Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Oxidative stress, innate immunity, and age-related macular degeneration

1 Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
2 Huaxi Hospital, Sichuan University, China
3 Xijing Hospital, Xi’an, Shangxi, China
4 Sichuan People’s Hospital, Chengdu, Sichuan, China

Topical Section: Oxidative Stress and Ageing

Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD) or choroidal neovascularization (CNV, or wet AMD). Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs) have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM) remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer’s disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory molecules, we have previously hypothesized that the tight homeostatic control of inflammation via the innate immune system is likely critical for avoidance of disease progression. However, the presence of a multitude of potential triggers of inflammation results in a sensitive balance in which perturbations thereof would subsequently alter the inflammatory state of the retina, leading to a state of chronic inflammation and pathologic progression. In this review, we will highlight the background literature surrounding the known genetic and environmental contributors to AMD risk, as well as a discussion of the potential mechanistic interplay of these factors that lead to disease pathogenesis with particular emphasis on the delicate control of inflammatory homeostasis and the centrality of the innate immune system in this process.
  Article Metrics

Keywords age-related macular degeneration; oxidative stress; innate immunity; complement factor H; inflammation

Citation: Peter X. Shaw, Travis Stiles, Christopher Douglas, Daisy Ho, Wei Fan, Hongjun Du, Xu Xiao. Oxidative stress, innate immunity, and age-related macular degeneration. AIMS Molecular Science, 2016, 3(2): 196-221. doi: 10.3934/molsci.2016.2.196


  • 1. Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. N Engl J Med 358: 2606-2617.    
  • 2. Sunness JS (1999) The natural history of geographic atrophy, the advanced atrophic form of age-related macular degeneration. Mol Vis 5: 25.
  • 3. Ying GS, Maguire MG, Complications of Age-related Macular Degeneration Prevention Trial Research G (2011) Development of a risk score for geographic atrophy in complications of the age-related macular degeneration prevention trial. Ophthalmology 118: 332-338.    
  • 4. Sarks JP, Sarks SH, Killingsworth MC (1988) Evolution of geographic atrophy of the retinal pigment epithelium. Eye (Lond) 2 (Pt 5): 552-577.
  • 5. Ferris FL 3rd, Fine SL, Hyman L (1984) Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol 102: 1640-1642.    
  • 6. Chen Y, Zeng J, Zhao C, et al. (2011) Assessing susceptibility to age-related macular degeneration with genetic markers and environmental factors. Arch Ophthalmol 129: 344-351.    
  • 7. American Academy of Ophthalmology. What Are Drusen? 2014. Available from: http://www.aao.org/eye-health/diseases/what-are-drusen
  • 8. Shaw PX, Zhang L, Zhang M, et al. (2012) Complement factor H genotypes impact risk of age-related macular degeneration by interaction with oxidized phospholipids. Proc Natl Acad Sci U S A 109: 13757-13762.    
  • 9. Fritsche LG, Chen W, Schu M, et al. (2013) Seven new loci associated with age-related macular degeneration. Nat Genet 45: 433-439, 439e431-432.    
  • 10. Beharry S, Zhong M, Molday RS (2004) N-retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR). J Biol Chem 279: 53972-53979.    
  • 11. Allikmets R (2000) Further evidence for an association of ABCR alleles with age-related macular degeneration. The International ABCR Screening Consortium. Am J Hum Genet 67: 487-491.
  • 12. Katta S, Kaur I, Chakrabarti S (2009) The molecular genetic basis of age-related macular degeneration: an overview. J Genet 88: 425-449.    
  • 13. Thakkinstian A, Bowe S, McEvoy M, et al. (2006) Association between apolipoprotein E polymorphisms and age-related macular degeneration: A HuGE review and meta-analysis. Am J Epidemiol 164: 813-822.    
  • 14. McKay GJ, Silvestri G, Chakravarthy U, et al. (2011) Variations in apolipoprotein E frequency with age in a pooled analysis of a large group of older people. Am J Epidemiol 173: 1357-1364.    
  • 15. Fritsche LG, Loenhardt T, Janssen A, et al. (2008) Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat Genet 40: 892-896.    
  • 16. Ross RJ, Bojanowski CM, Wang JJ, et al. (2007) The LOC387715 polymorphism and age-related macular degeneration: replication in three case-control samples. Invest Ophthalmol Vis Sci 48: 1128-1132.    
  • 17. Jakobsdottir J, Conley YP, Weeks DE, et al. (2005) Susceptibility genes for age-related maculopathy on chromosome 10q26. Am J Hum Genet 77: 389-407.    
  • 18. Dewan A, Liu M, Hartman S, et al. (2006) HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 314: 989-992.    
  • 19. Yang Z, Camp NJ, Sun H, et al. (2006) A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science 314: 992-993.    
  • 20. Gold B, Merriam JE, Zernant J, et al. (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38: 458-462.    
  • 21. Yates JR, Sepp T, Matharu BK, et al. (2007) Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med 357: 553-561.    
  • 22. Maller JB, Fagerness JA, Reynolds RC, et al. (2007) Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat Genet 39: 1200-1201.    
  • 23. Francis PJ, Hamon SC, Ott J, et al. (2009) Polymorphisms in C2, CFB and C3 are associated with progression to advanced age related macular degeneration associated with visual loss. J Med Genet 46: 300-307.    
  • 24. Chen W, Stambolian D, Edwards AO, et al. (2010) Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc Natl Acad Sci U S A 107: 7401-7406.    
  • 25. Hageman GS, Anderson DH, Johnson LV, et al. (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102: 7227-7232.    
  • 26. Wegscheider BJ, Weger M, Renner W, et al. (2007) Association of complement factor H Y402H gene polymorphism with different subtypes of exudative age-related macular degeneration. Ophthalmology 114: 738-742.    
  • 27. Klein RJ, Zeiss C, Chew EY, et al. (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308: 385-389.    
  • 28. Thakkinstian A, Han P, McEvoy M, et al. (2006) Systematic review and meta-analysis of the association between complement factor H Y402H polymorphisms and age-related macular degeneration. Hum Mol Genet 15: 2784-2790.    
  • 29. Spencer KL, Hauser MA, Olson LM, et al. (2008) Deletion of CFHR3 and CFHR1 genes in age-related macular degeneration. Hum Mol Genet 17: 971-977.
  • 30. Raychaudhuri S, Ripke S, Li M, et al. (2010) Associations of CFHR1–CFHR3 deletion and a CFH SNP to age-related macular degeneration are not independent. Nat Genet 42: 553-556.    
  • 31. Fagerness JA, Maller JB, Neale BM, et al. (2008) Variation near complement factor I is associated with risk of advanced AMD. Eur J Hum Genet 17: 100-104.
  • 32. Combadière C, Feumi C, Raoul W, et al. (2007) CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Investig 117: 2920-2928.    
  • 33. Tuo J, Smith BC, Bojanowski CM, et al. (2004) The involvement of sequence variation and expression of CX3CR1 in the pathogenesis of age-related macular degeneration. FASEB J 18: 1297-1299.
  • 34. Tuo J, Ning B, Bojanowski CM, et al. (2006) Synergic effect of polymorphisms in ERCC6 5′ flanking region and complement factor H on age-related macular degeneration predisposition. Proc Natl Acad Sci U S A 103: 9256-9261.    
  • 35. Neale BM, Fagerness J, Reynolds R, et al. (2010) Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC). Proc Natl Acad Sci U S A 107: 7395-7400.    
  • 36. Yu Y, Reynolds R, Fagerness J, et al. (2011) Association of variants in the LIPC and ABCA1 genes with intermediate and large drusen and advanced age-related macular degeneration. Invest Ophthalmol Vis Sci 52: 4663-4670.    
  • 37. Ardeljan D, Meyerle CB, Agron E, et al. (2013) Influence of TIMP3/SYN3 polymorphisms on the phenotypic presentation of age-related macular degeneration. Eur J Hum Genet 21: 1152-1157.    
  • 38. Chen W, Stambolian D, Edwards AO, et al. (2010) Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc Natl Acad Sci U S A 107: 7401-7406.    
  • 39. Kaur I, Rathi S, Chakrabarti S (2010) Variations in TIMP3 are associated with age-related macular degeneration. Proc Natl Acad Sci U S A 107: E112-E113.    
  • 40. Yang Z, Stratton C, Francis PJ, et al. (2008) Toll-like receptor 3 and geographic atrophy in age-related macular degeneration. N Engl J Med 359: 1456-1463.    
  • 41. Edwards AO, Chen D, Fridley BL, et al. (2008) Toll-like receptor polymorphisms and age-related macular degeneration. Invest Ophthalmol Vis Sci 49: 1652-1659.    
  • 42. Ferwerda B, McCall MB, Alonso S, et al. (2007) TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans. Proc Natl Acad Sci U S A 104: 16645-16650.    
  • 43. Zareparsi S, Buraczynska M, Branham KE, et al. (2005) Toll-like receptor 4 variant D299G is associated with susceptibility to age-related macular degeneration. Hum Mol Genet 14: 1449-1455.    
  • 44. Galan A, Ferlin A, Caretti L, et al. (2010) Association of age-related macular degeneration with polymorphisms in vascular endothelial growth factor and its receptor. Ophthalmology 117: 1769-1774.    
  • 45. Fang AM, Lee AY, Kulkarni M, et al. (2009) Polymorphisms in the VEGFA and VEGFR-2 genes and neovascular age-related macular degeneration. Mol Vis 15: 2710-2719.
  • 46. Churchill AJ, Carter JG, Ramsden C, et al. (2008) VEGF polymorphisms are associated with severity of diabetic retinopathy. Invest Ophthalmol Vis Sci 49: 3611-3616.    
  • 47. Jozsi M, Zipfel PF (2008) Factor H family proteins and human diseases. Trends Immunol 29: 380-387.    
  • 48. Fritsche LG, Lauer N, Hartmann A, et al. (2010) An imbalance of human complement regulatory proteins CFHR1, CFHR3 and factor H influences risk for age-related macular degeneration (AMD). Hum Mol Genet 19: 4694-4704.    
  • 49. Zipfel PF, Edey M, Heinen S, et al. (2007) Deletion of complement factor H-related genes CFHR1 and CFHR3 is associated with atypical hemolytic uremic syndrome. PLoS Genet 3: e41.    
  • 50. Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9: 729-740.
  • 51. Ricklin D, Hajishengallis G, Yang K, et al. (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11: 785-797.    
  • 52. Hughes AE, Orr N, Esfandiary H, et al. (2006) A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age-related macular degeneration. Nat Genet 38: 1173-1177.    
  • 53. Zhao J, Wu H, Khosravi M, et al. (2011) Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility. PLoS Genet 7: e1002079.    
  • 54. Tortajada A, Yebenes H, Abarrategui-Garrido C, et al. (2013) C3 glomerulopathy-associated CFHR1 mutation alters FHR oligomerization and complement regulation. J Clin Invest 123: 2434-2446.    
  • 55. Zipfel PF, Mache C, Muller D, et al. (2010) DEAP-HUS: deficiency of CFHR plasma proteins and autoantibody-positive form of hemolytic uremic syndrome. Pediatr Nephrol 25: 2009-2019.    
  • 56. Jozsi M, Licht C, Strobel S, et al. (2008) Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood 111: 1512-1514.
  • 57. Dragon-Durey MA, Blanc C, Marliot F, et al. (2009) The high frequency of complement factor H related CFHR1 gene deletion is restricted to specific subgroups of patients with atypical haemolytic uraemic syndrome. J Med Genet 46: 447-450.    
  • 58. Kishan AU, Modjtahedi BS, Martins EN, et al. (2011) Lipids and age-related macular degeneration. Surv Ophthalmol 56: 195-213.    
  • 59. Klein R, Myers CE, Buitendijk GH, et al. (2014) Lipids, lipid genes, and incident age-related macular degeneration: the three continent age-related macular degeneration consortium. Am J Ophthalmol 158: 513-524 e513.    
  • 60. Martiskainen H, Haapasalo A, Kurkinen KM, et al. (2013) Targeting ApoE4/ApoE receptor LRP1 in Alzheimer's disease. Expert Opin Ther Targets 17: 781-794.    
  • 61. Liu CC, Kanekiyo T, Xu H, et al. (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9: 106-118.    
  • 62. Kehoe P, Wavrant-De Vrieze F, Crook R, et al. (1999) A full genome scan for late onset Alzheimer's disease. Hum Mol Genet 8: 237-245.    
  • 63. Cezario SM, Calastri MC, Oliveira CI, et al. (2015) Association of high-density lipoprotein and apolipoprotein E genetic variants with age-related macular degeneration. Arq Bras Oftalmol 78: 85-88.    
  • 64. Levy O, Calippe B, Lavalette S, et al. (2015) Apolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in age-related macular degeneration. EMBO Mol Med 7: 211-226.    
  • 65. Zhang L, Lim SL, Du H, et al. (2012) High temperature requirement factor A1 (HTRA1) gene regulates angiogenesis through transforming growth factor-beta family member growth differentiation factor 6. J Biol Chem 287: 1520-1526.    
  • 66. Langton KP, McKie N, Curtis A, et al. (2000) A novel tissue inhibitor of metalloproteinases-3 mutation reveals a common molecular phenotype in Sorsby's fundus dystrophy. J Biol Chem 275: 27027-27031.
  • 67. Clarke M, Mitchell KW, Goodship J, et al. (2001) Clinical features of a novel TIMP-3 mutation causing Sorsby's fundus dystrophy: implications for disease mechanism. Br J Ophthalmol 85: 1429-1431.    
  • 68. Fritsche LG, Igl W, Bailey JN, et al. (2016) A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet 48: 134-143.
  • 69. AREDS (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119: 1417-1436.    
  • 70. Curcio CA, Johnson M, Huang JD, et al. (2009) Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res 28: 393-422.    
  • 71. Hawkins BS, Bird A, Klein R, et al. (1999) Epidemiology of age-related macular degeneration. Mol Vis 5: 26.
  • 72. Khotcharrat R, Patikulsila D, Hanutsaha P, et al. (2015) Epidemiology of Age-Related Macular Degeneration among the Elderly Population in Thailand. J Med Assoc Thai 98: 790-797.
  • 73. Kiernan DF, Hariprasad SM, Rusu IM, et al. (2010) Epidemiology of the association between anticoagulants and intraocular hemorrhage in patients with neovascular age-related macular degeneration. Retina 30: 1573-1578.    
  • 74. Klein R, Peto T, Bird A, et al. (2004) The epidemiology of age-related macular degeneration. Am J Ophthalmol 137: 486-495.    
  • 75. Meyers KJ, Liu Z, Millen AE, et al. (2015) Joint Associations of Diet, Lifestyle, and Genes with Age-Related Macular Degeneration. Ophthalmology 122: 2286-2294.    
  • 76. Seddon JM, George S, Rosner B (2006) Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: the US Twin Study of Age-Related Macular Degeneration. Arch Ophthalmol 124: 995-1001.    
  • 77. Schick T, Ersoy L, Lechanteur YT, et al. (2016) History of Sunlight Exposure Is a Risk Factor for Age-Related Macular Degeneration. Retina 36: 787-790.    
  • 78. Millen AE, Meyers KJ, Liu Z, et al. (2015) Association between vitamin D status and age-related macular degeneration by genetic risk. JAMA Ophthalmol 133: 1171-1179.    
  • 79. Binder CJ, Chang MK, Shaw PX, et al. (2002) Innate and acquired immunity in atherogenesis. Nat Med 8: 1218-1226.    
  • 80. Brewer GJ (2007) Iron and copper toxicity in diseases of aging, particularly atherosclerosis and Alzheimer's disease. Exp Biol Med (Maywood) 232: 323-335.
  • 81. Beatty S, Koh H, Phil M, et al. (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45: 115-134.    
  • 82. Hollyfield JG, Bonilha VL, Rayborn ME, et al. (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14: 194-198.    
  • 83. Kim GH, Kim JE, Rhie SJ, et al. (2015) The Role of Oxidative Stress in Neurodegenerative Diseases. Exp Neurobiol 24: 325-340.    
  • 84. Smith W, Assink J, Klein R, et al. (2001) Risk factors for age-related macular degeneration: Pooled findings from three continents. Ophthalmology 108: 697-704.    
  • 85. Damian J, Pastor R, Armada F, et al. (2006) Epidemiology of age-related macular degeneration. Situation in Spain. Aten Primaria 38: 51-57.    
  • 86. Wang YQ, Dong XG (2005) Progress in the study of epidemiology and etiology of age-related macular degeneration. Zhonghua Yan Ke Za Zhi 41: 377-381.
  • 87. Bonastre J, Le Pen C, Anderson P, et al. (2002) The epidemiology, economics and quality of life burden of age-related macular degeneration in France, Germany, Italy and the United Kingdom. Eur J Health Econ 3: 94-102.    
  • 88. Seddon JM, Chen CA (2004) The epidemiology of age-related macular degeneration. Int Ophthalmol Clin 44: 17-39.
  • 89. Friedman DS, O'Colmain BJ, Munoz B, et al. (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122: 564-572.    
  • 90. Solberg Y, Rosner M, Belkin M (1998) The association between cigarette smoking and ocular diseases. Surv Ophthalmol 42: 535-547.    
  • 91. Shen JK, Dong A, Hackett SF, et al. (2007) Oxidative damage in age-related macular degeneration. Histol Histopathol 22: 1301-1308.
  • 92. Thurman JM, Renner B, Kunchithapautham K, et al. (2009) Oxidative stress renders retinal pigment epithelial cells susceptible to complement-mediated injury. J Biol Chem 284: 16939-16947.    
  • 93. Wu Z, Lauer TW, Sick A, et al. (2007) Oxidative stress modulates complement factor H expression in retinal pigmented epithelial cells by acetylation of FOXO3. J Biol Chem 282: 22414-22425.    
  • 94. Catala A (2011) Lipid peroxidation of membrane phospholipids in the vertebrate retina. Front Biosci (Schol Ed) 3: 52-60.
  • 95. Kevany BM, Palczewski K (2010) Phagocytosis of retinal rod and cone photoreceptors. Physiology (Bethesda) 25: 8-15.    
  • 96. Shaw PX, Horkko S, Chang MK, et al. (2000) Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest 105: 1731-1740.    
  • 97. Jeitner TM, Voloshyna I, Reiss AB (2011) Oxysterol derivatives of cholesterol in neurodegenerative disorders. Curr Med Chem 18: 1515-1525.    
  • 98. Larrayoz IM, Huang JD, Lee JW, et al. (2010) 7-ketocholesterol-induced inflammation: involvement of multiple kinase signaling pathways via NFkappaB but independently of reactive oxygen species formation. Invest Ophthalmol Vis Sci 51: 4942-4955.    
  • 99. Joffre C, Leclere L, Buteau B, et al. (2007) Oxysterols induced inflammation and oxidation in primary porcine retinal pigment epithelial cells. Curr Eye Res 32: 271-280.    
  • 100. Mylonas C, Kouretas D (1999) Lipid peroxidation and tissue damage. In Vivo 13: 295-309.
  • 101. Duryee MJ, Klassen LW, Schaffert CS, et al. (2010) Malondialdehyde-acetaldehyde adduct is the dominant epitope after MDA modification of proteins in atherosclerosis. Free Radic Biol Med 49: 1480-1486.    
  • 102. Kaji Y, Usui T, Oshika T, et al. (2000) Advanced glycation end products in diabetic corneas. Invest Ophthalmol Vis Sci 41: 362-368.
  • 103. Handa JT, Verzijl N, Matsunaga H, et al. (1999) Increase in the advanced glycation end product pentosidine in Bruch's membrane with age. Invest Ophthalmol Vis Sci 40: 775-779.
  • 104. Renganathan K, Ebrahem Q, Vasanji A, et al. (2008) Carboxyethylpyrrole adducts, age-related macular degeneration and neovascularization. Adv Exp Med Biol 613: 261-267.    
  • 105. Barja G, Herrero A (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14: 312-318.
  • 106. Dib B, Lin H, Maidana DE, et al. (2015) Mitochondrial DNA has a pro-inflammatory role in AMD. Biochim Biophys Acta 1853: 2897-2906.    
  • 107. Lin H, Xu H, Liang FQ, et al. (2011) Mitochondrial DNA damage and repair in RPE associated with aging and age-related macular degeneration. Invest Ophthalmol Vis Sci 52: 3521-3529.    
  • 108. Wang AL, Lukas TJ, Yuan M, et al. (2008) Increased mitochondrial DNA damage and down-regulation of DNA repair enzymes in aged rodent retinal pigment epithelium and choroid. Mol Vis 14: 644-651.
  • 109. Terluk MR, Kapphahn RJ, Soukup LM, et al. (2015) Investigating mitochondria as a target for treating age-related macular degeneration. J Neurosci 35: 7304-7311.    
  • 110. Perez VL, Caspi RR (2015) Immune mechanisms in inflammatory and degenerative eye disease. Trends Immunol 36: 354-363.    
  • 111. Du H, Sun X, Guma M, et al. (2013) JNK inhibition reduces apoptosis and neovascularization in a murine model of age-related macular degeneration. Proc Natl Acad Sci U S A 110: 2377-2382.    
  • 112. Horkko S, Binder CJ, Shaw PX, et al. (2000) Immunological responses to oxidized LDL. Free Radic Biol Med 28: 1771-1779.    
  • 113. Berliner JA, Navab M, Fogelman AM, et al. (1995) Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 91: 2488-2496.
  • 114. Ebrahimi KB, Handa JT (2011) Lipids, lipoproteins, and age-related macular degeneration. J Lipids 2011: 802059.
  • 115. Chou MY, Hartvigsen K, Hansen LF, et al. (2008) Oxidation-specific epitopes are important targets of innate immunity. J Intern Med 263: 479-488.    
  • 116. Weismann D, Hartvigsen K, Lauer N, et al. (2011) Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature 478: 76-81.    
  • 117. Ambati J, Atkinson JP, Gelfand BD (2013) Immunology of age-related macular degeneration. Nat Rev Immunol 13: 438-451.
  • 118. de Oliveira Dias JR, Rodrigues EB, Maia M, et al. (2011) Cytokines in neovascular age-related macular degeneration: fundamentals of targeted combination therapy. BrJ Ophthalmol 95: 1631-1637.    
  • 119. Mo FM, Proia AD, Johnson WH, et al. (2010) Interferon gamma-inducible protein-10 (IP-10) and eotaxin as biomarkers in age-related macular degeneration. Invest Ophthalmol Vis Sci 51: 4226-4236.    
  • 120. Wang JC, Cao S, Wang A, et al. (2015) CFH Y402H polymorphism is associated with elevated vitreal GM-CSF and choroidal macrophages in the postmortem human eye. Mol Vis 21: 264-272.
  • 121. Lad EM, Cousins SW, Van Arnam JS, et al. (2015) Abundance of infiltrating CD163+ cells in the retina of postmortem eyes with dry and neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 253: 1941-1945.    
  • 122. Doyle SL, Campbell M, Ozaki E, et al. (2012) NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nat Med 18: 791-798.    
  • 123. Doyle SL, Lopez FJ, Celkova L, et al. (2015) IL-18 Immunotherapy for Neovascular AMD: Tolerability and Efficacy in Nonhuman Primates. Invest Ophthalmol Vis Sci 56: 5424-5430.    
  • 124. Doyle SL, Ozaki E, Brennan K, et al. (2014) IL-18 attenuates experimental choroidal neovascularization as a potential therapy for wet age-related macular degeneration. Sci Transl Med 6: 230ra244.
  • 125. Skerka C, Zipfel PF (2008) Complement factor H related proteins in immune diseases. Vaccine 26 Suppl 8: I9-14.
  • 126. Kelly J, Ali Khan A, Yin J, et al. (2007) Senescence regulates macrophage activation and angiogenic fate at sites of tissue injury in mice. J Clin Invest 117: 3421-3426.    
  • 127. Xu H, Chen M, Forrester JV (2009) Para-inflammation in the aging retina. Prog Retin Eye Res 28: 348-368.    
  • 128. Anderson DH, Radeke MJ, Gallo NB, et al. (2010) The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 29: 95-112.    
  • 129. Crabb JW, Miyagi M, Gu X, et al. (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 99: 14682-14687.    
  • 130. Yuan X, Gu X, Crabb JS, et al. (2010) Quantitative proteomics: comparison of the macular Bruch membrane/choroid complex from age-related macular degeneration and normal eyes. Mol Cell Proteomics 9: 1031-1046.    
  • 131. Johnson LV, Ozaki S, Staples MK, et al. (2000) A potential role for immune complex pathogenesis in drusen formation. Exp Eye Res 70: 441-449.    
  • 132. Wang L, Clark ME, Crossman DK, et al. (2010) Abundant lipid and protein components of drusen. PLoS One 5: e10329.    
  • 133. Vierkotten S, Muether PS, Fauser S (2011) Overexpression of HTRA1 leads to ultrastructural changes in the elastic layer of Bruch's membrane via cleavage of extracellular matrix components. PLoS One 6: e22959.    
  • 134. Skeie J, Mullins R (2009) Macrophages in neovascular age-related macular degeneration: friends or foes? Eye 23: 747-755.    
  • 135. Killingsworth M, Sarks J, Sarks S (1990) Macrophages related to Bruch’s membrane in age-related macular degeneration. Eye 4: 613-621.    
  • 136. Combadiere C, Feumi C, Raoul W, et al. (2007) CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Investig 117: 2920-2928.    
  • 137. Liang KJ, Lee JE, Wang YD, et al. (2009) Regulation of dynamic behavior of retinal microglia by CX3CR1 signaling. Invest Ophthalmol Vis Sci 50: 4444-4451.    
  • 138. Grossniklaus H, Ling J, Wallace T, et al. (2002) Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization. Mol Vis 8: 119-126.
  • 139. Yamada K, Sakurai E, Itaya M, et al. (2007) Inhibition of Laser-Induced Choroidal Neovascularization by Atorvastatin by Downregulation of Monocyte Chemotactic Protein-1 Synthesis in Mice. Invest Ophthalmol Vis Sci 48: 1839-1843.    
  • 140. Mettu PS, Wielgus AR, Ong SS, et al. (2012) Retinal pigment epithelium response to oxidant injury in the pathogenesis of early age-related macular degeneration. Mol Asp Med 33: 376-398.
  • 141. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Investig 122: 787-795.    
  • 142. Cherepanoff S, McMenamin P, Gillies MC, et al. (2010) Bruch's membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol 94: 918-925.    
  • 143. Sindrilaru A, Peters T, Wieschalka S, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Investig 121: 985-997.


This article has been cited by

  • 1. Vibhuti Agrahari, Vivek Agrahari, Abhirup Mandal, Dhananjay Pal, Ashim K. Mitra, How are we improving the delivery to back of the eye? Advances and challenges of novel therapeutic approaches, Expert Opinion on Drug Delivery, 2016, 1, 10.1080/17425247.2017.1272569
  • 2. Leonid Minasyan, Parameswaran G. Sreekumar, David R. Hinton, Ram Kannan, Protective Mechanisms of the Mitochondrial-Derived Peptide Humanin in Oxidative and Endoplasmic Reticulum Stress in RPE Cells, Oxidative Medicine and Cellular Longevity, 2017, 2017, 1, 10.1155/2017/1675230
  • 3. Suet Ding, Suresh Kumar, Pooi Mok, Cellular Reparative Mechanisms of Mesenchymal Stem Cells for Retinal Diseases, International Journal of Molecular Sciences, 2017, 18, 8, 1406, 10.3390/ijms18081406
  • 4. Maiko Maruyama-Inoue, Shin Yamane, Hisayoshi Satoh, Shimpei Sato, Kazuaki Kadonosono, Choroidal Angioarchitecture According to Ultra-Widefield Indocyanine Green Angiography in Age-Related Macular Degeneration, Journal of VitreoRetinal Diseases, 2017, 247412641773316, 10.1177/2474126417733161
  • 5. Vibhuti Agrahari, Sulabh P. Patel, Nikhil Dhall, Zach Aulgur, Siddhant Thukral, Xiaoyan Yang, Ryan Conley, Ashim K. Mitra, Nanoparticles in thermosensitive gel based composite nanosystem for ocular diseases, Drug Delivery and Translational Research, 2017, 10.1007/s13346-017-0435-y
  • 6. Reem Hasaballah Alhasani, Lincoln Biswas, Ali Mohammed Tohari, Xinzhi Zhou, James Reilly, Jian-Feng He, Xinhua Shu, Gypenosides protect retinal pigment epithelium cells from oxidative stress, Food and Chemical Toxicology, 2017, 10.1016/j.fct.2017.12.037
  • 7. José Carlos Rivera, Rabah Dabouz, Baraa Noueihed, Samy Omri, Houda Tahiri, Sylvain Chemtob, Ischemic Retinopathies: Oxidative Stress and Inflammation, Oxidative Medicine and Cellular Longevity, 2017, 2017, 1, 10.1155/2017/3940241
  • 8. Pilar Herrero-Foncubierta, Jose Paredes, Maria Giron, Rafael Salto, Juan Cuerva, Delia Miguel, Angel Orte, A Red-Emitting, Multidimensional Sensor for the Simultaneous Cellular Imaging of Biothiols and Phosphate Ions, Sensors, 2018, 18, 1, 161, 10.3390/s18010161
  • 9. Luis Fernando Hernández-Zimbrón, Ruben Zamora-Alvarado, Lenin Ochoa-De la Paz, Raul Velez-Montoya, Edgar Zenteno, Rosario Gulias-Cañizo, Hugo Quiroz-Mercado, Roberto Gonzalez-Salinas, Age-Related Macular Degeneration: New Paradigms for Treatment and Management of AMD, Oxidative Medicine and Cellular Longevity, 2018, 2018, 1, 10.1155/2018/8374647
  • 10. Daniela Calzia, Paolo Degan, Federico Caicci, Maurizio Bruschi, Lucia Manni, Luca A. Ramenghi, Giovanni Candiano, Carlo Enrico Traverso, Isabella Panfoli, Modulation of the rod outer segment aerobic metabolism diminishes the production of radicals due to light absorption, Free Radical Biology and Medicine, 2018, 117, 110, 10.1016/j.freeradbiomed.2018.01.029
  • 11. 桥生 刘, Advance in Risk Factors and Prevention of Dry Age-Related Macular Degeneration, Hans Journal of Ophthalmology, 2018, 07, 01, 21, 10.12677/HJO.2018.71004
  • 12. Yuhai Zhao, Walter J. Lukiw, Microbiome-Mediated Upregulation of MicroRNA-146a in Sporadic Alzheimer’s Disease, Frontiers in Neurology, 2018, 9, 10.3389/fneur.2018.00145
  • 13. Reşat Duman, Ayhan Vurmaz, Role of innate immunity and oxidative stress in steroid-induced cataracts in developing chick embryos, Cutaneous and Ocular Toxicology, 2018, 1, 10.1080/15569527.2018.1452929
  • 14. Ryoji Yanai, Shang Chen, Sho-Hei Uchi, Tomoaki Nanri, Kip M. Connor, Kazuhiro Kimura, Alfred S Lewin, Attenuation of choroidal neovascularization by dietary intake of ω-3 long-chain polyunsaturated fatty acids and lutein in mice, PLOS ONE, 2018, 13, 4, e0196037, 10.1371/journal.pone.0196037
  • 15. Xiying Mao, Ting Pan, Han Shen, Huiyu Xi, Songtao Yuan, Qinghuai Liu, The rescue effect of mesenchymal stem cell on sodium iodate-induced retinal pigment epithelial cell death through deactivation of NF-κB-mediated NLRP3 inflammasome, Biomedicine & Pharmacotherapy, 2018, 103, 517, 10.1016/j.biopha.2018.04.038
  • 16. Justin Hellman, Glenn Yiu, , Vitreoretinal Disorders, 2018, Chapter 2, 35, 10.1007/978-981-10-8545-1_2
  • 17. Ting Zhang, Bobak Bahrami, Ling Zhu, , HSP70 in Human Diseases and Disorders, 2018, Chapter 14, 273, 10.1007/978-3-319-89551-2_14
  • 18. Jasvinder A. Singh, John D. Cleveland, Der-Chong Tsai, Gout and the risk of age-related macular degeneration in the elderly, PLOS ONE, 2018, 13, 7, e0199562, 10.1371/journal.pone.0199562
  • 19. Andrea Maugeri, Martina Barchitta, Maria Mazzone, Francesco Giuliano, Guido Basile, Antonella Agodi, Resveratrol Modulates SIRT1 and DNMT Functions and Restores LINE-1 Methylation Levels in ARPE-19 Cells under Oxidative Stress and Inflammation, International Journal of Molecular Sciences, 2018, 19, 7, 2118, 10.3390/ijms19072118
  • 20. Adrian Will-Orrego, Yubin Qiu, Elizabeth S. Fassbender, Siyuan Shen, Jorge Aranda, Namrata Kotagiri, Michael Maker, Sha-Mei Liao, Bruce D. Jaffee, Stephen H. Poor, Amount of Mononuclear Phagocyte Infiltrate Does Not Predict Area of Experimental Choroidal Neovascularization (CNV), Journal of Ocular Pharmacology and Therapeutics, 2018, 34, 7, 489, 10.1089/jop.2017.0131
  • 21. Alberto Modenese, Fabriziomaria Gobba, Macular degeneration and occupational risk factors: a systematic review, International Archives of Occupational and Environmental Health, 2018, 10.1007/s00420-018-1355-y
  • 22. D. V. Telegina, O. S. Kozhevnikova, N. G. Kolosova, Changes in Retinal Glial Cells with Age and during Development of Age-Related Macular Degeneration, Biochemistry (Moscow), 2018, 83, 9, 1009, 10.1134/S000629791809002X
  • 23. Alberto Modenese, Leena Korpinen, Fabriziomaria Gobba, Solar Radiation Exposure and Outdoor Work: An Underestimated Occupational Risk, International Journal of Environmental Research and Public Health, 2018, 15, 10, 2063, 10.3390/ijerph15102063
  • 24. Lindiwe M. Dlamini, Charlotte M. Tata, Marthe Carine F. Djuidje, Monisola I. Ikhile, Galina D. Nikolova, Yana D. Karamalakova, Veselina G. Gadjeva, Antoanetta M. Zheleva, Patrick B. Njobeh, Derek T. Ndinteh, Antioxidant and Prooxidant Effects of Piptadeniastrum Africanum As The Possible Rationale Behind Its Broad Scale Application In African Ethnomedicine, Journal of Ethnopharmacology, 2018, 10.1016/j.jep.2018.11.039
  • 25. Tarek K. Abouzed, Kadry M. Sadek, Mousa M. Ayoub, Ebeed A. Saleh, Sherif M. Nasr, Yasser S. El-Sayed, Moustafa Shoukry, Papaya extract upregulates the immune and antioxidants-related genes, and proteins expression in milk somatic cells of Friesian dairy cows, Journal of Animal Physiology and Animal Nutrition, 2018, 10.1111/jpn.13032
  • 26. Luigi Donato, Concetta Scimone, Giacomo Nicocia, Rosalia D’Angelo, Antonina Sidoti, Role of oxidative stress in Retinitis pigmentosa: new involved pathways by an RNA-Seq analysis, Cell Cycle, 2018, 1, 10.1080/15384101.2018.1558873
  • 27. Melissa K. Jones, Bin Lu, Dawn Zhaohui Chen, Weston R. Spivia, Augustus T. Mercado, Alexander V. Ljubimov, Clive N. Svendsen, Jennifer E. Van Eyk, Shaomei Wang, In Vitro and In Vivo Proteomic Comparison of Human Neural Progenitor Cell-Induced Photoreceptor Survival, PROTEOMICS, 2019, 1800213, 10.1002/pmic.201800213
  • 28. Vandana Soni, Vikas Pandey, Rahul Tiwari, Saket Asati, Rakesh K. Tekade, , Basic Fundamentals of Drug Delivery, 2019, 473, 10.1016/B978-0-12-817909-3.00013-3
  • 29. Virginia Puente-Muñoz, José M. Paredes, Sandra Resa, José Damaso Vílchez, Michal Zitnan, Delia Miguel, María Dolores Girón, Juan M. Cuerva, Rafael Salto, Luis Crovetto, New Thiol-Sensitive Dye Application for Measuring Oxidative Stress in Cell Cultures, Scientific Reports, 2019, 9, 1, 10.1038/s41598-018-38132-y
  • 30. Ruichan Li, Yanli Liu, Jing Xie, Xudong Huang, Li Zhang, Hua Liu, Lihua Li, Sirt3 mediates the protective effect of hydrogen in inhibiting ROS-induced retinal senescence, Free Radical Biology and Medicine, 2019, 10.1016/j.freeradbiomed.2019.02.005
  • 31. Andrea Maugeri, Martina Barchitta, Matteo Fallico, Niccolò Castellino, Michele Reibaldi, Antonella Agodi, Characterization of SIRT1/DNMTs Functions and LINE-1 Methylation in Patients with Age-Related Macular Degeneration, Journal of Clinical Medicine, 2019, 8, 2, 159, 10.3390/jcm8020159
  • 32. R. M. Lucas, S. Yazar, A. R. Young, M. Norval, F. R. de Gruijl, Y. Takizawa, L. E. Rhodes, C. A. Sinclair, R. E. Neale, Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate, Photochemical & Photobiological Sciences, 2019, 10.1039/C8PP90060D
  • 33. Ting Zhang, Mark Gillies, Ying Wang, Weiyong Shen, Bobak Bahrami, Shaoxue Zeng, Meidong Zhu, Wenjuan Yao, Fanfan Zhou, Michael Murray, Ke Wang, Ling Zhu,  Simvastatin protects photoreceptors from oxidative stress induced by all‐ trans ‐retinal, through the up‐regulation of interphotoreceptor retinoid binding protein , British Journal of Pharmacology, 2019, 10.1111/bph.14650
  • 34. Meshal Alshamrani, Sadia Sikder, Fohona Coulibaly, Abhirup Mandal, Dhananjay Pal, Ashim K. Mitra, Self-Assembling Topical Nanomicellar Formulation to Improve Curcumin Absorption Across Ocular Tissues, AAPS PharmSciTech, 2019, 20, 7, 10.1208/s12249-019-1404-1
  • 35. Yeqi Zhou, Linbin Zhou, Kewen Zhou, Jingyue Zhang, Fu Shang, Xinyu Zhang, Celastrol Protects RPE Cells from Oxidative Stress-Induced Cell Death via Activation of Nrf2 Signaling Pathway, Current Molecular Medicine, 2019, 19, 3, 172, 10.2174/1566524019666190424131704
  • 36. Andrea R. Waksmunski, Robert P. Igo, Yeunjoo E. Song, Jessica N. Cooke Bailey, Renee Laux, Denise Fuzzell, Sarada Fuzzell, Larry D. Adams, Laura Caywood, Michael Prough, Dwight Stambolian, William K. Scott, Margaret A. Pericak-Vance, Jonathan L. Haines, Rare variants and loci for age-related macular degeneration in the Ohio and Indiana Amish, Human Genetics, 2019, 10.1007/s00439-019-02050-4

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Peter X. Shaw, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved