
AIMS Mathematics, 2020, 5(1): 650672. doi: 10.3934/math.2020044.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Relatively equistatistical convergence via deferred Nörlund mean based on difference operator of fractionalorder and related approximation theorems
1 Department of Mathematics, Veer Surendra Sai University of Technology, Burla 768018, Odisha, India
2 Department of General Required Courses, Mathematics, Faculty of Applied Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
3 Operator Theory and Applications Research Group, Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
4 Department of Mathematics, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur, Madhya Pradesh 484 887, India
Received: , Accepted: , Published:
Keywords: deferred Nörlund mean; relatively statistical uniform convergence; relatively ψ_{n}^{p,q}equistatistical convergence; Korovkintype approximation theorem; rate of the relatively ψ_{n}^{p,q}equistatistical convergence
Citation: B. B. Jena, S. K. Paikray, S. A. Mohiuddine, Vishnu Narayan Mishra. Relatively equistatistical convergence via deferred Nörlund mean based on difference operator of fractionalorder and related approximation theorems. AIMS Mathematics, 2020, 5(1): 650672. doi: 10.3934/math.2020044
References:
 1. T. Acar, A. Aral, S. A. Mohiuddine, On Kantorovich modifications of (p, q)Baskakov operators, J. Inequal. Appl., 2016 (2016), 114.
 2. T. Acar, S. A. Mohiuddine, Statistical (C, 1)(E, 1) summability and Korovkin's theorem, Filomat, 30 (2016), 387393.
 3. R. P. Agnew, On deferred Cesàro means, Ann. Math., 33 (1932), 413421.
 4. H. Aktuǧlu, H. Gezer, Lacunary equistatistical convergence of positive linear operators, Cent. Eur. J. Math., 7(2009), 558567.
 5. W. A. AlSalam, Operational representations for the Laguerre and other polynomials, Duke Math. J., 31 (1964), 127142.
 6. M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl., 328 (2007), 715729.
 7. P. Baliarsingh, On a fractional difference operator, Alex. Eng. J., 55 (2016), 18111816.
 8. F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, Istanbul, 2012.
 9. C. A. Bektaş, M. Et, R. Çolak, Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl., 292 (2004), 423432.
 10. C. Belen, S. A. Mohiuddine, Generalized statistical convergence and application, Appl. Math. Comput., 219 (2013), 98219826.
 11. N. L. Braha, H. M. Srivastava, S. A. Mohiuddine, A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean, Appl. Math. Comput., 228 (2014), 162169.
 12. S. Chapman, On nonintegral orders of summability of series and integrals, Proc. Lond. Math. Soc., 2 (1911), 369409.
 13. E. W. Chittenden, On the limit functions of sequences of continuous functions converging relatively uniformly, Trans. AMS, 20 (1919), 179184.
 14. A. A. Das, B. B. Jena, S. K. Paikray, et al. Statistical deferred weighted summability and associated Korovokintype approximation theorem, Nonlinear Sci. Lett. A, 9 (2018), 238245.
 15. K. Demirci, S. Orhan, Statistically relatively uniform convergence of positive linear operators, Results Math., 69 (2016), 359367.
 16. K. Demirci, S. Orhan, Statistical relative approximation on modular spaces, Results Math., 71 (2017), 11671184.
 17. O. H. H. Edely, S. A. Mohiuddine, A. K. Noman, Korovkin type approximation theorems obtained through generalized statistical convergence, Appl. Math. Lett., 23 (2010), 13821387.
 18. H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241244.
 19. G. Gasper, M. Rahman, Basic Hypergeometric Series, Camb. Univ. Press, 2004.
 20. F. H. Jackson, Ageneralization of the functions Γ(n) and x^{n}, Proc. R. Soc. Lond., 74 (1904), 6472.
 21. B. B. Jena, S. K. Paikray, Product of statistical probability convergence and its applications to Korovkintype theorem, Miskolc Math. Notes, 20 (2019), 116.
 22. B. B. Jena, S. K. Paikray, U. K. Misra, Statistical deferred Cesàro summability and its applications to approximation theorems, Filomat, 32 (2018), 23072319.
 23. B. B. Jena, S. K. Paikray, U. K. Misra, Inclusion theorems on general convergence and statistical convergence of (L, 1, 1)summability using generalized Tauberian conditions, Tamsui Oxf. J. Inf. Math. Sci., 31 (2017), 101115.
 24. U. Kadak, Weighted statistical convergence based on generalized difference operator involving (p, q)gamma function and its applications to approximation theorems, J. Math. Anal. Appl., 448 (2017), 16331650.
 25. U. Kadak, On weighted statistical convergence based on (p, q)integers and related approximation theorems for functions of two variables, J. Math. Anal. Appl., 443 (2016), 752764.
 26. U. Kadak, P. Baliarsingh, On certain Euler difference sequence spaces of fractional order and related dual properties, J. Nonlinear Sci. Appl., 8 (2015), 9971004.
 27. U. Kadak, S. A. Mohiuddine, Generalized statistically almost convergence based on the difference operator which includes the (p, q)gamma function and related approximation theorems, Results Math., 73 (2018), Article 9.
 28. U. Kadak, H. M. Srivastava, M. Mursaleen, Relatively uniform weighted summability based on fractionalorder difference operator, Bull. Malays. Math. Sci. Soc., 42 (2019), 24532480.
 29. V. Karakaya, T. A. Chishti, Weighted statistical convergence, Iranian. J. Sci. Technol. Trans. A, 33 (A3)(2009), 219223.
 30. S. Karakuş, K. Demirci, O. Duman, Equistatistical convergence of positive linear operators, J. Math. Anal. Appl., 339 (2008), 10651072.
 31. P. P. Korovkin, Linear operators and approximation theory, Hindustan Publ. Co., Delhi, 1960.
 32. A. Lupaş, A qanalogue of the Bernstein operator. In: Seminar on Numerical and Statistical Calculus, University of ClujNapoca, 9 (1987), 8592.
 33. S. A. Mohiuddine, An application of almost convergence in approximation theorems, Appl. Math. Lett., 24 (2011), 18561860.
 34. S. A. Mohiuddine, Statistical weighted Asummability with application to Korovkin's type approximation theorem, J. Inequal. Appl., 2016 (2016).
 35. S. A. Mohiuddine, B. A. S. Alamri, Generalization of equistatistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. R. Acad. Cienc. Exactas Fs. Nat., Ser. A Mat., RACSAM, 113(2019), 19551973.
 36. S. A. Mohiuddine, A. Asiri, B. Hazarika, Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems, Int. J. Gen. Syst., 48((2019), 492506.
 37. S. A. Mohiuddine, B. Hazarika, M. A. Alghamdi, Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems, Filomat, 33((2019), 45494560.
 38. E. H. Moore, An Introduction to a Form of General Analysis, The New Haven Mathematical Colloquium, Yale University Press, New Haven 1910.
 39. M. Mursaleen, K. J. Ansari, A. Khan, On (p, q)analogue of Bernstein operators, Appl. Math. Comput., 266 (2015), 874882.
 40. M. Mursaleen, V. Karakaya, M. Ertürk, et al. Weighted statistical convergence and its application to Korovkin type approximation theorem, Appl. Math. Comput., 218 (2012), 91329137.
 41. M. Mursaleen, Md. Nasiuzzaman, A. Nurgali, Some approximation results on BernsteinSchurer operators defined by (p, q)integers, J. Inequal. Appl., 2015 (2015), 112.
 42. T. Pradhan, S. K. Paikray, B. B. Jena, et al. Statistical deferred weighted Bsummability and its applications to associated approximation theorems, J. Inequal. Appl., 2018 (2018), 121.
 43. P. N. Sadjang, On the (p, q)gamma and (p, q)beta function, arXiv: 1506. 07394v1.
 44. H. M. Srivastava, B. B. Jena, S. K. Paikray, et al. A certain class of weighted statistical convergence and associated Korovkin type approximation theorems for trigonometric functions, Math. Methods Appl. Sci., 41 (2018), 671683.
 45. H. M. Srivastava, B. B. Jena, S. K. Paikray, et al. Generalized equistatistical convergence of the deferred Nörlund summability and its applications to associated approximation theorems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. (RACSAM), 112 (2018), 14871501.
 46. H. M. Srivastava, B. B. Jena, S. K. Paikray, et al. Deferred weighted Astatistical convergence based upon the (p, q)Lagrange polynomials and its applications to approximation theorems, J. Appl. Anal., 24 (2018), 116.
 47. H. M. Srivastava, B. B. Jena, S. K. Paikray, et al. Statistically and relatively modular deferredweighted summability and Korovkintype approximation theorems, Symmetry, 11 (2019), 120.
 48. H. M. Srivastava, B. B. Jena, S. K. Paikray, Deferred Cesàro statistical probability convergence and its applications to approximation theorems, J. Nonlinear Convex Anal., 20 (2019), 17771792.
 49. H. M. Srivastava, B. B. Jena, S. K. Paikray, A certain class of statistical probability convergence and its applications to approximation theorems, Appl. Anal. Discrete Math. (in press) 2019.
 50. H. M. Srivastava, H. L. Manocha, Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.
 51. H. M. Srivastava, M. Mursaleen, A. Khan, Generalized equistatistical convergence of positive linear operators and associated approximation theorems, Math. Comput. Model. 55 (2012), 20402051.
 52. H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 7374.
 53. O. V. Viskov, H. M. Srivastava, New approaches to certain identities involving differential operators, J. Math. Anal. Appl., 186 (1994), 110.
Reader Comments
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *