
 

https://www.aimspress.com/journal/aci 

Applied Computing and Intelligence 

2(2): 99–114 

DOI: 10.3934/aci.2022006 

Received: 11 July 2022 

Revised: 19 August 2022 

Accepted: 12 September 2022 

Published: 16 September 2022 

 

Research article 

Semi-supervised multiscale dual-encoding method for faulty traffic data detection 

Yongcan Huang and Jidong J. Yang* 

Smart Mobility and Infrastructure Laboratory, College of Engineering, University of Georgia, 

Athens GA, USA 

* Correspondence: Email: jidong.yang@uga.edu; Tel: +1-706-542-5669 

Academic Editor: Chih-Cheng Hung 

Abstract: Inspired by the recent success of deep learning in multiscale information encoding, we 

introduce a variational autoencoder (VAE) based semi-supervised method for detection of faulty 

traffic data, which is cast as a classification problem. Continuous wavelet transform (CWT) is 

applied to the time series of traffic volume data to obtain rich features embodied in time-frequency 

representation, followed by a twin of VAE models to separately encode normal data and faulty data. 

The resulting multiscale dual encodings are concatenated and fed to an attention-based classifier, 

consisting of a self-attention module and a multilayer perceptron. For comparison, the proposed 

architecture is evaluated against five different encoding schemes, including (1) VAE with only 

normal data encoding, (2) VAE with only faulty data encoding, (3) VAE with both normal and faulty 

data encodings, but without attention module in the classifier, (4) siamese encoding, and (5) 

cross-vision transformer (CViT) encoding. The first four encoding schemes adopt the same 

convolutional neural network (CNN) architecture while the fifth encoding scheme follows the 

transformer architecture of CViT. Our experiments show that the proposed architecture with the dual 

encoding scheme, coupled with attention module, outperforms other encoding schemes and results in 

classification accuracy of 96.4%, precision of 95.5%, and recall of 97.7%.  

Keywords: faulty data detection; continuous wavelet transform; variational autoencoder; 

self-attention; semi-supervised learning 

 

1. Introduction  

State departments of transportation in the U.S. typically collect traffic data using permanent 

continuous count stations (CCS), equipped with inductive loop sensors that routinely require 

https://www.aimspress.com/journal/aci
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checking and calibration to ensure quality data being collected [1]. It is recommended that accuracy, 

completeness, validity, timeliness, coverage, and accessibility are used as the major data quality 

measures [2]. However, inherent defects, disrepair, communication failure, environmental effects, 

among others, inevitably yield faulty CCS data. Thus, it is critical to have quality control of CCS 

data to support various transportation planning/engineering practices and decision-making that 

demands high-quality traffic data. The existing statewide quality control processes for CCS data 

feature rule-based mechanisms that either reject or flag the raw data based on established quality 

control rules. For ambiguous situations, further review is required by an analyst. 

The faulty data detection has been extensively studied by typically following one of the three 

major approaches: (1) statistical analysis, (2) classical signal processing, and (3) artificial 

intelligence (AI) based methods [3]. Detecting faulty data by statistical analysis of historical data 

usually relies on some defined confidence intervals for identification of outliers. Principal 

components analysis (PCA) and its variants have been employed as well. For example, to optimize 

fault detection and diagnosis in nonlinear dynamical systems, Bounoua and Bakdi (2021) developed 

fractal-based dynamic kernel PCA, which overcomes the shortcomings of other variants of PCA [4]. 

In signal processing-based fault detection, wavelet transform, which allows time-series data to 

be portrayed in time and frequency domains, has been widely used. By exerting scaling and 

translation it allows comprehensive analysis of faulty signals in multiple scales and resolutions [5]. 

Continuous wavelets transform (CWT) has demonstrated success in extracting regular and irregular 

features (e.g., seasonal, trend, surge) [7]. CWT can convert time-series data to time-frequency image 

representation in desirable resolution, which has advantages over the Fourier transform techniques 

for fault detection [8‒10]. 

For the AI-based methods, signal processing is usually applied first as a pre-processing step. For 

instance, to detect and classify faults in the shunt compensated static synchronous compensator 

transmission line, Aker et al. [6] proposed a probabilistic neural network-based Naïve Bayes 

approach where discrete wavelet transform assists with extracting features that are later used to train 

the classifiers to categorize faulty signals occurring in the system. In another study, Boquet et al. [11] 

introduced a variational autoencoder (VAE) model for prediction-based fault detection that learns 

how traffic data is generated in an unsupervised way. The traffic data is first projected to the 

low-dimensional latent space before feeding to the prediction model. More recently, Morris et al. [12] 

presented a VAE-based approach, where a joint latent space was constructed using two VAEs trained 

on image representations from two distinct signal processing techniques: CWT and recurrent plot 

(RP). Anomalous data is detected if the learned representation falls farther away from the 

approximated manifold in the latent space. Additionally, two independent data sources are 

cross-checked to verify an anomaly. 

With the focus on the quality control of statewide traffic data, many state departments of 

transportation have adopted their own automatic review systems that use pre-defined quality control 

rules for data screening. However, the quality control rules rely on certain thresholds, which are 

subjective and insensitive to variation inherited in traffic data. Thus, they are not considered robust 

enough to detect faulty data and often lead to false-positive diagnosis. For example, the faulty data 

arising from minor sensor malfunction may not be detected, while an abnormal data pattern caused 

by an extraneous event (e.g., a traffic accident) is not faulty in traffic data itself but may be flagged 

as faulty data. 
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The simplest form of data quality control can be cast as a binary classification task, where faulty 

data are separated from normal data. However, the main challenge lies in proper construction of 

feature space for the classification task. In this respect, deep convolution neural networks have been 

commonly employed as backbones to extract multiscale features, which are then utilized for the 

classification task. 

Motivated by both signal processing and AI-based fault detection approaches, a novel 

semi-supervised dual-encoding architecture is introduced for detection of faulty traffic data in this 

paper. First, time-series traffic volume data is transformed by CWT to generate time-frequency 

image representations. Two identical VAEs are then trained to encode normal and faulty CWT 

images in multiple scales separately. These multiscale encodings are subsequently utilized to classify 

whether the data is normal or faulty. By leveraging positive and/or negative multiscale encodings 

from the VAE encoders, four different VAE-based models are designed and evaluated. Two 

additional encoder architectures, including a siamese network (SN) encoder and a cross vision 

transformer (CViT) encoder, are used and evaluated as well for comparison purposes. The CCS data 

used in this study is obtained from the Georgia Department of Transportation. 

The remainder of this paper is organized as follows: Section 2 reviews two key techniques, 

CWT and deep learning-based feature extraction adopted in our proposed method and their 

applications in fault detection with time-series data. Section 3 discusses our proposed method. The 

datasets used in this study are described in Section 4, followed by experiments in Section 5. The 

conclusions are given in Section 6 with discussions on future research directions. 

2. CWT and deep learning-based feature extraction 

This review section focuses on CWT and deep learning-based feature extraction and their 

applications in fault detection with time-series data.  

2.1. CWT in fault detection 

CWT is well known for decomposing time-frequency information, particularly, constructive to 

obtain salient features from dynamic time series data. CWT-based traffic data transformation has 

been shown to reveal unobvious patterns of traffic data in an efficient way [13].  

Traditionally, CWT has been used to capture local changes, which are noisy and aperiodic. For 

example, Zheng et al. [14] demonstrated the utility of wavelet transform in analyzing important 

features associated with abnormal traffic conditions, such as bottleneck effects and traffic oscillation 

arising from congestion. The case study of three different scenarios of vehicle trajectories showed 

that the origins of deceleration waves could be detected by wavelet-based energies of a single vehicle, 

and the detected origins help to pinpoint possible causes. In another study, Jiang et al. [8] developed 

a two-stage fault detection method for anomalous network traffic. In their methodology, CWT was 

applied to decompose the incoming signals into multiple continuous scales, followed by principal 

component analysis to extract the features of anomalous network traffic. Then, a new mapping 

function is constructed to detect the abnormal traffic. 

Recently, CWT coupled with deep learning techniques offers a new approach for fault detection 

with time-series data. König et al. [15] proposed a deep learning-based method for anomaly detection 

and diagnosis on acoustic emission signals. With the acoustic emission signals being converted to 
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CWT images, an autoencoder network was developed for anomaly detection in the latent space and 

GoogLeNet [16] was adapted to the anomaly classification task. In another study, Jalayer et al. [17] 

developed a comprehensive deep learning-based fault detection and diagnosis model for rotating 

machinery by channeling up fast Fourier transform, CWT, and statistical features of raw signals. A 

convolutional long short-term memory was employed to classify the multi-channel input.  

Based on the review of previous studies, CWT has been commonly used for processing 

time-series data. Generally, the methodology of converting signals into CWT images representations 

and further processing these image representations by deep-learning-based methods to encode 

multiscale features has shown a great potential and improved performance in fault detection of 

time-series data. 

2.2. Deep-learning based classification with time-series data 

Deep learning has been largely fueled by convolutional neural networks (CNNs) since 

AlexNet [18]. Nevertheless, its impacts and applications have gone far beyond the field of computer 

vision. This section reviews the applications of CNNs for classification of time series data. 

Wang and Oates [19] encoded time-series data into the Gramian angular summation/difference 

field (GASF/GADF) and the Markov transition field (MTF) images and applied deep tiled 

convolutional neural networks for classification with 20 standard datasets. Hatami et al. [20] used RP 

to portray time-series to images and then designed a CNN classifier with 2 hidden layers to solve a 

time-series classification problem. It was compared with traditional machine learning frameworks as 

well as using other time-series images (e.g., GAF-MTF images). Pelletier et al. [21] studied temporal 

CNN for classification of land cover using sentinel-2 satellite image time series data. The proposed 

temporal CNN outperformed traditional random forest and recurrent neural networks in terms of 

overall accuracy. Yang et al. [22] exploited three time series imaging methods, GASF, GADF and 

MTF, and concatenated them into different channels as input to a CNN classifier. The study aimed to 

evaluate the impacts of different imaging methods, the sequence of image concatenation, and the 

complexity of CNN on classification accuracy. The results showed that the selection of imaging 

methods and the sequence of concatenation did not have significant impacts on the prediction 

outcome, and a simple CNN appeared to be sufficient for the classification task as compared to 

complex CNNs, such as VGG net [23]. 

More recently, Shi et al. [24] presented an image-based fault detection pipeline for nuclear 

power plants. The study casts the fault detection problem into a supervised image classification task. 

Four distinguished time series imaging methods, including GASF, GADF, MTF and un-thresholded 

recurrence plot (UTRP), were employed to transform the time-series data into two-dimensional 

image representations. The CNN-based, transformer-based, and MLP-based deep learning 

architectures were evaluated for feature extraction and classification. The experimental results 

showed that UTRP achieves excellent performance and work well across different deep-learning 

architectures. Specifically, the EfficientNet-B0, one of the CNN-based models evaluated, 

outperforms the other deep learning models in terms of the trade-off between speed and accuracy. 

Based on our literature review, imaging time series data as a pre-processing step, followed by 

deep-learning based models (e.g., CNN and Transformer) is an effective approach for faulty data 

detection. In this study, self-supervised learning methods, such as CNN-based VAE, are applied to 

encode normal traffic data (referred to as positive encoding) and faulty traffic data (referred to as 
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negative encoding) separately. Our study demonstrated that the pooling of complementary positive 

and negative features through an attention mechanism leads to improved fault detection performance. 

3. VAE-based dual-encoding method for faulty traffic data detection  

The conceptual framework of the proposed method is illustrated in Figure 1. First, the time 

series traffic data is partitioned to three datasets: positive dataset, negative dataset, and mixed dataset. 

The CWT images for the positive dataset and the negative dataset are used to train twin VAEs, 

referred to as VAE
(P)

 and VAE
(N)

 in this paper. The resulting multiscale dual encodings from VAE
(P)

 

and VAE
(N)

 are concatenated and fed to a classifier, which consists of a self-attention module and an 

MLP. The mixed dataset, including both positive and negative examples, is used to train the classifier 

in a supervised fashion while the VAE encoders are kept frozen during the classifier training. 

 

Figure 1. Illustration of the proposed fault detection methodology; the pretrained twin 

encoders are frozen and used to obtain multiscale dual encodings for training the classifier. 

3.1. Continuous wavelet transforms 

Wavelets are formed by convoluting scaled and translated versions of a chosen mother wavelet 

over time series data. In this context, scaling refers to stretching or shrinking the wavelet in time, 

where stretching the wavelet helps to capture slow changes in time series data, while shrinking it 

manifests the abrupt changes. Shifting refers to the position of the wavelet imposed on the signal. As 

a result, CWT produces a time-frequency image that visually captures changes in various scales, 

inducing a powerful representation for time-series data. The CWT function 𝑓 𝑡  is expressed in 

Equation 1. 

𝐶 𝑎, 𝑏; 𝑓 𝑡 , 𝜓 𝑡  =   𝑓 𝑡 
1

𝑎
𝜓 ∗ (

𝑡−𝑏

𝑎

∞

−∞
)𝑑𝑡                        (1) 
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where, a represents the scale, and b indicates the position. The symbol * denotes the complex 

conjugate. 𝜓 represents the mother wavelet function. Morlet, one of the widely applied mother 

wavelet functions, is adopted in our study [25]. Figure 2 depicts an example of the Morlet application 

to the CCS data. 

 

Figure 2. Sample wavelet transformations on CCS data; left: normal data, right: faulty data. 

3.2. VAE-based architectures for image classification 

CNNs have been widely used as feature extractors in image classification since the 

breakthrough demonstrated by AlexNet [18]. Given the prowess of CNNs in hierarchical features 

extraction, the deep convolutional VAE architecture is well suited to extract multiscale 

representations of CWT images. 

Our proposed classifier leverages the multiscale positive and negative encodings from the 

pretrained VAE
(P)

 and VAE
(N) 

through an attention mechanism for the downstream classification task. 

This dual encoding scheme was inspired by [26], where a frozen dictionary learning method is 

proposed to learn a dictionary-based sparse representation of normal data and anomalous data in 

sequence. The portion of dictionary for normal data is learned first and then frozen while learning the 

portion of dictionary for anomalous data. Different from [26], we independently learn VAE 

encodings for the positive dataset and the negative dataset in multiple scales and then leverage 

attention mechanism to selectively aggregate features for the classification task. The remainder of 

this section introduces background on VAE and the self-attention mechanism, followed by our 

proposed VAE-based classifier. 

3.2.1. Variational autoencoders 

VAEs encode inputs through regularized reconstruction via an encoder-decoder paradigm [27], 

as depicted in Figure 3. The encoder transforms the input (𝑥) in a low-dimensional latent space (𝑧), 
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while the decoder operates on z to reconstruct the input (𝑥 ). To allow the underlying data structure 

(manifolds) to emerge in the low-dimensional latent space, the information content that could be 

encoded is constrained by injecting noises in z via Gaussian sampling. Since directly sampling from z 

is not a differentiable operation, a reparameterization trick is employed [27]. The loss function of the 

originally proposed VAE consists of two terms: (1) reconstruction loss (𝑙𝑟), and (2) regularization 

(𝑙𝐾𝐿), where 𝛼 is the weight given to the regularization term. 

  𝑙 𝑥, 𝑥  = 𝑙𝑟 + 𝛼𝑙𝐾𝐿 𝑧, 𝑁 0, 𝐼                             (2) 

To learn the respective normal and faulty features, the twin VAEs are trained, one with the 

positive dataset and one with the negative dataset. The inputs are CWT images (1 × 64 × 64). The 

encoder of each VAE consists of four convolution blocks, where each block includes two 2D 

convolutional layers plus a max pooling, resulting in a 2048-long vector after flattening. Each 

convolutional layer is followed by batch norm and rectified linear unit (ReLU) activation. A 

fully-connected layer is used to further reduce the dimension from 2048 to 64. The decoder applies 

four transposed convolutional blocks to reconstruct the CWT image, where the first three blocks 

consist of two transposed convolutional layers and the fourth has an extra 2D convolutional layer. 

Samples of original CWT images and the reconstructed ones are shown in Figure 4. The two 

pretrained encoders, Encoder
(P)

 and Encoder
(N)

, are subsequently employed to extract multiscale 

features for the classification task. 

 

Figure 3. The top plot indicates the VAE framework. The bottom plot illustrates the 

proposed VAE architecture. 
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Figure 4. Samples of CWT images and corresponding reconstruction. 

3.2.2. Attention-based classifier 

The attention mechanism has become extremely popular, largely due to the success of 

transformer [28], and has been successfully applied for image classification task [29]. Inspired by 

human visual attention mechanism, an attention module pools information by paying due attention to 

different inputs through a weighting mechanism. Considering that not all features coming from the 

pretrained twin VAE encoders contribute at the same level to the classification task, a self-attention 

module is employed for selective feature pooling, as shown in Figure 5. 

The features retrieved from each block of the pretrained Encoder
(P)

 and Encoder
(N)

 are firstly 

projected to a 1024-long vector. The resulting common-length vectors are then concatenated to 

obtain a matrix of size 8 × 1024. The attention mechanism is applied among the eight vectors, which 

represent the positive or negative features at different scales. Linear transformation is used to obtain 

the query (𝑄), key (𝐾), and value (𝑉) matrices of the same size. The scaled dot-product attention [28] 

is computed by Equation (3). 

    𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥  
Q𝐾𝑇

 𝑑𝑘
 𝑉, where 𝑑𝑘  denotes the dimension of 𝐾 and 𝑄      (3) 

The output from the attention module is flattened and fed to a multilayer perceptron (MLP), 

which consists of two fully connected layers, followed by ReLU activation and a dropout layer (𝑝 = 

0.5). 

 



107 

 

Applied Computing and Intelligence  Volume 2, Issue 2, 99–114 

 

Figure 5. Architecture of the attention-based classifier. 

4. Time series traffic datasets 

Time series traffic volumes in 5-minute intervals are obtained from 254 active CCS sites across 

the state of Georgia over a two-year period (August 2018 - August 2020). The geospatial locations of 

CCS sites are depicted in Figure 6. Three distinct datasets, including positive dataset, negative 

dataset, and mixed dataset, are described below and summarized in Table 1.  

Positive dataset. The positive dataset contains 81,443 normal daily time sequences of 5-minute 

traffic volumes, collected at 254 CCS sites from August 1st, 2018 to July 31st, 2019. 

Negative dataset. Since it is challenging to naturally obtain faulty data on a large scale, this negative 

dataset was created by injecting artificial fault signals to simulate the actual faulty signals observed. 

Based on our observations [12], three major types of faulty signals present in the data, referred to as 

(1) point fault, (2) block fault, and (3) sensor nonresponsive fault. To be consistent with the observed 

natural data anomalies, three methods were used to create faulty signals: (1) decreasing volumes of 

five randomly selected time intervals by 40%, (2) randomly selecting sequential intervals of length k 

(k = 5 or 10) within a day and decreasing the volumes by 40%, and (3) suppressing random segments 

of length k (k = 5 or 10) to zero. Figure 7 demonstrates the faulty signals, where the thicker gray lines 

trace the normal data trends and the deviation points of the red lines from the gray lines indicate the 

faulty signals. A total of 40,864 days of normal traffic data from August 1, 2019 to January 31, 2020 

were used to create this negative dataset. 
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Mixed dataset. This dataset is used to train the attention-based classifier. It contains 20,015 days of 

5-minute traffic volume data from February 1, 2020 to April 30, 2020 and 20,599 days of “faulty” 

data, which are generated in the same manner by injecting faulty signals to the normal traffic volume 

data collected from May 1, 2020 to July 31, 2020.  

It should be noted that the original normal data used to generate the negative data was excluded 

from this study to avoid information leakage. Table 1 summarizes the partition of CCS data for 

generating the three datasets. 

Table 1. Summary of datasets. 

Dataset Usage Time window Size 

Positive dataset Train/evaluate the VAE(P) 
August 1, 2018- 

July 31, 2019 
81,443 days 

Negative dataset Train/evaluate the VAE(N) 
August 1, 2019- 

January 31, 2020 
40,864 days 

Mixed dataset Train/evaluate the classifier 
February 1, 2020- 

July 31, 2020 

40,614 (20,015 normal days and 

20,599 faulty days) 

 

 

 

Figure 6. Locations of active CCS in Georgia, USA. 
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Figure 7. Visualization of three types of faulty signals. The top plot indicates point fault, 

which abruptly drops to an abnormal value; the middle plot reflects block fault, which 

has an extended period of low-level values; and the bottom plot demonstrates sensor 

nonresponsive fault, which displays a short window of zero [12]. 

5. Experiments 

There are two stages of training for all VAE-based models. In the first stage, multiscale positive 

and negative encodings are obtained by training the twin VAEs: one using the positive dataset and 

the other using the negative dataset. The resulting VAE encoders serve as feature extractors. In the 

second stage, the VAE encoders are frozen, and the corresponding classifiers are trained using the 

mixed dataset. The Siamese network (SN) model [30] also involves two stages of training. The base 

network is first trained using contrastive loss and then frozen and used as the feature extractor for the 

classifier training in the second stage. The CViT [31] model is trained end to end. 

The PyWavelets package [32] is used to convert daily time-series traffic volume data to CWT 

images (1 × 64 × 64). The VAE-based models and SN model are trained using Adam [33] with a 

learning rate of 0.001, a batch size of 32, and early stopping, where the minimum validation loss is 
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sought. For training of the classifier, cross-entropy loss is used. The dataset is split into three 

sub-datasets: training set (60%), validation set (20%) and testing set (20%). All classifiers are trained 

for 50 epochs using Adam with a learning rate 0.00001 and a batch size of 32. The classifiers’ 

performance on the test dataset is summarized in Table 2. The receiver operating characteristic (ROC) 

curves are plotted in Figure 8 with reported area under the ROC curve (AUC). 

As shown in Table 2 and Figure 8, all models achieved good classification results. The proposed 

VAE
(PNS)

, which leverages the dual encodings of positive and negative features through a 

self-attention mechanism, outperforms the other VAE-based models. This attests to the effectiveness 

of the attention mechanism for feature assembling in the classification task. Interestingly, the 

VAE
(PNS)

 outperforms the SN and CViT as well.  

By comparing VAE
(P)

 and VAE
(N)

, the slight improvement in accuracy from 89.0% to 91.5% is 

likely due to the fact that VAE
(P)

 simply learned features from the normal dataset while VAE
(N)

 

learned features from the faulty dataset, which contains negative features as well as partial positive 

features, leading to the better classification result. The performance is improved when both positive 

and negative features are considered for classification task, evidenced by the accuracy of 93.1% for 

VAE
(PN)

. The addition of the self-attention layer (VAE
(PNS)

) further boost the accuracy to 96.4%, 

demonstrating the effectiveness of the attention module in feature assembling. In comparison, the 

other two popular network architectures (i.e., SN and CViT) have slightly inferior performance than 

the VAE
(PNS)

. 

Table 2. Model performance evaluation. 

Model Backbone Classifier Precision  Recall  F1 score  Accuracy 

VAE(P) Encoder(P) MLP 86.3 % 94.2 % 90.1 % 89.0 % 

VAE(N) Encoder(N) 91.5 % 91.2 % 91.3 % 91.5 % 

VAE(PN) [Encoder(P), 

Encoder(N)] 

93.5 % 93.3 % 93.4 % 93.1 % 

VAE(PNS) [Encoder(P), 

Encoder(N)] 

Self-Attention 

+ MLP 

95.5 % 97.7 % 96.6 % 96.4 % 

SN Siamese 

Encoder * 

MLP 94.5 % 94.5 % 94.5 % 94.5 % 

CViT [34] Cross_ViT **  94.4 % 94.1 % 94.3 % 94.4 % 

Notes: 

The VAE and SN backbones were frozen while the corresponding classifiers are trained. 

* The Siamese Encoder shares the same architecture as the VAE Encoders 

** ViT design: vector dimension = 1024, number of transformer blocks = 6, number of heads in multi-head attention 

layer = 16, dimension of the feedforward layer = 2048, dropout = 0.1, embedding dropout = 0.1 
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Figure 8. ROC curves and AUCs of all tested models. The false positive rate is plotted 

on logarithmic scale for better visualization. 

6. Conclusions and future directions 

This study focuses on the quality control of traffic data collected in time sequence and casts the 

detection of faulty traffic data as a classification problem. By leveraging time-series data 

transformation techniques and modern deep learning architectures for multiscale feature encodings, 

our proposed model is characterized by three major components: (1) CWT transformation of 

time-series traffic data, (2) a twin of pretrained VAE encoders for dual encodings of positive and 

negative multiscale features from CWT images, and (3) an attention-based classifier. Our 

experiments with purposely designed architectures demonstrated that harnessing both positive and 

negative features embodied in multiple scales through attention mechanism leads to better 

performance. This can be interpreted by the power of attention mechanism in pooling 

complementary contributions of positive and negative features for the classification task. 

One drawback of the proposed model is the need for pretraining VAEs. To continuously learn 

and adapt to emerging features over time, meta-learning frameworks or appropriate finetuning 

procedures should be explored. Additionally, the current study is centered on one-dimensional 

time-series data. Further studies are needed to extend the framework to high-dimensional correlated 

time series data for broader applications. For example, this study focuses on individual traffic count 

stations while the flow patterns of geographically close stations are inherently correlated and 

constrained by the network topology. Therefore, it would be more effective to analyze clusters of 

stations for faulty data detection. 
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