AIMS Mathematics, 2018, 3(4): 565-574. doi: 10.3934/Math.2018.4.565.

Research article Export file:

Format

• RIS(for EndNote,Reference Manager,ProCite)
• BibTex
• Text

Content

• Citation Only
• Citation and Abstract

A regularity criterion of smooth solution for the 3D viscous Hall-MHD equations

1 ENS of Mostaganem, University of Mostaganem, Box 227, Mostaganem 27000, Algeria
2 Dipartimento di Matematica e Informatica, Università di Catania, Viale Andrea Doria, 6 95125 Catania - Italy
3 RUDN University, 6 Miklukho - Maklay St, Moscow, 117198, Russia
4 Department of Mathematical Science , Faculty of Applied Science, Umm Alqura University, P. O.Box 14035, Makkah 21955, Saudi Arabia

## Abstract    Full Text(HTML)    Figure/Table    Related pages

In this work, we investigate the regularitycriterion for the solution of the Hall-MHD system in three-dimensions. It isproved that if the pressure $\pi$ and the gradient of magnetic field $%\nabla B$ satisfies some kind of space-time integrable condition on $[0,T]$,then the corresponding solution keeps smoothness up to time $T$. This resultimproves some previous works to the Morrey space $\overset{\cdot }{\mathcal{M}}_{2,\frac{3}{r}}$ for $0\leq r<1$ which is larger than $L^{\frac{3}{r}}$.
Figure/Table
Supplementary
Article Metrics

Citation: A. M. Alghamdi, S. Gala, M. A. Ragusa. A regularity criterion of smooth solution for the 3D viscous Hall-MHD equations. AIMS Mathematics, 2018, 3(4): 565-574. doi: 10.3934/Math.2018.4.565

References

• 1. Q. Rubbab, Y. Mahsud, S. Irshad, M. A. Imran, A. Ahmadian, S. Salahshour, M. Ferrara, Numerical simulations of unsteady flows in a rotating channel using a novel eigenfunction expansion method, AIP Advances, 2020, 10, 6, 065035, 10.1063/5.0012874 Download full text in PDF Export Citation