-
AIMS Materials Science, 2019, 6(4): 621-634. doi: 10.3934/matersci.2019.4.621.
Research article
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
Optimization of compression moulding parameters of multiwall carbon nanotube/synthetic graphite/epoxy nanocomposites with respect to electrical conductivity
1 Department of Mechanical Engineering, Universitas Bung Hatta, 25143 Padang, West Sumatera-Indonesia
2 Department of Industrial Engineering, Universitas Ekasakti, 25133 Padang, West Sumatera-Indonesia
Received: , Accepted: , Published:
Keywords: compression moulding parameters; electrical conductivity; bipolar plate; Taguchi method
Citation: Hendra Suherman, Irmayani. Optimization of compression moulding parameters of multiwall carbon nanotube/synthetic graphite/epoxy nanocomposites with respect to electrical conductivity. AIMS Materials Science, 2019, 6(4): 621-634. doi: 10.3934/matersci.2019.4.621
References:
-
1. Hermann A, Chaudhuri T, Spagnol P (2005) Bipolar plates for PEM fuel cells: a review. Int J Hydrogen Energ 30: 1297–1302.
-
2. Kamarudin SK, Daud WRW, Som AM, et al. (2006) Technical design and economic evaluation of a PEM fuel cell system. J Power Sources 157: 641–649.
-
3. Kishi H, Kuwata M, Matsuda S, et al. (2004) Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites. Compos Sci Technol 64: 2517–2523.
-
4. Liao SH, Yen CY, Weng CC, et al. (2008) Preparation and properties of carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 185: 1225–1232.
-
5. Rybak A, Boiteux G, Melis F, et al. (2010) Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices. Compos Sci Technol 70: 410–416.
-
6. Dweiri R, Suherman H, Sulong AB, et al. (2018) Structure-property-processing investigation of electrically conductive polypropylene nanocomposites. Sci Eng Compos Mater 25: 1177–1186.
- 7. Dweiri R (2015) The Potential of Using Graphene Nanoplatelets for Electrically Conductive Compression-Molded Plates. Jordan J Mech Ind Eng 9: 1–8.
- 8. Suherman H, Sulong AB, Zakaria MY, et al. (2018) Electrical conductivity and physical changes of functionalized carbon nanotubes/graphite/staniless steel (SS316L)/polyprophelene composites immersed in an acidic solution. Songklanakarin J Sci Technol 40: 105–112.
- 9. Suherman H, Duskiardi, Suardi A, et al. (2019) Enhance the electrical conductivity and tensile strength of conductive polymer composites using hybrid conductive filler. Songklanakarin J Sci Technol 41: 174–180.
-
10. Suherman H, Mahyoedin Y, Septe E, et al. (2019) Properties of graphite/epoxy composites: the in-plane conductivity, tensile strength and Shore hardness. AIMS Mater Sci 6: 165–173.
-
11. Lee JH, Jang YK, Hong CE, et al. (2009) Effect of carbon fillers on properties of polymer composite bipolar plates of fuel cells. J Power Sources 193: 523–529.
-
12. Hu N, Masuda Z, Yamamoto G, et al. (2008) Effect of fabrication process on electrical properties of polymer/multi-wall carbon nanotube nanocomposite. Compos Part A-Appl S 39: 893–903.
- 13. Suherman H, Sahari J, Sulong AB (2011) Electrical properties of carbon nanotubes-based epoxy nanocomposites for high electrical conductive plate. Adv Mater Res 264–265: 559–564.
-
14. Suherman H, Sulong AB, Sahari J (2013) Effect of the compression molding parameters on the in-plane and through-plane conductivity of carbon nanotubess/graphite/epoxy nanocomposites as bipolar plate material for a polymer electrolyte membrane fuel cell. Ceram Int 39: 1277–1284.
-
15. Yi XS, Wu G, Ma D (1998) Property balancing for polyethylene-based carbon black-filled conductive composites. J Appl Polym Sci 67: 131–138.
-
16. Du C, Ming P, Hou M, et al. (2010) Preparation and properties of thin epoxy/compressed expanded graphite composite bipolar plates for proton exchange membrane fuel cells. J Power Sources 195: 794–800.
-
17. San FGB, Okur O (2017) The effect of compression molding parameters on the electrical and physical properties of polymer composite bipolar plates. Int J Hydrogen Energ 42: 23054–23069.
-
18. Akhtar MN, Sulong AB, Umer A, et al. (2018) Multi-component MWCNT/NG/EP-based bipolar plates with enhanced mechanical and electrical characteristics fabricated by compression moulding. Ceram Int 44: 14457–14464.
- 19. Selamat MZ, Sahari J, Muhamad N, et al. (2011) Simultaneous optimization for multiple responses on the compression moulding parameters of composite graphite–polypropylene using Taguchi method. Key Eng Mater 471–472: 361–366.
-
20. Sulong AB, Park J, Azhari CH, et al. (2011) Process optimization of melt spinning and mechanical strength enhancement of functionalized multi-walled carbon nanotubes reinforcing polyethylene fibers. Compos Part B-Eng 42: 11–17.
-
21. Chang CY, Huang R, Lee PC, et al. (2011) Application of a weighted Grey-Taguchi method for optimizing recycled aggregate concrete mixtures. Cement Concrete Comp 33: 1038–1049.
-
22. Liu YT, Chang WC, Yamagata YA (2010) A study on optimal compensation cutting for an aspheric surface using the Taguchi method. CIRP J Manuf Sci Tec 3: 40–48.
-
23. Lin JL, Wang KS, Yan BH, et al. (2000) Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics. J Mater Process Tech 102: 48–55.
-
24. Wang Y, Northwood DO (2008) Optimization of the polypyrrole-coating parameters for proton exchange membrane fuel cell bipolar plates using the Taguchi method. J Power Sources 185: 226–232.
-
25. Nalbant M, Gokkaya H, Sur G (2007) Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Mater Design 28: 1379–1385.
-
26. Das NC, Chaki TK, Khastgir D (2002) Effect of processing parameters, applied pressure and temperature on the electrical resistivity of rubber-based conductive composites. Carbon 40: 807–816.
- 27. Roy RK (2001) Design of experiments using the Taguchi approach: 16 steps to product and process improvement, New York: John Willey & Sons.
- 28. Roberts MJ, Russo R (1999) A Student's Guide to Analysis of Variance, New York, USA: Routledge.
-
29. Antunes RA, De Oliveira MCL, Ett G, et al. (2011) Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. J Power Sources 196: 2945–2961.
-
30. Boey FYC, Lye SW (1992) Void reduction in autoclave processing of thermoset composites: Part 2: Void reduction in a microwave curing process. Composites 23: 266–270.
-
31. Bin Z, Bingchu M, Chunhui S, et al. (2006) Study on the electrical and mechanical properties of polyvinylidene fluroide/titanium silicon carbide composite bipolar plates. J Power Sources 161: 997–1001.
-
32. Hui C, Hong-bo L, Li Y, et al. (2010) Study on the preparation and properties of novolac epoxy/graphite composite bipolar plate for PEMFC. Int J Hydrogen Energ 35: 3105–3109.
-
33. Zakaria MZ, Suherman H, Sahari J, et al. (2013) Effect of mixing parameters on electrical conductivity of carbon black/graphite/epoxy nanocomposite using Taguchi method. Appl Mech Mater 393: 68–73.
-
34. Ma PC, Liu MY, Zhang H, et al. (2009) Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl Mater Inter 1: 1090–1096.
-
35. Dweiri R, Suherman H, Sulong AB, et al. (2018) Structure-property-processing investigation of electrically conductive polypropylene nanocomposites. Sci Eng Compos Mater 25: 1177–1186.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *