
AIMS Mathematics, 2019, 4(4): 11141132. doi: 10.3934/math.2019.4.1114.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Expedite homotopy perturbation method based on metaheuristic technique mimicked by the flashing behavior of fireflies
1 Department of Mathematics, University of Karachi, Karachi 75270, Pakistan
2 Department of Electrical and Computer Engineering, COMSATS University Islamabad, Attock Campus, Attock, Pakistan
Received: , Accepted: , Published:
Special Issues: Initial and Boundary Value Problems for Differential Equations
Keywords: Riccati equation; fractional derivative; firefly algorithm; homotopy perturbation method; Adam bashforth method
Citation: Najeeb Alam Khan, Samreen Ahmed, Tooba Hameed, Muhammad Asif Zahoor Raja. Expedite homotopy perturbation method based on metaheuristic technique mimicked by the flashing behavior of fireflies. AIMS Mathematics, 2019, 4(4): 11141132. doi: 10.3934/math.2019.4.1114
References:
 1. X. J. Yang, D. Baleanu and J. H. He, Transport equations in fractal porous media within fractional complex transform method, Proc. Rom. Acad. Ser. A, 14 (2013), 287292.
 2. J. H. He, A tutorial review on fractal spacetime and fractional calculus, Int. J. Theor. Phys., 53 (2014), 36983718.
 3. J. H. He, Fractal calculus and its geometrical explanation. Results Phys., 10 (2018), 272276.
 4. N. A. Pirim and F. Ayaz, Hermite collocation method for fractional order differential equations, Int. J. Optim. Control Theor. Appl. (IJOCTA), 8 (2018), 228236.
 5. S. V. Lototsky and B. L. Rozovsky, Classical and generalized solutions of fractional stochastic differential equations, arXiv preprint arXiv:1810.12951, 2018.
 6. A. Ara, O. A. Razzaq and N. A. Khan, A single layer functional link artificial neural network based on chebyshev polynomials for neural evaluations of nonlinear nth order fuzzy differential equations, Ann. West Univ. Timisoara Math. Comput. Sci., 56 (2018), 322.
 7. H. Aminikhah, Approximate analytical solution for quadratic Riccati differential equation, Iran. J. Numer. Anal. Optim., 3 (2013), 2131.
 8. R. Dascaliuc, E. A. Thomann and E. C. Waymire, Stochastic explosion and nonuniqueness for αRiccati equation, J. Math. Anal. Appl., 476 (2019), 5385.
 9. R. Guglielmi and K. Kunisch, Sensitivity analysis of the value function for infinite dimensional optimal control problems and its relation to Riccati equations, Optimization, 67 (2018), 14611485.
 10. E. Pereira, E. Suazo and J. Trespalacios, RiccatiErmakov systems and explicit solutions for variable coefficient reactiondiffusion equations, Appl. Math. Comput., 329 (2018), 278296.
 11. D Schuch, Analytical solutions for the quantum parametric oscillator from corresponding classical dynamics via a complex Riccati equation, J. Phys. Conf. Ser., 1071 (2018), 012020.
 12. S. Abbasbandy, Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian's decomposition method, Appl. Math. Comput., 172 (2006), 485490.
 13. B. S. Kashkari and M. I. Syam, Fractionalorder Legendre operational matrix of fractional integration for solving the Riccati equation with fractional order, Appl. Math. Comput., 290 (2016), 281291.
 14. M. G. Sakar, Iterative reproducing kernel Hilbert spaces method for Riccati differential equations, J. Comput. Appl. Math., 309 (2017), 163174.
 15. M. Hamarsheh, A. I. Ismail and Z. Odibat, An analytic solution for fractional order Riccati equations by using optimal homotopy asymptotic method, Appl. Math. Sci., 10 (2016), 11311150.
 16. V. Mishra and D. Rani. NewtonRaphson based modified Laplace Adomian decomposition method for solving quadratic Riccati differential equations, MATEC Web of Conferences, 57 (2016), 05001.
 17. H. Jafari, H. Tajadodi and D. Baleanu, A numerical approach for fractional order Riccati differential equation using Bspline operational matrix, Fract. Calc. Appl. Anal., 18 (2015), 387399.
 18. S. Shiralashetti and A. Deshi, Haar wavelet collocation method for solving riccati and fractional Riccati differential equations, Bull. Math. Sci. Appl., 17 (2016), 4656.
 19. D. N. Yu, J. H. He and A. G. Garcıa, Homotopy perturbation method with an auxiliary parameter for nonlinear oscillators, J. Low Freq. Noise V. A., 2018. Available from: https://doi.org/10.1177/1461348418811028.
 20. J. H. He, Homotopy perturbation method with an auxiliary term, Abstr. Appl. Anal., 2012 (2012), Article ID 857612.
 21. J. H. He, Asymptotic methods for solitary solutions and compactons, Abstr. appl. anal., 2012 (2012), Article ID 916793.
 22. M. Francisco, S. Revollar, P. Vega, et al. A comparative study of deterministic and stochastic optimization methods for integrated design of processes, IFAC Proc. Vol., 38 (2005), 335340.
 23. D. B. Shmoys and C. Swamy, Stochastic optimization is (almost) as easy as deterministic optimization. 45th Annual IEEE Symposium on Foundations of Computer Science, 2004.
 24. R. Dhar and N. Doshi, Simulation for variable transmission using mono level genetic algorithm, In: Proceedings of International Conference on Intelligent Manufacturing and Automation, Springer, 2019.
 25. W. Zhang, A. Maleki, M. A. Rosen, et al. Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage, Energy, 163 (2018), 191207.
 26. A. Ara, N. A. Khan, F. Maz, et al. Numerical simulation for JefferyHamel flow and heat transfer of micropolar fluid based on differential evolution algorithm, AIP Adv., 8 (2018), 015201.
 27. Y. Mokhtari and D. Rekioua, High performance of maximum power point tracking using ant colony algorithm in wind turbine, Renewable energy, 126 (2018), 10551063.
 28. X. S. Yang, NatureInspired Metaheuristic Algorithms. Luniver press, 2010.
 29. E. Fouladi and H. Mojallali, Design of optimised backstepping controller for the synchronisation of chaotic Colpitts oscillator using shark smell algorithm, Pramana, 90 (2018), 16.
 30. N. A. Khan, T. Hameed, O. A. Razzaq, et al. Intelligent computing for DuffingHarmonic oscillator equation via the bioevolutionary optimization algorithm, J. Low Freq. Noise V. A., 2018.
 31. D. K. Bui, T. Nguyen, J. S. Chou, et al. A modified firefly algorithmartificial neural network expert system for predicting compressive and tensile strength of highperformance concrete, Constr. Build. Mater., 180 (2018), 320333.
 32. D. T. Le, D. K. Bui, T. D. Ngo, et al. A novel hybrid method combining electromagnetismlike mechanism and firefly algorithms for constrained design optimization of discrete truss structures, Comput. Struct., 212 (2019), 2042.
 33. X. S. Yang, Firefly algorithms for multimodal optimization, In: InternationalSymposium on Stochastic Algorithms, Springer, 2009, 169178.
 34. S. Arora and S. Singh, A conceptual comparison of firefly algorithm, bat algorithm and cuckoo search, In: 2013 International Conference on Control, Computing, Communication and Materials (ICCCCM), 2013, IEEE.
 35. N. A. Khan, A. Ara and M. Jamil, An efficient approach for solving the Riccati equation with fractional orders, Comput. Math. Appl., 61 (2011), 26832689.
 36. M. Ali, I. Jaradat and M. Alquran, New computational method for solving fractional Riccati equation, J. Math. Comput. Sci., 17 (2017), 106114.
 37. K. Diethelm, N. J. Ford and A. D. Freed, A predictorcorrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002), 322.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *