Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Thermal degradation and crystallization characteristics of multiphase polymer systems with and without compatibilizer

1 Department of Chemistry, Government College Kottayam, Kerala, India-686013;
2 Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Cochin, Kerala, India-682022;
3 Research and Postgraduate Department of Chemistry, St. Berchmans College, Changanassery, Kottayam, Kerala, India-686101;
4 Corporate Research and Development Centre, HLL Lifecare Ltd., Akkulam, Sreekariyam P.O., Thiruvananthapuram, Kerala, India-695017;
5 Centre for Nanoscience and Nanotechnology, School of Chemical Sciences, Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, Kerala, India-686560

Topical Section: Thin films, surfaces and interfaces

Effects of blend composition and compatibilizer concentration on the thermal degradation and crystallization characteristics of polyolefin blends are reported. Phase morphology and therefore, blend composition played a crucial role in the thermal degradation behaviour of the blends. Although compatibilization significantly improved the thermal stability of the blends, melting and crystallization parameters of the polymers were only marginally affected. Compatibilized blends with co-continuous morphology exhibited a type of “co-degradation” and “co-crystallization”.
  Article Metrics

Keywords compatibilization; thermal degradation; crystallization behaviour; co-degradation; co-crystallization

Citation: Seno Jose, Jyotishkumar Parameswaranpillai, Bejoy Francis, Abi Santhosh Aprem, Sabu Thomas. Thermal degradation and crystallization characteristics of multiphase polymer systems with and without compatibilizer. AIMS Materials Science, 2016, 3(3): 1177-1198. doi: 10.3934/matersci.2016.3.1177


  • 1. Clough RL, Billingham NC, Gillen KT (1996) Polymer durability, degradation, stabilization and lifetime prediction, Eds. American Chemical Society, Washington DC.
  • 2. Varghese H, Bhagavan SS, Thomas S (2001) Thermogravimetric analysis and thermal ageing of crosslinked nitrile rubber/poly(ethylene-co-vinyl acetate) blends. J Therm Analy Calor 63: 749-763.
  • 3. Stephen R, Jose S, Joseph K, et al. (2006) Thermal stability and ageing properties of sulphur and gamma radiation vulcanized natural rubber (NR) and carboxylated styrene butadiene rubber (XSBR) latices and their blends. Polym Degrad Stab 91: 1717-1725.    
  • 4. Stephen R, Siddique AM, Singh F, et al. (2007) Thermal degradation and ageing behavior of microcomposites of natural rubber, carboxylated styrene butadiene rubber latices, and their blends. J Appl Polym Sci 105: 341-351.
  • 5. Komalan C, George KE, Varughese KT, et al. (2008) Thermogravimetric and wide angle X-ray diffraction analysis of thermoplastic elastomers from nylon copolymer and EPDM rubber. Polym Degrad Stab 93: 2104-2112.
  • 6. Thomas R, Yumei D, Yuelong H, et al. (2008) Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer 49: 278-294.    
  • 7. Johns J, Rao V (2009) Thermal stability, morphology, and X-ray diffraction studies of dynamically vulcanized natural rubber/chitosan blends. J Mater Sci 44: 4087-4094.    
  • 8. Singh G, Bhunia H, Rajor A, et al. (2011) Thermal properties and degradation characteristics of polylactide, linear low density polyethylene, and their blends. Polym Bull 66: 939-953.    
  • 9. Mofokeng JP, Luyt AS (2015) Morphology and thermal degradation studies of melt-mixed poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. Polym Test 45: 93-100.    
  • 10. Asaletha R, Kumaran MG, Thomas S (1998) Thermal behaviour of natural rubber/polystyrene blends: thermogravimetric and differential scanning calorimetric analysis. Polym Degrad Stab 61: 431-439.    
  • 11. George S, Varughese KT, Thomas S (2000) Thermal and crystallization behaviour of isotactic polypropylene/nitrile rubber blends. Polymer 41: 5485-5503.
  • 12. OOmmen Z, Groeninckx G, Thomas S (2000) Dynamic mechanical and thermal properties of physically compatibilized natural rubber/poly(methyl methacrylate) blends by the addition of natural rubber-graft- poly(methyl methacrylate). J Polym Sci B Polym Phys 38: 525-536.
  • 13. Jose S, Thomas S, Biju PK, et al. (2008) Thermal degradation and crystallization studies of reactively compatibilized polymer blends. Polym Degrad Stab 93: 1176-1187.    
  • 14. Borah JS, Chaki TK (2011) Thermogravimetric and dynamic mechanical analysis of LLDPE/EMA blends. J Therm Anal Calorim 105: 365-373.    
  • 15. Kannan M, Bhagawan SS, Thomas S, et al. (2012) Thermogravimetric analysis and differential scanning calorimetric studies on nanoclay-filled TPU/PP blends. J Therm Anal Calorim 112: 1231-1244.
  • 16. Yousfi M, Livi S, Dumas A, et al. (2015) Ionic compatibilization of polypropylene/polyamide 6 blends using an ionic liquids/nanotalc filler combination: morphology, thermal and mechanical properties. RSC Adv 5: 46197-46205.
  • 17. Jose S, Aprem AS, Francis B, et al. (2004) Phase morphology, crystallization behaviour and mechanical properties of isotactic polypropylene/high density polyethylene blends. Eur Polym J 40: 2105-2115.    
  • 18. Moly KA, Radusch HJ, Androsh R, et al. (2005) Non-isothermal crystallization, melting behaviour and wide angle X-ray scattering investigations on linear low density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends: effects of compatibilization and dynamic crosslinking. Eur Polym J 41: 1410-1419.    
  • 19. Costa HMD, Ramos VD (2008) Analysis of thermal properties and rheological behavior of LLDPE/EPDM and LLDPE/EPDM/SRT mixtures. Polym Test 27: 27-34.    
  • 20. Chen H, Pyda M, Cebe P (2009) Non-isothermal crystallization of PET/PLA blends. Thermochimica Acta 492: 61-66.    
  • 21. Joseph A, Luftl S, Seidler S, et al. (2009) Non-isothermal thermophysical evaluation of polypropylene/natural rubber based TPEs: effect of blend ratio and dynamic vulcanization. Polym Eng Sci 49: 1332-1339.    
  • 22. Borah JS, Chaki TK (2011) Dynamic mechanical, thermal, physico-mechanical and morphological properties of LLDPE/EMA blends. J Polym Res 18: 569-578.    
  • 23. Buccella M, Dorigato A, Pasqualini E, et al. (2012) Thermo-mechanical properties of polyamide 6 chemically modified by chain extension with polyamide/polycarbonate blend. J Polym Res 19: 1-9.    
  • 24. Madi NK (2013) Thermal and mechanical properties of injection molded recycled high density polyethylene blends with virgin isotactic polypropylene. Mater Design 46: 435-441.
  • 25. Chen R, Zou W, Wu C, et al. (2014) Poly(lactic acid)/poly(butylene succinate)/calcium sulphate whiskers biodegradable blends prepared by vane extruder: analysis of mechanical properties, morphology, and crystallization behaviour. Polym Test 34: 1-9.    
  • 26. Razavi-Nouri M, Hay JN (2006) Isothermal crystallization and spherulite nucleation in blends of polypropylene with metallocene-prepared polyethylene. Polym Int 55: 6-11.    
  • 27. Jose S, Thomas PS, Thomas S, et al. (2006) Thermal and crystallization behaviours of blends of polyamide 12 with styrene-ethylene/butylene-styrene rubbers. Polymer 47: 6328-6336.
  • 28. Xu C, Yuan D, Fu L, et al. (2014) Physical blend of PLA/NR with co-continuous phase structure: Preparation, rheology property, mechanical properties and morphology. Polym Test 37: 94-101.    
  • 29. Joseph A, George S, Joseph K, et al. (2006) Melting and crystallization behaviors of isotactic polypropylene/acrylonitrile-butadiene rubber blends in the presence and absence of compatibilizers and fillers. J Appl Polym Sci 102: 2067-2080.    
  • 30. Svoboda P, Svobodova D, Slobodian P, et al. (2009) Crystallization kinetics of polypropylene/ethylene-octane copolymer blends. Polym Test 28: 215-222.    
  • 31. Aravind I, Boumod A, Grohens Y, et al. (2010) Morphology, dynamic mechanical, thermal, and crystallization behaviors of poly(trimethylene terephthalate)/polycarbonate blends. Ind Eng Chem Res 49: 3873-3882.    
  • 32. Xie X, Bai W, Wu A, et al. (2014) Increasing the compatibility of poly(L-lactide)/poly(para-dioxanone) blends through the addition of poly(para-dioxanone-co-L-lactide). J Appl Polym Sci 132.
  • 33. Marco C, Ellis G, Gomez MA, et al. (1997) Rheological properties, crystallization, and morphology of compatibilized blends of isotactic polypropylene and polyamide. J Appl Polym Sci 65: 2665-2677.
  • 34. Sato H, Katsumoto Y, Sasao S, et al. (2002) Raman, X-ray diffraction and differential scanning calorimetry studies of the melt-induced changes in uncompatibilized and compatibilized blends of high-density polyethylene and nylon 12. Macromol Symp 184: 339-348.
  • 35. Dou R, Wang W, Zhou Y, et al. (2013) Effect of core-shell morphology evolution on the rheology, crystallization, and mechanical properties of PA6/EPDM-g-MA/HDPE ternary blend. J Appl Polym Sci 129: 253-262.    
  • 36. Choudhary V, Varma HS, Varma IK (1991) Polyolefin blends: effect of EPDM rubber on crystallization, morphology and mechanical properties of polypropylene/EPDM blends. Polymer 32: 2534-2540.    
  • 37. Lin Z, Chen C, Li B, et al. (2012) Compatibility, morphology, and crystallization behavior of compatibilized β-nucleated polypropylene/poly(trimethylene terephthalate) blends. J Appl Polym Sci 125: 1616-1624.    
  • 38. Zhu Y, Liang C, Bo Y, et al. (2015) Non-isothermal crystallization behavior of compatibilized polypropylene/recycled polyethylene terephthalate blends. J Therm Anal Calorim 119: 2005-2013.    
  • 39. Rastin H, Saeb MR, Jafari SH, et al. (2015) Reactive compatibilization of ternary polymer blends with core-shell type morphology. Macromol Mater Engg 300: 86-98.    
  • 40. Parameswaranpillai J, Joseph G, Jose S, et al. (2015) Phase morphology, thermomechanical, and crystallization behaviour of uncompatibilized and PP-g-MAH compatibilized polypropylene/polystyrene blends. J Appl Polym Sci 132.
  • 41. Ponnamma D, George J, Thomas MG, et al. (2015) Investigation on the thermal and crystallization behavior of high density polyethylene/acrylonitrile butadiene rubber blends and their composites. Polym Eng Sci 55: 1203-1210.    
  • 42. Doyle CD (1961) Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal Chem 33: 77-79.    
  • 43. Jose S, Thomas S, Biju PK, et al. (2013) Mechanical and dynamic mechanical properties of polyolefin blends: effect of blend ratio and copolymer monomer fraction on the compatibilization efficiency of random copolymers. J Polym Res 20: 1-13.
  • 44. Horowitz HH, Metzger G (1963) A new analysis of thermo gravimetric traces. Anal Chem 35: 1464-1468.    
  • 45. Li C, Tian G, Zhang Y, et al. (2002) Crystallization behavior of polypropylene/polycarbonate blends. Polym Test 21: 919-926.    
  • 46. Wong CY, Lam F (2002) Study of selected thermal characteristics of polypropylene/polyethylene binary blends using DSC and TGA. Polym Test 21: 691-696.    
  • 47. Dangseeyun N, Supaphol P, Nithitanakul M (2004) Thermal, crystallization, and rheological characteristics of poly(trimethylene terephthalate)/poly(butylene terephthalate) blends. Polym Test 23: 187-194.    
  • 48. Joseph A, Koch T, Seidler S, et al. (2008) Crystallization behavior and spherulite growth rate of isotactic polypropylene in isotactic polypropylene/natural rubber based thermoplastic elastomers. J Appl Polym Sci 109: 1714-1721.    
  • 49. Rosa DS, Grillo D, Bardi MAG, et al. (2009) Mechanical, thermal and morphological characterization of polypropylene/biodegradable polyester blends with additives. Polym Test 28: 836-842.    


This article has been cited by

  • 1. M.P. Drupitha, Kinsuk Naskar, Golok B. Nando, Compatibilized TPU-PDMS blends: Pros and cons of melt mixing and solution mixing techniques, Journal of Applied Polymer Science, 2017, 10.1002/app.45164
  • 2. Honita Ramphul, Archana Bhaw-Luximon, Dhanjay Jhurry, Sugar-cane bagasse derived cellulose enhances performance of polylactide and polydioxanone electrospun scaffold for tissue engineering, Carbohydrate Polymers, 2017, 10.1016/j.carbpol.2017.09.046
  • 3. Jingjing Tang, Lingling Li, Xiaomin Wang, Jinjun Yang, Xueqing Liang, Yuqin Li, Huimin Ma, Shanshan Zhou, Junsheng Wang, Tailored crystallization behavior, thermal stability, and biodegradability of poly(ethylene adipate): Effects of a biocompatible diamide nucleating agent, Polymer Testing, 2020, 81, 106116, 10.1016/j.polymertesting.2019.106116
  • 4. Siti Zaharah Kunchimon, Muhammad Tausif, Parikshit Goswami, Vien Cheung, From hybrid fibers to microfibers: The characteristics of polyamide 6/polypropylene blend via one‐step twin‐screw melt extrusion, Polymer Engineering & Science, 2020, 10.1002/pen.25327
  • 5. Ting An Lin, Jia-Horng Lin, Limin Bao, A Study of Reusability Assessment and Thermal Behaviors for Thermoplastic Composite Materials After Melting Process: Polypropylene/ Thermoplastic Polyurethane Blends, Journal of Cleaner Production, 2020, 123473, 10.1016/j.jclepro.2020.123473

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Seno Jose, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved