed in Hadoop has
been a key paradigm for enabling the analysis of big data over distributed platforms [88, 96], and
has played a central role in parallel SPM as well. Conversely, the Apache Spark framework, which
provides implicit parallelism for big data analysis, has not been widely used for SPM as it has been in
other fields of data mining [7].

In the first proposed approaches, a number of algorithms have been designed according to data
partitioning schemes [37], and parallelised versions of classical SPM algorithms have been developed.
In the field of Apriori-based algorithms, MapReduce implementations have been studied in depth [61].
It is worth recalling a couple of the first proposals: pSPADE [119] and webSPADE [22] have been
designed as parallelised versions of SPADE [120]. In pSPADE the search space is subdivided into
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small categories based on the suffixes of the sequences, which can then be solved easily by means of
search techniques and join operations. webSPADE instead is a parallel approach to the analysis of
click streams found within website logs. As web log analysis is becoming more and more important,
dedicated solutions to analyze massive quantities of this kind of data via a MapReduce approach have
been recently developed [92].

Some parallel/distributed versions have also been proposed for the GSP algorithm (and its variant
PSP). DGSP [116] and DPSP [49] are solutions designed according to the MapReduce programming
model. PartSpan [80], on the other hand, is a distributed and parallel algorithm and was developed to
identify patterns of trajectories. Moreover, GridGSP [103] relies on a grid computing environment
to parallelise the GSP algorithm. Variants of the SPAM algorithm are SPAMC [14], which uses
the MapReduce framework for distributing the computation, and SPAMC-UDLT [15], which further
improves the performance of SPAMC by introducing solutions to address scalability issues, thus
making it able to handle extremely large databases.

Several concurrent versions have been proposed for pattern growth-based algorithms as well. In
particular, Par-ASP [19] and Sequence-Growth [56] are worth mentioning as parallelised versions of
PrefixSPAN.

Finally, the literature has also focused on parallelised hybrid algorithms, such as MG-FSM [69]
and MG-FSM+ [8]. LASH [8] is another hybrid parallel algorithm that exploits hierarchies. Other
parallelised hybrid algorithms include Distributed SPM [39], which exploits dynamic programming
and an extended prefix-tree to store intermediate results; ISM (Interesting Sequence Miner) [35],
a novel algorithm based on a probabilistic model and exploiting machine learning methodologies,
and ACME, [86] which, instead, is a combinatorial method for extracting patterns from a long single
sequence generally used in bioinformatics [37].

3.6. Experimental analysis

Generally speaking, a proper choice of an algorithm for one specific application context can be
taken only upon the knowledge of the algorithm’s behavior with respect to the basic characteristics of
the target dataset. To this aim, we report in this section the results of some experimental analyses for
the assessment of effectiveness and efficiency of four representative algorithms out of those previously
described. In particular, in the first place we want to evaluate the average execution time and the used
memory in a typical usage setting. Subsequently, we want to characterize the scalability of the four
algorithms in terms of their behavior with respect to the size of the target dataset. All the experiments
have been carried out on commodity hardware and software, i.e. an ordinary desktop with an Intel(R)
Core(TM) i7-8565U CPU 1.80 GHz, 8.00 Gb of RAM, with MS Windows 11 as operating system, and
using Java 8.

Concerning the algorithms we selected GSP, SPADE, Prefix-Span, and Clo-Span, as they can be
considered representative of the various groups described in Section 3, and because it is possible for
them finding implementations, all in the Java language, within one single library available on the
web (SPMF, see Section 6), thus avoiding problems deriving from comparing implementations over
extremely diverse frameworks. We tested these algorithms on three datasets, named Bible, MSNBC
and Bike, whose characteristics are briefly summarized in Table 1. Such specific datasets have been
selected because they present an adequate variety in the total number of sequences, the number of
items, and average sequence lengths. Moreover, they refer to extremely different contexts. Bible is
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a conversion of the Bible into a sequence database (each word is an item). The dataset is available
on the mentioned SPMF library. MSNBC is a dataset of click-stream data from the MSNBC website,
converted from original data from the UCI repository. It is available in the SPMF library as well. Bike
contains sequences of locations where shared bikes have been parked in the city of Los Angeles. Each
item represents a bike sharing station and each sequence indicates the different locations of a bike over
time. It has been obtained from the Github of Andrea Tonon, and it is a transformation of a dataset on
the popular data science website Kaggle∗.

Table 6. Datasets used in the experiments.

Bible MSNBC Bike
Sequence count 36,369 989,818 338

Item count 13,905 17 17,203
Average sequence length 21.6 13.23 216.44

In the first experimental analysis, for each algorithm and dataset we recorded the number of obtained
frequent sequences and basic performance figures, i.e. the execution runtime and the required memory.

In every run for this experiment, the same typical value for minsupp has always been used (namely,
0.2), yielding 174 frequent sequence patterns for Bible, 338 for MSNBC, and 23 for Bike. The results
about runtimes and memory usage are reported in the two sections of Table 7. We can observe that,
regardless of the specific target dataset, SPADE obtained the best results in terms of running time,
whereas Prefix-Span was generally the least computationally expensive in terms of memory footprint.

Table 7. Performance of algorithms on a typical usage setting (minsupp = 0.2).

Runtime (ms) Memory footprint (Mb)
Bible MSNBC Bike Bible MSNBC Bike

GSP 5901 17203 1668 298.72 216.44 142.35
SPADE 603 556 30 134.27 375.28 58.48
Prefix-Span 641 602 173 125.51 81.41 35.82
Clo-Span 3135 5896 379 504.90 195.28 73.94

The scalability of the algorithms has been initially investigated by varying the value of minsupp in a
range that can reasonably cover real cases, i.e. [0.05, 0.35]: with lower values, the number of frequent
patterns becomes too large, hampering the comprehension of the results, and with higher values almost
no pattern is present.

Figure 2 shows the recorded runtimes (in milliseconds) for increasing values of minsupp for all
the algorithms evaluated over all the three datasets. Each sub-figure refers to one specific dataset,
as indicated in the captions: a sub-chart shows the runtime of different algorithms over one specific
target dataset. For the sake of clarity, a logarithmic scale has been used for the vertical axis, with the
same range of values, to make it easier telling apart the different curves in the charts. It can be noted
that, as expected, in general the higher the minsupp value, the lower the number of retrieved frequent

∗https://www.kaggle.com/cityofLA/los-angeles-metro-bike-share-trip-data
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Figure 2. Runtimes obtained over the reference datasets by the target algorithms.

sequence patterns, and the sooner the algorithms complete their execution. The variability across
datasets is higher for GSP and SPADE, whereas the runtimes of PrefixSpan and Clo-Span assume
similar values. Even if each dataset stresses the various algorithms in different ways, we can see that,
for low values of minsupp, GSP performs poorly in any case, whereas SPADE behaves quite well.
Moreover, performance is typically affected by the number of sequences, and the sequence length has
a less important impact: in fact, runtimes for the Bike dataset are always shorter for all the algorithms.

The size of the target dataset is one of the most influential parameters for the behavior of an SPM
algorithm, so it is important to assess scalability also with respect to the dataset size. To this aim, we
decided to run the algorithms with increasing fractions of the MSNBC dataset, looking at the recorded
trend for both runtime and memory footprint, as already done in the previous experiments. Figure 3
shows the memory footprint (in Mb) with respect to the dataset size. Although relative differences can
be noted on the curves, both for runtimes and for memory footprint, the general trend with respect to
the dataset size is similar for all the algorithms.

4. Techniques related to Sequential Pattern Mining

Many different problems that are strongly related to the field of SPM attracted the interest of the
research community in the last years, giving rise to several distinct investigation lines. For example,
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Figure 3. Scalability assessment for all the algorithms with increasing fractions of MSNBC
dataset.

Periodic Pattern Mining consists of finding patterns that appear frequently and periodically in a
single long sequence. The pattern periodicity is measured based on its period lengths, [53, 83]. A
generalization regarding the ordering of events leads to the adoption of graph databases, suited to
model itemsets along with general relationships across them. In this case, the SPM problem can be
re-cast to Sub-graph Mining: It consists of finding frequent sub-graphs in a database of graphs or in
one single large graph [110], [51].

Some specific problems, closely related to SPM, have recently shown a growing importance. For
this reason, in the following we take a look at the most notable of them, and at solutions proposed for
them.

4.1. Weighted and High-Utility SPM

So far, we have discussed about events and objects in sequences, assuming that all of them would
be equally important for the sake of the addressed application, but in real settings this is not always
the case. Thus, we can reformulate the SPM problem by explicitly considering different degrees
of importance: Weighted SPM and, subsequently, High-Utility Mining are the two most popular
approaches of this kind in the literature. In the case of Weighted SPM, each item in the sequence
database is typically assigned a weight in the range [0, 1], denoting its relevance. Of course, it is
necessary to adapt classical SPM algorithms to handle weights as well. An example is WSPAN [117],
whose authors propose to use a weight range and prune weighted infrequent sequential patterns, thus
generating fewer sequential patterns with higher overall weights.

High-Utility SPM can be considered an extension of Weighted SPM. In this case, however, rather
than using a weight for each object in the sequence database, it relies on the fact that each object/item
may appear zero, one or more times within a transaction. Thus, each item is weighted with respect
to its relative importance within the transaction or dataset. In addition to the minimum support
threshold required for the identification of frequent sequential patterns, a utility threshold is taken
into account. Thus, to be considered frequent, a specific pattern must have a support greater than or

Applied Computing and Intelligence Volume 3, Issue 1, 44–78



62

equal to minsupp, and it must also exceed a utility threshold, which could be relative either to each item
or to the total number of items in a transaction. A widely used High-Utility Pattern Mining algorithm
is USPAN [114], which exploits a lexicographic quantitative sequence tree to represent the sequences,
along with a set of concatenation mechanisms to identify High-Utility ones. Notably, recent research
has investigated solutions for High-Utility SPM for Big Data, devising algorithms that leverage the
MapReduce distributed programming model [59], and attention has been devoted also to efficient
mining of High-Utility Sequences with constraints [94].

4.2. Multi-dimensional SPM

Another problem studied in the literature is that of Multi-dimensional SPM, introduced by [78].
According to the authors, traditional SPM approaches allow the identification of global regularities
within the database, but not the ability to focus on specific problems. For example, given a pattern
identified as frequent in a sequence database containing customer transactions, it may be globally
frequent. However, when considering a specific category of customers (for example, “over 55”),
the same conclusion may not be true. To solve this problem, sequence databases are enriched
with annotations concerning characteristic traits of the sequences. Frequent sequences are identified
also along specific dimensions. Certain sequences may thus be frequent for some values of those
dimensions but infrequent for others [91]. At first sight, the idea may appear similar to that of
quantitative sequences, discussed in Section 3.4. However, while for quantitative sequences the goal
is to model quantities of the actual data, such as how many items in a transaction, in this case the aim
is to model both the data with respect to some kind of metadata that is complementary to the data of
the transaction. SeqDIM [78] is a popular example of Multi-dimensional SPM algorithm. It can be
considered as a meta-algorithm, as it requires a sequential pattern mining algorithm for discovering
sequential patterns and an itemset mining algorithm to deal with the dimensions.

4.3. Stream SPM

Often a large amount of information can be available in real time in the form of data streams, and
knowledge should be extracted from them in real time as well: techniques under the name of “Stream
SPM” have been proposed for this purpose, recently gaining recognition in the literature. The proposed
algorithms are typically extensions of incremental algorithms, such as the aforementioned SPADE. The
key constraint that Stream SPM algorithms must face is, obviously, the fact that they must be able to
identify sequential patterns even if the entire sequence cannot be read more than once, since it is a
stream of data in continuous evolution. Some examples of popular algorithms for Stream SPM are
eISeq [12], IncSPAM [46], SPEED [81], and Seqstream [13].

4.4. Uncertain and fuzzy SPM

Data collected in a real setting can frequently be affected by uncertainties and noise, and thus their
analysis must take into account such unwanted characteristics. Uncertainty in SPM can occur in three
different places: the assignment of an event to the proper sequence (or “source”), the event itself,
and the event timestamp [71]. Temporal uncertainty can be due to various reasons. For example,
conflicting or missing event timestamps, network latency, granularity mismatches, synchronization
problems, device precision limitations, data aggregation. A significant specific case refers to temporal
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Figure 4. Problems and relative algorithms discussed in this work.

placement of events [40]. To overcome the difficulties deriving from inexact values, or noisy datasets,
specific approaches like Uncertain SPM and Fuzzy SPM have been developed. Typically, probabilistic
techniques and fuzzy logic solutions are exploited. For example, it was proposed an adapted version of
PrefixSpan [71] that exploits dynamic programming to compute the expected support of a sequential
pattern.

Efficiency and scalability are challenging issues that emerge in SPM applied to uncertain databases.
An approach proposed to tackle such issues is based on dynamic programming to mine probabilistic
frequent sequential patterns over the distributed platform Spark [39]. For addressing the problem of
uncertain data that affects also the High-Utility sequential patterns, a high average-utility sequential
pattern mining framework [58] has been proposed for discovering the set of potentially high average-
utility sequential patterns by considering the sequence size. A drawback of several recent works that
attempt to mine frequent uncertain sequential patterns is their low efficiency in reducing the number of
generated false-positive patterns in their mining process. To address this issue, it has been shown that
the exploitation of a hierarchical index structure may lead to promising results [85].

The mining of closed sequences in uncertain data has proved to be very challenging. The PFCSM-
CF and PFCSM-CC algorithms [115] have been designed to reduce the search space and simplify the
candidate sequence database, with valuable computational benefits.

The exploitation of fuzzy set theory has shown to be useful in presence of uncertainties in SPM.
For example, in [118] the authors have proposed an algorithm based on a sliding window constraint
that allows an element to be considered as part of different transactions within a user specified window.
More recently, fuzziness has been used also to deal with High-Utility Fuzzy Sequential Patterns [84].

For the sake of clarity, all the problems and the corresponding algorithms discussed in this survey
are shown in Figure 4.

Applied Computing and Intelligence Volume 3, Issue 1, 44–78



64

5. Frequent Episode Mining

In recent years, another important related pattern mining problem that received particular attention
is Frequent Episode Mining, and promising solutions have been put forward. The discovery of sub-
sequences whose instances occur frequently along a single sequence, each one according to a specific
temporal order, is a very relevant problem in many application domains, especially in the context of
system log analysis [122]. In fact, while several applications in SPM deal with sequential data that is
typically coming from many small sequences (for example, a database of customer transactions for a
company), a notable exception is identifiable in domains where the target phenomenon is described by a
single long sequence of events, and for which patterns of interest are small sub-sequences. Examples of
applications in such domain are the monitoring of network traffic for detecting attacks, the monitoring
of telecommunication alarm signals, or the analysis of usage data for recurring patterns.

In this setting, an event is always associated with a timestamp, and it may contain one or more items
out of a given set. The frequent sub-sequences of events that we are interested in are usually called
episodes.

The Frequent Episode Mining (FEM) problem was first introduced by Mannila et al. [66]. In their
work, authors define an episode as a collection of events that occur within time intervals of a given size
in a given partial order [66]. Thus, given a sequence of events, each marked by a specific timestamp,
and a predefined time window, the FEM objective is to identify episodes of events, or sub-sequences,
that occur frequently together at a specific time and with a specific partial ordering.

A formal definition is given in [34]. In the most general case, some events can occur concurrently,
i.e. may have the same timestamp; to emphasize this aspect, sequences with possible concurrent events
have been called complex sequences. Consider a finite set of items I = {i1, i2, ..., im}.

A complex sequence S of events, each with one or more items out of I, is represented by a
temporally ordered list of tuples of the type (SEti , ti), where SEti is the event occurring at timestamp ti.
An episode is thus a non-empty, totally-ordered set of events of the form 〈E1, E2, ..., Ep〉, where Ei is
a subset of I and Ei appears before E j for all integers i and j, with i < j, in the interval [1, p]. The
purpose of FEM is therefore to identify all frequent episodes, i.e. those with high support, in a sequence
S . The occurrence of an episode is given by a time interval [ts, te] where ts and te are the start and end
timestamps for the episode, respectively. The support of an episode is clearly given by the number of
its occurrences within the sequence. In the literature, several methods have been proposed to calculate
the support. Older works proposed to calculate it through the minimum number of occurrences of
an episode [66], while more recent works typically exploit the frequency of the episode head, since
it has been experimentally proven to be the best measure of support for this problem [50]. Given a
user-defined winlen length window, and a minimum minsupp support threshold, the goal is to identify
episodes that occur at least minsupp times within a winlen window.

Several algorithms have been proposed in the literature to address the FEM problem. The authors
in [66] first addressed the problem, and proposed the WINEPI and MINEPI algorithms. They follow
largely the same procedure, but differ in the calculation of frequency and support. In WINEPI, an
episode is only frequent when all its sub-episodes are also frequent. On the other hand, MINEPI
exploits the minimum occurrences mentioned above. Thus, one of its advantages over WINEPI is
that rules are produced with two specific time limits. The authors claim that MINEPI can outperform
WINEPI in the last iterations of the algorithm. In [50] EMMA and MINEPI+ were proposed. Both
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improve WINEPI and MINEPI by using head frequency counting to calculate sequence support.
Algorithms focused on High-Utility episode mining have also been proposed [33, 104]. In this case,
the goal of the algorithms is to identify High-Utility episodes in complex event sequences such as
transaction databases. Recently, the problem of mining serial episode rules from complex event
sequences emerged. The Forward and Backward Search Algorithm (FBSA) was developed to detect
minimal occurrences of frequent peak episodes and to eliminate the frequent sequence scans and
redundant event sets [79]. A new technique called Mining Serial Episode Rules (MSER) was also
proposed and it is based on the correlation between episodes and the generation of parameter selection
where the occurrence time of an event is specified in the consequent. Efforts have also been made on
mining Frequent Serial Episodes over data streams [42].

Given that episode mining is an NP-complete problem, and that the minsupp parameter has a rather
high influence on the quality and quantity of the results (i.e. too many episodes or uninteresting
episodes), algorithms have been proposed for mining frequent top-k episodes in a sequence, either
focusing on the standard setting [34] or for High-Utility mining [82]. A scalable, distributed framework
to support FEM on event sequences either very long or with masses of simultaneous events was
proposed in [5]. It is an event-centered and hierarchy-aware partitioning strategy aimed at allocating
events from different levels of the hierarchy into local processes, extended also to support maximal and
closed episode mining in the context of event hierarchy. In addition, the authors of this framework also
presented an algorithm to improve the local mining performance.

Finally, several applications of the FEM algorithms have been developed in the last few years. For
example, FEM algorithms have been used in building a prediction model aimed at solving the resource
provisioning problem in the cloud environment [3]. Another kind of application is the automation of
sequences of repetitive actions performed by human operators in interacting with software applications.
Robot applications can automatise sequences of logs to prevent work perceived as alienating and boring
by employees. A two-step approach to mine sequences of actions to be automated from log data
produced by interactions of a human operator with specific software application has been proposed
very recently in [21].

6. Available software for Sequential Pattern Mining

The field of sequential pattern mining is clearly very oriented to the development of algorithmic
solutions focused on pushing the state-of-the-art particularly towards efficiency as dataset sizes
increase. As it regards the actual implementations of algorithms presented in the literature,
often authors delve into thorough descriptions of their proposals, possibly assessing the relative
performances to compare them with state-of-the-art approaches, but in the context of the paper they
rarely make available open-source code to the scientific community. This is especially the case for
many classical algorithms that have been devised several years ago. The reason of the lack of publicly
available code may be due to commercial restrictions, or to the fact that the algorithm itself has
been implemented in specific architectures that are harder to replicate in a completely open and self-
contained framework such as for distributed computing. Clearly, this has led over the years to the
creation of resources and small third-party libraries specifically designed for the implementation of
certain algorithms in the literature [31]. On the one hand, a number of classical algorithms such as
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Apriori,† FPGrowth,‡ and PrefixSpan § to name a few have been coded by several users in open source
communities such as GitHub. On the other hand, open-source libraries specifically designed to address
SPM techniques at large and incorporate a wide array of implemented algorithms from the literature,
are more scarce. Nevertheless, a few notable exceptions can be identified.

It is worth underlining that many open-source or at the very least freeware libraries for data
mining and machine learning, such as for example the popular Weka [102] and KNIME [9], include
implementations of basic standard algorithms for SPM. Notably, also the MLlib library of the Spark
framework supports some basic algorithms, such as FP-Growth and Prefix-Span.¶ Additionaly,
a widely popular alternative has been proposed by means of SPMF (Sequential Pattern Mining
Framework).‖ As the name suggests, it includes the implementation of a large number of algorithms
for SPM and related problems, such as high-utility pattern mining, episode mining, and stream mining
among others [31]. Written in Java, it includes a large part of the algorithms described in the previous
sections. The framework is being actively maintained at the time of writing.

In recent years, Python has become one of the most popular languages in the data science
community [10]. Anyway, currently the number of open, comprehensive Python implementations
of SPM techniques is very limited, and popular data mining toolkits like SciKit-Learn [73] have very
limited coverage of SPM-related algorithms. This might be due to the fact that SPM techniques usually
require efficient systems and languages, and Python is not considered one of them, even if the situation
is rapidly changing. In this perspective, it is worth mentioning also the recently released PAMI∗∗

framework. It is an open-source Python library for SPM and related problems. The main advantage
of PAMI over other similar frameworks is, according to the words of the authors, that the library
can better “satisfy the information needs of the data scientists who perform analytics on Big Data
mostly using Python language.” Even if SPFM can be considered definitely more extensive in terms
of available algorithms, PAMI includes several traditional SPM algorithms, as well as distributed and
GPU-accelerated ones, thus enabling a wider array of possibilities especially for big data analytics.
Moreover, other comprehensive Python resources are emerging: a notable example is in the field
of constraint-based Sequence Mining algorithms, and it is represented by the Seq2Pat library [101],
which is freely available on the web: it focuses on practical issues like scalability, explainability, rapid
experimentation, and reusability.

7. Future directions

The research questions posed by the literature on Sequential Pattern Mining and related problems
have been tackled in several different ways over the last three decades. Despite the wide variety of
application contexts, the basic formal model used for SPM (as summarized in Section 2) has been able
to accommodate most of the specific needs. Even if the problem could not be considered a novel one,
there are still many open challenges and potential applications to explore, thus making it an intriguing
research topic also nowadays.

†https://github.com/tommyod/Efficient-Apriori
‡https://github.com/chonyy/fpgrowth_py
§https://github.com/chuanconggao/PrefixSpan-py
¶https://spark.apache.org/docs/1.5.0/mllib-frequent-pattern-mining.html
‖https://www.philippe-fournier-viger.com/spmf/
∗∗https://github.com/udayRage/PAMI
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Some past reviews on SPM [32, 45, 70, 123] identified several possible future developments in the
field and now we can check what it has been accomplished, what it must still be done, and what
new perspectives we are facing today. One key aspect pointed out in different ways by almost all
earlier reviews is the need to address, beyond the computational efficiency, the practical utility and
interpretability of the results, whose possible huge size practically hampers their effective usage. As
discussed in Section 3.4, this aspect has been addressed by considering different possible types of
constraints, and significant results have been obtained, as witnessed for example by recent proposals
for extracting only the best k patterns [34]. Anyway, we must admit that a semantic approach to the
identification of the most meaningful results for the end user is still missing, and can thus be considered
a challenge for future investigations. Regarding the semantic aspects of SPM, some questions have
been formulated: “what is the meaning of the pattern? What are the synonym patterns? And what are
the typical transactions that this pattern resides? Why a certain pattern is frequent?” [45]. Certainly,
any attempt for an answer still requires extensive research efforts, and the integration of ontologies has
been proposed as a future development as well [70].

Ideas and techniques originally developed for SPM can provide significant results in related
application areas, as in the case of time series analysis, where in a recent study they have shown to
be able to effectively point out temporal behaviors or trends [109]. Hopefully, many other examples of
such cross-contamination in other fields could be expected.

The opportunity to use some forms of temporal logic has been advocated for a better specification of
the desired patterns, or for a more precise identification of rules [70], but so far no proposal has emerged
as a general agreed specification framework for temporal aspects in SPM. Instead, application-specific
requirements led to the development of ad-hoc solutions: we suppose that the variety of needs in
disparate applications could be an obstacle in pursuing this possible research line.

The growing availability of data from different sources and domains is definitely an incentive
to provide more efficient algorithms that leverage modern computing hardware, such as distributed
computing and GPU acceleration [32]. We have shown in the previous Sections how a number
of approaches already tackled the issues of parallelization, especially in leveraging MapReduce-
like algorithms and frameworks such as Spark. More recently, approaches have also been proposed
focusing on cloud [4] and fog [11] computing environments for leveraging Big Data and IoT-enabled
devices to perform sequential pattern mining. Given the fact that IoT-enabled devices can serve both
as computational power and for data collection, an interesting area of research is that of Stream SPM
in this specific context.

GPUs are likely among the most promising computing platforms for delivering further performance
in SPM techniques, also considering the fact that GPU acceleration has drastically increased the
capabilities of deep learning models in the last few years. Some efforts have been made also in this
direction [48, 72], showing how leveraging GPUs can decrease the computation time by orders of
magnitude with respect to traditional computing hardware.

The inherent peculiarities of large amounts of available data represent an interesting challenge
along two different perspectives. First, in terms of strategies for dealing with the increasing
complexity in represented information and related data structures [32]. Although most of the literature
focused on specific benchmark datasets and application domains such as transactional databases, this
growing complexity could be the driver for a large number of researches aimed at modelling diverse
characteristics of the data in various contexts. Second, the spectrum of potential applications for
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sequential pattern mining algorithms could be broaden. For example, in the bioinformatics domain
several algorithms have been studied for mining patterns in genetic sequences [65,87]. Other potential
fields of application are: usage mining, such as the analysis of user interactions with applications
or web pages to understand their behavioural patterns, and how end users interact with a specific
platform, also in order to suggest automation strategies [18]; telecommunications, such as mining of
user movement patterns, and next location prediction; intrusion detection, especially for client-server
applications, based on activity logs, that can be exploited to mine potentially suspicious patterns. In
general, we can argue that any application dealing with inherently sequential data could be explored
also in the context of SPM.

An interesting perspective in this regard can also be obtained by looking at trends in other fields of
machine learning. In recent years, Attention-based models [99] such as Transformers have imposed
themselves as the de-facto standard for many machine learning tasks, including Computer Vision and
Natural Language Processing. An interesting aspect is that, at their core, such architectures aim to
model sequences (e.g., of words, patches of images, genome). It would undoubtedly be interesting
understanding how they relate to each other in terms of discovering and predicting new patterns in
data, and how these two different paradigms for learning from sequences could influence each other.

8. Conclusions

The main goal of this paper was to provide an overview of the research field on Sequential Pattern
Mining (SPM) approaches and algorithms, as well as related problems. In order to do so, we adopted
two categorization of the approaches proposed in the literature.

First, we categorized them through the specific problem of SPM, considering differences in
behaviour and/or utilized constraints. Our main goal was to provide an overview of the research field,
adopting a categorization in terms of the approach they pursue, and presenting the most significant and
popular algorithms for each category. The description has been complemented with an experimental
analysis for getting insights into the performances of some of the most well-known algorithms on
benchmark datasets for pattern mining. From this first categorization, as well as from the performed
experiments, we can conclude that there are not clear differences between the various approaches,
both in terms of computational cost/efficiency and results. As a general rule of thumb, considering
that most of the algorithms build upon each other, practitioners and researcher looking to provide
improved solutions may first consider newer and hybrid implementations (for example, top-k SPM)
as the state-of-the-art. Further, due to the fact that in target applications sequential data are generally
rather large, parallelized versions of SPM algorithms may be a good choice, provided the availability
of computational resources.

Second, we categorized different approaches that are strongly related to the problem of mining
sequential patterns. We included Weighted and High-Utility SPM (HUSPM), Multi-Dimensional
SPM, Stream SPM, Fuzzy SPM, and Frequent Episode Mining (FEM). In this regard, it is clear
that the choice of one approach over others is mostly related to (i) the available data and (ii) the
task at hand. For example, HUSPM may prove helpful when dealing with sequential data where
certain events, or items, are considered to be of higher importance or are associated with specific
benefit. Multi-Dimensional SPM may be the best choice when dealing with multi-faceted data that
can be explored along different dimensions with different results, such as customer transactions with
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associated demographic information. On the other hand, Stream and Fuzzy SPM are particularly useful
when the data is either continuously updating or is missing information. Finally, FEM may be the best
fit for datasets that include long sequences that have to be explored also horizontally, or when the data
is actually a single, long, sequence, from which we aim to mine recurring patterns, as for example in
the case of log analysis.

We provided also an account of several practical options for employing SPM algorithms in custom
applications, in particular by looking at open-source code currently available for pattern mining.
Finally, by revising expectations expressed in previous surveys on the SPM subject, we proposed some
potentially interesting future research directions.

Even if SPM algorithms have been a staple of the research on data mining for almost the last three
decades, upon a survey of related contributions in the recent literature we can state that this is still an
active research field with a vast number of unexplored options from the application standpoint, and
room for improvement for what concerns the efficiency and effectiveness of algorithms for pattern
mining under various lights.
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