Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Optimization of active-layer thickness, top electrode and annealing temperature for polymeric solar cells

1 Department of Physics, Abdul Wali Khan University, Mardan 23200, Khyber Pukhtunkhwa, Pakistan
2 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China
3 National Centre for Physics, 44000, Islamabad, Pakistan

Topical Section: Materials Characterization

Organic solar cells, processed from solution at various optimizing device parameters, were investigated. The device’s active-layer film-thicknesses were optimized while depositing at different spin speeds where 120-nm-thick layer (D2) gives maximum power conversion efficiency of 2.9%, annealed at 165 °C. The reason is ascribed as sufficient light absorption, excitons dissociation/diffusion and carriers transportation. In the case of Ca/Al, being as a top electrode rather than LiF/Al and Al, substantial efficiency enhancement, from 1.70% to 2.78%, was obtained at low temperature, 130 °C, providing ease for charge collection and pertaining conductive nature of increased resistivity at high temperature.
  Article Metrics

Keywords polymeric solar cells; solution processed; spin coating; active-layer thicknesses; top-metal electrodes; thermal annealing

Citation: Said Karim Shah, Jahangeer Khan, Irfan Ullah, Yaqoob Khan. Optimization of active-layer thickness, top electrode and annealing temperature for polymeric solar cells. AIMS Materials Science, 2017, 4(3): 789-799. doi: 10.3934/matersci.2017.3.789


  • 1. Yu G, Gao J, Hummelen JC, et al. (1995) Polymer photovoltiac cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270: 1789.    
  • 2. Halls J, Walsh C, Greenham N, et al. (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376: 498.    
  • 3. Ma W, Yang C, Gong X, et al. (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15: 1617–1622.    
  • 4. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-Fullerene bulk-heterojunction solar cells. Adv Mater 21: 1323–1338.    
  • 5. Xie Y, Zabihi F, Eslamian M (2016) Fabrication of highly reproducible polymer solar cells using ultrasonic substrate vibration posttreatment. J Photon Energy 6: 045502–045502.    
  • 6. Zabihi F, Chen Q, Xie Y, et al. (2016) Fabrication of efficient graphene-doped polymer/fullerene bilayer organic solar cells in air using spin coating followed by ultrasonic vibration post treatment. Superlattice Microst 100: 1177–1192.    
  • 7. Anderson TE, Köse ME (2016) Impact of solution casting temperature on power conversion efficiencies of bulk heterojunction organic solar cells. J Photoch Photobio A 318: 51–55.    
  • 8. Oklobia O, Shafai T (2013) A quantitative study of the formation of PCBM clusters upon thermal annealing of P3HT/PCBM bulk heterojunction solar cell. Sol Energ Mat Sol C 117: 1–8.    
  • 9. Vanlaeke P, Swinnen A, Haeldermans I, et al. (2006) P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro-optical characteristics. Sol Energ Mat Sol C 90: 2150–2158.    
  • 10. Oklobia O, Shafai T (2013) A study of donor/acceptor interfaces in a blend of P3HT/PCBM solar cell: Effects of annealing and PCBM loading on optical and electrical properties. Solid State Electron 87: 64–68.    
  • 11. Wang Q, Xie Y, Soltani-Kordshuli F, et al. (2016) Progress in emerging solution-processed thin film solar cells-Part I: polymer solar cells. Renew Sustain Ener Rev 56: 347–361.    
  • 12. Reyes-Reyes M, Kim K, Carroll DL (2005) High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends. Appl Phys Lett 87: 083506.    
  • 13. Reyes-Reyes M, Kim K, Dewald J, et al. (2005) Meso-structure formation for enhanced organic photovoltaic cells. Org Lett 7: 5749–5752.    
  • 14. Li G, Shrotriya V, Huang J, et al. (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4: 864–868.    
  • 15. Service R (2011) Solar energy. Outlook brightens for plastic solar cells. Science 332: 293.
  • 16. Li G, Shrotriya V, Yao Y, et al. (2005) Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J Appl Phys 98: 043704.    
  • 17. Moulé AJ, Bonekamp JB, Meerholz K (2006) The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells. J Appl Phys 100: 094503.    
  • 18. Nam YM, Huh J, Jo WH (2010) Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells. Sol Energ Mat Sol C 94: 1118–1124.    
  • 19. Kirchartz T, Agostinelli T, Campoy-Quiles M, et al. (2012) Understanding the thickness-dependent performance of organic bulk heterojunction solar cells: the influence of mobility, lifetime, and space charge. J Phys Chem Lett 3: 3470–3475.    
  • 20. Rim SB, Fink RF, Schöneboom JC, et al. (2007) Effect of molecular packing on the exciton diffusion length in organic solar cells. Appl Phys Lett 91: 173504.    
  • 21. O'Connor B, An KH, Pipe KP, et al. (2006) Enhanced optical field intensity distribution in organic photovoltaic devices using external coatings. Appl Phys Lett 89: 233502.    
  • 22. Breyer C, Vogel M, Mohr M, et al. (2006) Influence of exciton distribution on external quantum efficiency in bilayer organic solar cells. Phys Status Solidi B 243: 3176–3180.    
  • 23. Chang CC, Lin CF, Chiou JM, et al. (2010) Effects of cathode buffer layers on the efficiency of bulk-heterojunction solar cells. Appl Phys Lett 96: 263506.    
  • 24. Vogel M, Doka S, Breyer C, et al. (2006) On the function of a bathocuproine buffer layer in organic photovoltaic cells. Appl Phys Lett 89: 163501.    
  • 25. Jiang X, Xu H, Yang L, et al. (2009) Effect of CsF interlayer on the performance of polymer bulk heterojunction solar cells. Sol Energ Mat Sol C 93: 650–653.    
  • 26. Wang Y, Yang L, Yao C, et al. (2011) Enhanced performance and stability in polymer photovoltaic cells using lithium benzoate as cathode interfacial layer. Sol Energ Mat Sol C 95: 1243–1247.    
  • 27. Abachi T, Cattin L, Louarn G, et al. (2013) Highly flexible, conductive and transparent MoO3/Ag/MoO3 multilayer electrode for organic photovoltaic cells. Thin Solid Films 545: 438–444.    
  • 28. Zhao SH, Chang JK, Fang JJ, et al. (2013) Efficiency enhancement caused by using LiF to change electronic structures in polymer photovoltaics. Thin Solid Films 545: 361–364.    
  • 29. Brabec CJ, Shaheen SE, Winder C, et al. (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett 80: 1288–1290.    
  • 30. Zhao C, Qiao X, Chen B, et al. (2013) Thermal annealing effect on internal electrical polarization in organic solar cells. Org Electron 14: 2192–2197.    
  • 31. Yazawa K, Inoue Y, Yamamoto T, et al. (2006) Twist glass transition in regioregulated poly(3-alkylthiophene). Phys Rev B 74: 094204.    
  • 32. Kim K, Liu J, Namboothiry MA, et al. (2007) Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Appl Phys Lett 90: 163511.    
  • 33. Sariciftci NS, Smilowitz L, Heeger AJ, et al. (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258: 1474–1476.    
  • 34. Brabec CJ, Gowrisanker S, Halls JJ, et al. (2010) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 22: 3839–3856.    
  • 35. Park SH, Roy A, Beaupré S, et al. (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3: 297–302.    
  • 36. Shah SK, Abbas M, Ali M, et al. (2013) Optimal construction parameters of electrosprayed trilayer organic photovoltaic devices. J Phys D Appl Phys 47: 045106.
  • 37. Ali M, Abbas M, Shah SK, et al. (2012) Realization of solution processed multi-layer bulk heterojunction organic solar cells by electro-spray deposition. Org Electron 13: 2130–2137.    
  • 38. Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers, Oxford University Press on Demand.
  • 39. Bertho S, Janssen G, Cleij TJ, et al. (2008) Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer: fullerene solar cells. Sol Energ Mat Sol C 92: 753–760.    
  • 40. Jørgensen M, Norrman K, Gevorgyan SA, et al. (2012) Stability of polymer solar cells. Adv Mater 24: 580–612.    
  • 41. Hong J, Kim YJ, Kim YH, et al. (2016) Thermally Stable Dibenzo[def,mno]chrysene-Based Polymer Solar Cells: Effect of Thermal Annealing on the Morphology and Photovoltaic Performances. Macromol Chem Phys 217: 2116–2124.    


This article has been cited by

  • 1. Irfan Ullah, Said Karim Shah, Sartaj Wali, Khizar Hayat, Shaukat Ali Khattak, Aurangzeb Khan, Enhanced efficiency of organic solar cells by using ZnO as an electron-transport layer, Materials Research Express, 2017, 4, 12, 125505, 10.1088/2053-1591/aa9dc9
  • 2. Said Karim Shah, Khizar Hayat, Kashif Ali, Effect of TiO2 interlayer on the performance of inverted polymeric solar cells, Materials Research Express, 2019, 6, 6, 065102, 10.1088/2053-1591/ab0a93
  • 3. W. Abdelaziz, A. Shaker, M. Abouelatta, A. Zekry, Possible efficiency boosting of non-fullerene acceptor solar cell using device simulation, Optical Materials, 2019, 91, 239, 10.1016/j.optmat.2019.03.023
  • 4. Z. Abada, A. Mellit, M. Benghanem, Influence of blend composition and annealing temperature on optical properties of organic photovoltaic cell based on P3HT:PCBM interpenetrating blend, International Journal of Green Energy, 2019, 1, 10.1080/15435075.2019.1700124
  • 5. Said Karim Shah, Roberto Gunnella, Efficient Method of Fabricating Polymeric Solar Cells in Multilayered Configuration Using Electrospray, Journal of Electronic Materials, 2019, 10.1007/s11664-019-07866-4
  • 6. Genevieve Tadeson, Ribal Georges Sabat, Enhancement of the Power Conversion Efficiency of Organic Solar Cells by Surface Patterning of Azobenzene Thin Films, ACS Omega, 2019, 10.1021/acsomega.9b02844
  • 7. S K Shah, Fabrication of bulk heterojunction organic solar cells with different configurations using electrospray, Nano Express, 2020, 1, 2, 020037, 10.1088/2632-959X/aba685

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Said Karim Shah, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved