Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

3D modeling of acoustofluidics in a liquid-filled cavity including streaming, viscous boundary layers, surrounding solids, and a piezoelectric transducer

Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark

Topical Section: Mathematical Analysis in Fluid Dynamics

We present a full 3D numerical simulation of the acoustic streaming observed in full-image micro-particle velocimetry by Hagsäter et al., Lab Chip 7, 1336 (2007) in a 2 mm by 2 mm by 0.2 mm microcavity embedded in a 49 mm by 15 mm by 2 mm chip excited by 2-MHz ultrasound. The model takes into account the piezo-electric transducer, the silicon base with the water-filled cavity, the viscous boundary layers in the water, and the Pyrex lid. The model predicts well the experimental results.
  Figure/Table
  Supplementary
  Article Metrics

Keywords microscale acoustofluidics; acoustic streaming; numerical simulation; 3D modeling

Citation: Nils R. Skov, Jacob S. Bach, Bjørn G. Winckelmann, Henrik Bruus. 3D modeling of acoustofluidics in a liquid-filled cavity including streaming, viscous boundary layers, surrounding solids, and a piezoelectric transducer. AIMS Mathematics, 2019, 4(1): 99-111. doi: 10.3934/Math.2019.1.99

References

  • 1. A. Lenshof, C. Magnusson and T. Laurell, Acoustofluidics 8: Applications in acoustophoresis in continuous flow microsystems, Lab Chip, 12 (2012), 1210-1223.    
  • 2. M. Gedge and M. Hill, Acoustofluidics 17: Surface acoustic wave devices for particle manipulation, Lab Chip, 12 (2012), 2998-3007.    
  • 3. E. K. Sackmann, A. L. Fulton and D. J. Beebe, The present and future role of microfluidics in biomedical research, Nature, 507 (2014), 181-189.    
  • 4. T. Laurell and A. Lenshof, Microscale Acoustofluidics, Cambridge: Royal Society of Chemistry, 2015.
  • 5. M. Antfolk and T. Laurell, Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood - a review, Anal. Chim. Acta, 965 (2017), 9-35.    
  • 6. P. B. Muller and H. Bruus, Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels, Phys. Rev. E, 90 (2014), 043016.
  • 7. P. B. Muller and H. Bruus, Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels, Phys. Rev. E, 92 (2015), 063018.
  • 8. N. Nama, R. Barnkob, Z. Mao, et al. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves, Lab Chip, 15 (2015), 2700-2709.    
  • 9. J. Lei, P. Glynne-Jones and M. Hill, Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices, Lab Chip, 13 (2013), 2133-2143.    
  • 10. J. Lei, P. Glynne-Jones and M. Hill, Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices, Lab Chip, 3 (2014), 532-541.
  • 11. I. Gralinski, S. Raymond, T. Alan, et al. Continuous flow ultrasonic particle trapping in a glass capillary, J. Appl. Phys., 115 (2014), 054505.
  • 12. M. W. H. Ley and H. Bruus, Three-dimensional numerical modeling of acoustic trapping in glass capillaries, Phys. Rev. Appl., 8 (2017), 024020.
  • 13. P. Hahn and J. Dual, A numerically efficient damping model for acoustic resonances in microfluidic cavities, Phys. Fluids, 27 (2015), 062005.
  • 14. COMSOL Multiphysics 53a, 2017. Available from: www.comsol.com.
  • 15. J. S. Bach and H. Bruus, Theory of pressure acoustics with viscous boundary layers and streaming in curved elastic cavities, J. Acoust. Soc. Am., 144 (2018), 766-784.    
  • 16. S. M. Hagsäter, T. G. Jensen, H. Bruus, et al. Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations, Lab Chip, 7 (2007), 1336-1344.    
  • 17. CORNING, Glass Silicon Constraint Substrates, Houghton Park C-8, Corning, NY 14831, USA, accessed 23 October 2018. Available from: http://www.valleydesign.com/Datasheets/Corning Pyrex 7740.pdf.
  • 18. M. A. Hopcroft, W. D. Nix and T. W. Kenny, What is the Young's modulus of silicon, IEEEASME Journal of Microelectromechanical Systems, 19 (2010), 229-238.    
  • 19. J. Dual and D. Möller, Acoustofluidics 4: Piezoelectricity and Application to the Excitation of Acoustic Fields for Ultrasonic Particle Manipulation, Lab Chip, 12 (2012), 506-514.    
  • 20. Meggit A/S, Ferroperm Matdat 2017, Porthusvej 4, DK-3490 Kvistgaard, Denmark, accessed 23 October 2018. Available from: https://www.meggittferroperm.com/materials/.
  • 21. J. T. Karlsen and H. Bruus, Forces acting on a small particle in an acoustical field in a thermoviscous fluid, Phys. Rev. E, 92 (2015), 043010.
  • 22. M. Settnes and H. Bruus, Forces acting on a small particle in an acoustical field in a viscous fluid, Phys. Rev. E, 85 (2012), 016327.
  • 23. P. B. Muller, R. Barnkob, M. J. H. Jensen, et al. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces, Lab Chip, 12 (2012), 4617-4627.    
  • 24. J. S. Bach and H. Bruus, Different origins of acoustic streaming at resonance, Proceedings of Meeting on Acoustics 21ISNA, 34 (2018), 022005.

 

This article has been cited by

  • 1. Jacob S. Bach, Henrik Bruus, Bulk-driven acoustic streaming at resonance in closed microcavities, Physical Review E, 2019, 100, 2, 10.1103/PhysRevE.100.023104
  • 2. Nils R. Skov, Prateek Sehgal, Brian J. Kirby, Henrik Bruus, Three-Dimensional Numerical Modeling of Surface-Acoustic-Wave Devices: Acoustophoresis of Micro- and Nanoparticles Including Streaming, Physical Review Applied, 2019, 12, 4, 10.1103/PhysRevApplied.12.044028

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved