-
AIMS Mathematics, 2018, 3(4): 625-646. doi: 10.3934/Math.2018.4.625.
Research article
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative
1 Department of Mathematics, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
2 Department of Applied Mathematics, Rajshahi University, Rajshahi, Bangladesh
Received: , Accepted: , Published:
Keywords: The fractional generalized ($D_\xi^\alpha G/G$)-expansion method; conformable fractional derivative; composite transformation; fractional order nonlinear evolution equations; closed form solutions
Citation: M. Tarikul Islam, M. Ali Akbar, M. Abul Kalam Azad. Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative. AIMS Mathematics, 2018, 3(4): 625-646. doi: 10.3934/Math.2018.4.625
References:
- 1. K.B. Oldham, J. Spanier, The Fractional Calculus, New York: Academic Press, 1974.
- 2. I. Podlubny, Fractional Differential Equations, Math. Sci. Eng., 198 (1999) 1-340.
-
3. A. Coronel-Escamilla, J. F. Gomez-Aguilar, L. Torres, et al. A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel, Physica A., 491 (2018), 406-424.
- 4. A. Atangana, J. F. Gómez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu, Numer. Meth. Part. D. E., (2017).
- 5. D. Baleanu, M. Inc, A. Yusuf et al. Time fractional third-order evolution equation: Symmetry analysis, explicit solutions and conservation laws, J. Compt. Nonliner Dynam., 13 (2018), 021011.
- 6. A. Akgul, D. Baleanu, M. Inc, et al. On the solutions of electrohydrodynamic flow with fractional differential equations by reproducing kernel method, Open. Phys., 14 (2016), 685-689.
-
7. E. C. Aslan, M. Inc, Soliton solutions of NLSE with quadratic-cubic nonlinearity and stability analysis, Wave. Random. Complex., 27 (2017), 594-601.
- 8. M. Inc, E. Ulutas, A. Biswas, Singular solitons and other solutions to a couple of nonlinear wave equations, Chin. Phys. B., 22 (2013), 060204.
-
9. I. E. Inan, Y. Ugurlu, M. Inc, New applications of the (G'/G,1/G)-expansion method, Acta. Phys. Pol. A., 128 (2015), 245-252.
-
10. M. N. Alam, M. A. Akbar, The new approach of the generalized (G'/G,1/G)-expansion method for nonlinear evolution equations, Ain Shams Eng. J., 5 (2014), 595-603.
- 11. D. Baleanu, Y. Ugurlu, M. Inc and B. Kilic, Improved (G'/G,1/G)-expansion method for the time fractional Biological population model and Cahn-Hilliard equation, J. Comput. Nonliner. Dynam., 10 (2015), 051016.
- 12. M. T. Islam, M. A. Akbar, M. A. K. Azad, The exact traveling wave solutions to the nonlinear space-time fractional modified Benjamin-Bona-Mahony equation, J. Mech. Cont. Math. Sci., 13 (2018), 56-71.
- 13. B. Zheng, Exp-function method for solving fractional partial differential equations, Sci. World J., 2013 (2013), 465723.
- 14. O. Guner, A. Bekir, H. Bilgil, A note on Exp-function method combined with complex transform method applied to fractional differential equations, Adv. Nonlinear Anal., 4 (2015), 201-208.
- 15. J. F. Alzaidy, The fractional sub-equation method and exact analytical solutions for some fractional PDEs, Am. J. Math. Anal., 1 (2013), 14-19.
-
16. H. Yépez-Martinez, J. F. Gómez-Aguilar, D. Baleanu, Beta-derivative and sub-equation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion, Optik, 155 (2018), 357-365.
- 17. H. Yépez-Martinez, J. F. Gómez-Aguilar, A. Atangana, First integral method for nonlinear differential equations with conformable derivative, Math. Modell. Nat. Phenom., 13 (2018), 14.
- 18. H. Yépez-Martinez, J. F. Gómez-Aguilar, I. O. Sosa, et al. The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation, Rev. Mex. Fis., 62 (2016), 310-316.
-
19. M. Inc, I. E. Inan, Y. Ugurlu, New applications of the functional variable method, Optik, 136 (2017), 374-381.
- 20. H. Bulut, H. M. Baskonus, Y. Pandir, The modified trial equation method for fractional wave equation and time fractional generalized Burgers equation, Abstr. Appl. Anal., 2013 (2013), 636802.
- 21. Y. Pandir, Y. Gurefe, New exact solutions of the generalized fractional Zakharov-Kuznetsov equations, Life Sci. J., 10 (2013), 2701-2705.
- 22. N. Taghizadeh, M. Mirzazadeh, M. Rahimian et al. Application of the simplest equation method to some time fractional partial differential equations, Ain Shams Eng. J., 4 (2013), 897-902.
-
23. C. Chen, Y. L. Jiang, Lie group analysis method for two classes of fractional partial differential equations, Commun. Nonlinear Sci., 26 (2015), 24-35.
-
24. G. C. Wu, A fractional characteristic method for solving fractional partial differential equations, Appl. Math. Lett., 24 (2011), 1046-1050.
- 25. A. R. Seadawy, Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves, Eur. Phys. J. Plus, 132 (2017), 29.
- 26. A. Akbulut, M. Kaplan, A. Bekir, Auxiliary equation method for fractional differential equations with modified Riemann-Liouville derivative, Int. J. Nonlin. Sci. Num., 17 (2016).
- 27. W. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47 (2008), 204-226.
- 28. S. Momani, Z. Odibat, V. S. Erturk, Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation, Phys. Lett. A., 370 (2007), 379-387.
-
29. Y. Hu, Y. Luo, Z. Lu, Analytical solution of the linear fractional differential equation by Adomian decomposition method, J. Comput. Appl. Math., 215 (2008), 220-229.
-
30. A. M. A. El-Sayed, S. H. Behiry, W. E. Raslan, Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation, Comput. Math. Appl., 59 (2010), 1759-1765.
-
31. M. Inc, The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method, J. Math. Anal. Appl., 345 (2008), 476-484.
-
32. G. H. Gao, Z. Z. Sun, Y. N. Zhang, A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions, J. Comput. Phys., 231 (2012), 2865-2879.
-
33. K. A. Gepreel, The homotopy perturbation method applied to nonlinear fractional Kadomtsev-Petviashvili-Piskkunov equations, Appl. Math. Lett., 24 (2011), 1428-1434.
- 34. J. F. Gómez-Aguilar, H. Yépez-Martinez, J. Torres-Jimenez et al. Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Adv. Differ. Equations, 2017 (2017), 68.
- 35. V. F. Morales-Delgado, J. F. Gómez-Aguilar, H. Yépez-Martinez, et al. Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Adv. Differ. Equations, 2016 (2016), 164.
- 36. H. Yépez-Martinez, J. F. Gómez-Aguilar, Numerical and analytical solutions of nonlinear differential equations involving fractional operators with power and Mittag-Leffler kernel, Math. Model. Nat. Phenom., 13 (2018), 13.
-
37. E. C. Aslan, M. Inc, Numerical solutions and comparisons for nonlinear time fractional Ito coupled system, J. Comput. Theor. Nanos., 13 (2016), 5426-5431.
-
38. M. Inc, Some special structures for the generalized nonlinear Schrodinger equation with nonlinear dispersion, Wave. Random. Complex., 23 (2013), 77-88.
- 39. R. Khalil, M. Al Horani, A. Yousef et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.
- 40. A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889-898.
-
41. M. Eslami, H. Rezazadeh, The first integral method for Wu-Zhang system with conformable time-fractional derivative, Calcolo, 53 (2016), 475-485.
- 42. Y. Cenesiz, A. Kurt, The new solution of time fractional wave equation with conformable fractional derivative definition, J. New Theory, 7 (2015), 79-85.
-
43. M. Boiti, J. Leon and P. Pempinelli, Spectral transform for a two spatial dimension extension of the dispersive long wave equation, Inverse Probl., 3 (1987), 371-387.
-
44. R. L. Mace, M. A. Hellberg, The Korteweg-de Vries-Zakharov-Kuznetsov equation for electron-acoustic waves, Phys. Plasmas, 8 (2001), 2649-2656.
- 45. O. Guner, E. Aksoy, A. Bekir et al. Different methods for (3+1)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation, Comput. Math. Appl., 71 (2016), 1259-1269.
-
46. A. K. Khalifaa, K. R. Raslana, H. M. Alzubaidi, A collocation method with cubic B-splines for solving the MRLW equation, J. Comput. Appl. Math., 212 (2008), 406-418.
-
47. K. R. Raslan, Numerical study of the Modified Regularized Long Wave (MRLW) equation, Chaos, Solitons Fractals, 42 (2009), 1845-1853.
-
48. K. R. Raslan, S. M. Hassan, Solitary waves for the MRLW equation, Appl. Math. Lett., 22 (2009), 984-989.
- 49. M. Kaplan, A. Bekir, A. Akbulut, et al. The modified simple equation method for nonlinear fractional differential equations, Rom. Journ. Phys., 60 (2015), 1374-1383.
-
50. A. B. E. Abdel Salam, E. A. E. Gumma, Analytical solution of nonlinear space-time fractional differential equations using the improved fractional Riccati expansion method, Ain Shams Eng. J., 6 (2015), 613-620.
-
51. E. Fan, H. Zhang, A note on the homogeneous balance method, Phys. Lett. A., 246 (1998), 403-406.
This article has been cited by:
- 1. Jin Hyuk Choi, Hyunsoo Kim, R. Sakthivel, Periodic and solitary wave solutions of some important physical models with variable coefficients, Waves in Random and Complex Media, 2019, 1, 10.1080/17455030.2019.1633029
Reader Comments
© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *