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Abstract: Aleutian mink disease virus (AMDV) is a highly contagious parvovirus that is a causative 

agent of Aleutian mink disease (AMD). AMD is a commercially important infectious disease because 

it causes great economic losses to mink farmers worldwide. AMDVs represent themselves as a highly 

variable group of the Parvoviridae family. The AMDV group is quickly filled out with various 

representatives. Only about 10 years have passed since this group included only two species. Today, 

there are 11 species in this group. AMDV is the typical representative of this group, and all AMDV-

like parvoviruses are now integrated into the Amdoparvovirus genus. In this study, a global 

phylogenetic analysis of the full VP2 protein sequences of the Amdoparvovirus genus was performed. 

This analysis more fully assessed the phylogenetic relationships of amdoparvoviruses. It showed that 

about one-third of Amdoparvovirus strains and isolates classified to date, as Amdoparvovirus 

carnivoran1 could probably be considered not as Amdoparvovirus carnivoran1 species but as new 

independent species in perspective or joined already introduced species, different from 

Amdoparvovirus carnivoran1. It had also been shown that the primary host of the representatives 

should be an important feature for the classification of Amdoparvovirus species. Moreover, the analysis 

showed that bats play a significant role in transmission from protoparvoviruses to amdoparvoviruses. 

 

Keywords: Aleutian mink disease virus; Amdoparvovirus; Parvovirinae; Parvoviridae; VP2 protein 

sequence phylogeny 

 



182 

AIMS Animal Science  Volume 1, Issue 1, 181–195. 

1. Introduction  

Aleutian mink disease virus (AMDV) remains one of the most problematic viruses for mink 

farming because it is the causative agent of Aleutian mink disease (AMD) affecting minks. AMD 

manifests as enlarged kidneys, spleen, and lymph nodes, commonly known as deadly plasmocytosis 

and hyperglobulinemia in mink, which could also lead to spontaneous abortions. On the molecular 

level, the reason for such manifestations is immunocomplexes, which are formed as a result of AMDV 

pathogenesis [1–3]. 

AMD is a very contagious disease with more than 90% seroprevalence [1,4], with virus DNA 

detection up to 100% [4]. There are no effective ways to combat the disease. There are no effective 

vaccines [2]. Eradication of mink herds may not lead to satisfactory results [1,2]. Therefore, AMD 

continues to cause great economic losses to mink farmers worldwide for over 70 years [1,2]. 

AMDV is a member of the Parvoviridae family, and it was the sole member of its genus until 2013. 

The genus was named Parvovirus, and it was renamed Amdovirus in 2004. In 2013, according to the 

ICTV proposal, the Amdovirus genus was renamed Amdoparvovirus. AMDV was renamed Carnivore 

amdoparvovirus 1. Aleutian mink disease virus-G (GenBank accession number M20036) was the first 

representative. The second member of this genus was Carnivore amdoparvovirus 2: Gray fox 

amdovirus (GenBank accession number JN202450) [5]. Subsequently, many other species 

were introduced into the Amdoparvovirus genus [6]. However, according to the International 

Committee on Taxonomy of Viruses (ICTV), a mega-taxonomic rank was determined only in 2019. 

For today, Amdoparvovirus genus belongs to Parvovirinae subfamily, Parvoviridae family, 

Piccovirales order, Quintoviricetes class, Cossaviricota phylum, Shotokuvirae kingdom, and 

Monodnaviria realm [6,7]. Only about 10 years have passed since this genus included only the two 

species mentioned above. Today, there are 11 species in this genus [6]. Due to the accumulated data 

about the high variability of the AMDVs [3,4,8–11] and about AMDV prevalence among different 

species of Mustelidae family [3,4,8,9] and other animals [3,4,9,12], it seems like this is a sequential event. 

Like other members of Parvoviridae family, the virus is non-enveloped, small, and has a single-

stranded DNA [13]. The reference genome of the AMDV has 4,801 bp (AMDV-G, GenBank accession 

number M20036). However, shorter specimens are also represented in GenBank. For example, mink-

f strains with a genome size of 4,369 bp (GenBank accession numbers KU856560.1 ̶ KU856568.1) 

and more [14].  

The AMDV genome contains two large open reading frames (ORFs), left and right (L-ORF and R-

ORF), two middle ORFs (M-ORF1 and M-ORF2), and one small ORF (S-ORF) (Figure 1) [15]. R-

ORF is found to be involved in coding of VP1 and VP2 capsid proteins, and this ORF is found on the 

3d reading frame (RF3). VP2 is fully encoded by R-ORF, but VP1 is not. Ten amino acids from the N-

end of VP1 are not found in R-ORF (on RF3). These amino acids are found on the 2nd reading frame 

(RF2). However, the authors do not notice the independent ORF for these amino acids (Figure 1) [15].  

The rest of the ORFs encode three non-structural proteins (NS1, NS2, and NS3). L-ORF (on RF2) 

encodes most of the N-parts of all three NS proteins. C-ends of NS proteins are coded by the different 

ORFs. S-ORF and M-ORF1 are located on RF1 and code C-ends of NS3 and NS1 proteins, respectively. 

M-ORF2 is located on RF3 and codes the C-end of NS2 protein [15]. 

Ends of a negative, single-stranded DNA of the AMDV form hairpins (Figure 1) [15,16]. The 3’-

hairpin could prime to synthesize the complementary positive strand, as it happens in other 

Parvoviridae viruses [13]. Continuous duplex intermediates are formed during 'rolling hairpin' 
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replication, from which NS1, with its endonuclease activity, excises single strands [13]. 

 

Figure 1. The AMDV schematic map according to Hagberg et al., 2016 [15]. 

The AMDV capsid has an icosahedral form, which is assembled via two-, three- and five-fold 

symmetry [17,18]. It has a maximum diameter of ⁓300 Å [17]. VP2 is the major protein of the 

AMDV’s capsid with immunogenic properties [19]. B-cell epitopes were found in the VP2 protein of 

AMDV [20,21]. 

VP2 is smaller than VP1 at the N-end. This part of VP1 (VP1u) can be up to more than 300 amino 

acids in Parvovirinae viruses, but not in AMDV [17]. The long VP1u part is important for viral 

functionality and contains a phospholipase A2 (PLA2) domain, which is mostly presented in 

Parvovirinae viruses but not in the AMDV [22]. VP1u of AMDV has only 43 amino acids and does 

not have PLA2. Instead of this, VP2 of AMDV is the largest among orthologs of other Parvovirinae 

viruses. There are some insertions and deletions in VP2 of AMDV found in comparison with orthologs, 

the composition of which results in a greater length. Most insertions are localized on the surface of the 

capsid. This fact led the authors to speculate that the missing functions of VP1u are performed by the 

full VP2 due to these additional insertions compared to orthologs of other Parvovirinae viruses [17]. 

In addition, the N-end of AMDV’s VP2 has the longest glycine-rich region among orthologs of other 

Parvovirinae viruses [22]. 

One more feature of VP2 of AMDVs has become widely known among researchers. This is a 

hypervariable region between amino acids 232–242, according to VP2 of the AMDV-G strain 

(GenBank accession number M20036) [18,23–26]. This region is considered suitable for the 

phylogenetic analysis of AMDV strains [23,26,27].  

 The purpose of this study was to conduct the phylogenetic analysis of full VP2 proteins of 

AMDVs available to date and to suggest a new view on the classification grouping of them. The next 

article in the Amdoparvovirus series (Amdoparvovirus. Part 2.) proposes to describe the structural 

features of VP2 protein orthologs in accordance with this phylogenetic analysis. 

2. Materials and methods 

A total of 425 full-length VP2 protein sequences of Parvovirinae viruses were used in this study. 

From them, 345 sequences were for the Amdoparvovirus genus, which were available from GenBank 

and from the literature on June 3, 2024. Some VP2 sequences from articles were not found in 

https://ru.wikipedia.org/wiki/%C3%85_(%D0%BB%D0%B0%D1%82%D0%B8%D0%BD%D0%B8%D1%86%D0%B0)
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GenBank [18,28–31]. Many sequences of AMDVs were not included in the analysis due to the 

uncertainty of one or more amino acids, except for one sequence for Amdoparvovirus carnivoran8 

identified so far [32]. Amdoparvovirus carnivoran8 (GenBank accession number ON375541.1) has 

three unidentified positions (232, 235, and 344), according to the AMDV-G strain (GenBank accession 

number M20036). It was proposed eight variants of VP2 for this sequence using combinatorics. 

The phylogenetic analysis was performed with the help of the MEGA X (Version 10.0.5) program [33] 

using the Maximum Likelihood method and the JTT matrix-based model [34]. The bootstrap analysis 

with 1,000 replicates was used to assess a confidence level of tree branches as an option of the MEGA 

X program. The option for uniform rates among sites was used. The analysis was performed twice.  

Ethics approval of this research is not required because all data were taken from the GenBank 

database and literature. 

3. Results and discussion 

 Parvovirinae subfamily has 11 genera [6]. The phylogenetic analysis in this study was limited to 

Amdoparvovirus, Protoparvovirus, Tetraparvovirus, Erythroparvovirus, Aveparvovirus, 

Bocaparvovirus, and Dependoparvovirus genera, as the remaining genera had not yet had full VP2 

protein sequences determined by the time of data collection from GenBank. Dependoparvoviruses had 

been defined as having three structural proteins in the capsid (VP1, VP2, and VP3) with the VP3 

protein as the major of them [35]. Therefore, it was considered to include VP3 in the analysis instead 

of VP2. Moreover, the alignment showed that the VP3 had more homology with other parvovirus VP2 

protein sequences (data not shown). There were only up to two VP2 (or VP3) sequences used for each 

species for genera noted, except for the Amdoparvovirus genus. For the last one, as many full-length 

sequences of the VP2 protein were used as were found in GenBank and in the literature to date noted.  

Tracing the phylogenetic relationships between representatives of the genus Amdoparvovirus and 

the Parvovirinae genera in general, based on phylogenetic analysis of complete VP2 protein sequences, 

it was revealed that the genus Protoparvovirus is considered ancestral genus of Amdoparvovirus. The 

same results were found earlier for the partial NS1 phylogeny [32]. However, there was some 

difference in the topology of the tree (Figure 2, Supplementary Figure 1). The difference appears to be 

explainable because different sequences were analyzed. This is the first explanation. The second 

explanation is that it was used a different program (RAxML), not MEGA X [32]. The third explanation 

is that the uniform rate among sites was used for the analysis in this study instead of gamma distribution, 

which was used in the mentioned results [32]. The uniform rate among sites was used in this study 

because of the following thoughts. The analysis of the phylogenetic history of parvoviruses had been 

conducted since the 1960s [36]. This is only for 70 years. This is close to the present time in terms of 

millions of years. The mathematical plot of the time-dependent pattern of molecular rates among sites 

(substitutions per site per million years) and deviation from real node age shows that it makes almost 

no difference whether the gamma distribution is used or not in times close to the present [37]. Therefore, 

uniform rates (or linear dependence) among sites are suitable for analysis within the time that can be 

estimated as ‘the recent time’, as a definition in the context of the evolutionary time.  

Thus, the results of this study showed that the amino acid sequences of VP2 could be applied to 

the detailed classification of the genus Amdoparvovirus, as well as the entire subfamily Parvovirinae. 

However, some authors believe that the amino acid sequences of VP2 cannot be applied to the 

classification [38]. 
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Figure 2. The simplified evolutionary tree of VP2 protein sequences of Parvovirinae 

representatives with the highest log likelihood (-67518.55). Numbers are the percentage of 

trees in which the associated taxa are clustered together (shown next to the branches). 

 

Figure 3. The simplified Amdoparvovirus subtree. Numbers are as in Figure 2; cd—the 

collection date; *—VP2 sequences predicted in this work from genome virus DNA 

sequences available from GenBank; **—Neogale vison has synonyms such as Neovison 

vison and Mustela vison. 
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Amdoparvovirus genus was analyzed in this study as fully as was found in the GenBank and in 

the literature: a total of 345 VP2 sequences, some of which were deduced from genome nucleotide 

sequences. It is mentioned above that ten years ago the Amdoparvovirus genus had only two species. 

Today, there are already 11 species in this genus [6], which are fully represented in this study (Figure 

3). The full history of the introduction and renaming of all species can be seen on the website of the 

ICTV [6]. 

The analysis of this study showed that about two-thirds of strains and isolates known so far as 

Amdoparvovirus carnivoran1 could actually be considered as Amdoparvovirus carnivoran1. This 

group of Amdoparvovirus carnivoran1 representatives is clustered into a large phylogenetic branch 

with minor substitutions per site (Figure 3, 4). Some groups can be highlighted among them: Danish 

I-III, Finnish I, Canadian I-III, Russian, G, and LN1-TR groups, which can probably be considered as 

subspecies of Amdoparvovirus carnivoran1. Individually branched HB-5/China and Utah/USA isolates 

may also be the basis for new subspecies of Amdoparvovirus carnivoran1 in the future (Figure 4). 

About one-third of the remaining Amdoparvovirus strains and isolates classified to date as 

Amdoparvovirus carnivoran1 can probably be considered as not Amdoparvovirus carnivoran1 species. 

To further emphasize that their classification needs to be revised, these strains and isolates are not 

labeled as Amdoparvovirus carnivoran1 in Figures 3 and further. It will be described below which of 

these representatives are allocated to independent groups with the perspective of isolating them into 

independent species and which have joined already existing species, different from Amdoparvovirus 

carnivoran1. 

Onwards, on Figure 5(A), it can be seen that only MAPT17 and BCWM-1 strains, also known as 

Labrador amdoparvovirus 1 and British Columbia amdoparvovirus, respectively, are currently   

classified as Amdoparvovirus carnivoran6 and Amdoparvovirus carnivoran8 species, respectively. 

The other six representatives are classified as the Amdoparvovirus carnivoran1 according to ICTV. 

However, phylogenetic analysis showed that these six strains and isolates were clustered together with 

Amdoparvovirus carnivoran6 and Amdoparvovirus carnivoran8 in one clade (Figure 3, 5(A)). (See 

“Materials and Methods” about variants of Amdoparvovirus carnivoran8.) Therefore, all these strains 

and isolates, together with MAPT17 and BCWM-1, classified as Amdoparvovirus carnivoran6 and the 

Amdoparvovirus carnivoran8, respectively, are designated in this study as one Amdoparvovirus 

carnivoran6,8 group (Figure 3, 5(A)). Another point of the debate in this regard is the TH37/Canada 

strain, or Labrador amdoparvovirus 1, classified as Amdoparvovirus carnivoran6 too, according to 

ICTV, together with the mentioned MART17/Canada strain. However, in this study, these strains 

branched off separately from each other (Figure 3, 5(A)). Moreover, these two strains (TH37 and 

MART17) have different hosts: red fox (Vulpes vulpes, Canidae) and American marten (Martes 

americana, Mustelidae), respectively (Figure 3, 5(A)). Therefore, although these two strains 

(TH37/Canada and MART17/Canada) are both classified so far as Amdoparvovirus carnivoran6, they 

should be classified as different species. One of them (the mentioned MART17/Canada strain) united 

in this study in one Amdoparvovirus carnivoran6,8 group. Another one (the TH37/Canada strain) can 

probably stay as Amdoparvovirus carnivoran6.       
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Figure 4. The Amdoparvovirus carnivoran1 subtree. Numbers, cd, * and ** as in Figures 

2,3. Underlines indicate non-primary hosts. 
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Figure 5. Subtrees of Amdoparvovirus carnivoran6,8 (A), Amdoparvovirus carnivoran9 

(B), and Amdoparvovirus carnivoran10 (C) groups. Numbers, cd, *, ** and underlines as 

in Figures 2–4. 

Further about Amdoparvovirus carnivoran9 and Amdoparvovirus carnivoran10 groups. There are 

Aleutian mink disease parvovirus 2 and Aleutian mink disease parvovirus 3 species (or HY327 and 

LM strains, respectively) within them, which are renamed according to ICTV Amdoparvovirus 
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carnivoran9 and Amdoparvovirus carnivoran10, respectively. However, the other eight and thirty 

strains, respectively, that branched off with them are still classified by ICTV as Amdoparvovirus 

carnivoran1 (Figure 3, 5(B, C)). Therefore, their classification should also be revised, and these 

representatives should be considered as Amdoparvovirus carnivoran9 and Amdoparvovirus 

carnivoran10, respectively.   

The next groups of strains, Dutch-Polish (14 strains) and Danish IV (13 strains) groups, which are 

also classified as the Amdoparvovirus carnivoran1 to date, emerged as the big paraphyletic group 

manifesting separately from the actually considered Amdoparvovirus carnivoran1 representatives in 

this study (Figure 3, 6(A)). This group certainly cannot be classified as Amdoparvovirus carnivoran1. 

It is proposed herein to unite them as the Amdoparvovirus carnivoran11 group.  

The same situation exists with the Finnish II (11 strains) group, which is named herein as the 

Amdoparvovirus carnivoran12 group (Figure 3, 6(B)). The other smaller clade of the China I (8 isolates) 

group is named as the Amdoparvovirus carnivoran13 group (Figure 3, 6(C)). In addition, Utah I (4 

strains), China II (2 isolates), China III (2 strains), and China IV (2 strains and 1 isolate) groups branch 

out separately. All these groups can probably also be considered new species of the Amdoparvovirus 

genus, as well as single representatives of their branches: K (or ZK8), SD4/China, HY454/Finland, 

DL2/China, Far East/Russia, and Stahl/USA (Figure 3).  

The remarkable discovery was made about the Stahl/USA strain classified as Amdoparvovirus 

carnivoran1 to date. This strain manifests itself as the ancestor for all species and groups of 

amdoparvoviruses, which have American mink (Neogale vison, Mustelidae family) as the primary host 

(Figure 3). The Stahl/USA strain also appears to be the ancestral strain for the TH37/Canada strain 

(known also as Labrador amdoparvovirus1 and Amdoparvovirus carnivoran6), which already has the 

red fox (Vulpes vulpes, Canidae family) as the host and branches off in the second branch after the 

Stahl/USA strain. Further, the Stahl/USA strain itself has Amdoparvovirus carnivoran4 as the ancestral 

species, which has the striped skunk (Mephitis mephitis, Mephitidae family) as the host (Figure 3, 

7(A)). Such position of the Stahl/USA strain in the tree leads to some conclusions. It looks like this 

strain is the turning point in the evolution of the Amdoparvovirus genus and in the transmission of 

amdoparvoviruses from one of the Mustelidae hosts (striped skunk) to another (American mink). 

TH37/Canada strain with the canid host (red fox) branches off among branches that have mustelid 

hosts (striped skunk and mink). It says that the inclusion of switching to the host of different families 

here in the tree indicates easy adaptation of the virus to the hosts during close contacts between host 

species in natural habitats. Host switching inclusions also appear at other points of the tree (Figure 4, 

5(A, B), 7(B)).  
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Figure 6. Subtrees of Amdoparvovirus carnivoran11 (A), Amdoparvovirus carnivoran12 

(B), and Amdoparvovirus carnivoran13 (C) groups. Numbers, cd, * and ** as in Figures 

2, 3. 

 



191 

AIMS Animal Science  Volume 1, Issue 1, 181–195. 

 

Figure 7. Subtrees of Amdoparvovirus carnivoran4 (A), Amdoparvovirus carnivoran3 (B), 

and Amdoparvovirus carnivoran5,7 (C). Numbers, cd, *, ** and underlines as in Figures 

2–4. 

Further along the tree. It can be seen that Amdoparvovirus carnivoran5 and Amdoparvovirus 

carnivoran7 are clustered together (Figure 3, 7(C)), and they have one host: red panda (Ailurus fulgens, 

Ailuridae). Therefore, these two species should probably be considered as one species. They are united 

as the Amdoparvovirus carnivoran5,7 group in this work. 

Representatives of Amdoparvovirus carnivoran4, Amdoparvovirus carnivoran3, and 

Amdoparvovirus carnivoran2 branch off without unexpectedly appearing in different branches of the 

tree (Figure 3, 7(A, B)). Their branch structure of the tree supports the new species predictions made 

in this study. 
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The remarkable discovery of Amdoparvovirus chiropteran1 and introducing this species into the 

Amdoparvovirus genus that has the bat host (the straw-colored fruit bat, Eidolon helvum, 

Pteropodidae family) [39] is the evidence that bats play not the least role in the evolution of 

amdoparvoviruses. The analysis in this study reveals that all hosts of the Amdoparvovirus genus are 

carnivoran mammals, except for Amdoparvovirus chiropteran1, which has the chiropteran mammal as 

the host (the straw-colored fruit bat). This species is the first branch in the evolutionary tree after 

protoparvovirus species (Figure 2, 3, Supplementary Figure 1). So that, the Amdoparvovirus 

chiropteran1 can be considered as one of the main ancestral species for all amdoparvoviruses. It is 

known that several important viruses, including protoparvoviruses, cause disease outbreaks associated 

with bats [40–42]. Because of this, the discovery of Amdoparvovirus chiropteran1 can be considered 

a sequential event for amdoparvoviruses, and bats can be considered as playing a significant role in 

transmission of the virus from protoparvoviruses to amdoparvoviruses. 

Furthermore, all phylogenetic groups proposed in this study as separate Amdoparvovirus species 

have only one primary host. Three species (Amdoparvovirus carnivoran4, Amdoparvovirus 

carnivoran3, and Amdoparvovirus carnivoran2), which have no addition suggestions about their 

classification in this study, have one host each too. Therefore, the primary host for Amdoparvovirus 

species should be considered as the important feature for their classification.             

4. Conclusions 

First, the global phylogenetic analysis of the full VP2 protein sequences of the Amdoparvovirus 

genus in this study more fully assessed the phylogenetic relationships of amdoparvoviruses. The 

analysis showed that about two-thirds of strains and isolates known so far as Amdoparvovirus 

carnivoran1 could actually be considered as Amdoparvovirus carnivoran1. Some groups among them 

should be highlighted, which could probably be considered subspecies of Amdoparvovirus 

carnivoran1. Second, the analysis showed that about one-third of Amdoparvovirus strains and isolates 

currently classified as Amdoparvovirus carnivoran1 should probably not be considered 

Amdoparvovirus carnivoran1, but rather new, distinct species or joined already existing species, 

different from Amdoparvovirus carnivoran1. Third, the primary host is the important feature during 

the classification of Amdoparvovirus species. Fourth, bats play the significant role in the transmission 

to the Amdoparvoviruses genus. 
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