
Mathematical Biosciences and Engineering, 2019, 16(6): 75897615. doi: 10.3934/mbe.2019381.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Parameter regions that give rise to 2[n/2] +1 positive steady states in the nsite phosphorylation system
1 Dto. de Matemática, FCEN, Universidad de Buenos Aires, and IMAS (UBACONICET), Ciudad Universitaria, Pab. I, C1428EGA Buenos Aires, Argentina
2 Instituto de Matemática e Computação, IMC, Universidade Federal de Itajubá (UNIFEI), Av. BPS 1303, Bairro Pinheirinho, 37500903, Itajubá, Minas Gerais, Brazil
† The authors contributed equally to this work.
Received: , Accepted: , Published:
Special Issues: Mathematical analysis of reaction networks: theoretical advances and applications
Keywords: multistationarity; distributive sequential nsite phosphorylation/dephosphorylation system; steady states; regions of multistationarity; intermediate species
Citation: Magalí Giaroli, Rick Rischter, Mercedes P. Millán, Alicia Dickenstein. Parameter regions that give rise to 2[n/2] +1 positive steady states in the nsite phosphorylation system. Mathematical Biosciences and Engineering, 2019, 16(6): 75897615. doi: 10.3934/mbe.2019381
References:
 1. W. Lim, B. Meyer and T. Pawson, Cellular signaling: principles and mechanisms, Garland Science, 2014.
 2. A. Dickenstein, Biochemical reaction networks: an invitation for algebraic geometers, MCA 2013, Contemp. Math., 656 (2016), 65–83.
 3. N. I. Markevich, J. B. Hoek and B. N. Kholodenko, Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades, J. Cell Biol., 164 (2004), 353–359.
 4. L. Wang and E. Sontag, On the number of steady states in a multiple futile cycle, J. Math. Biol., 57 (2008), 29–52.
 5. J. Hell and A. D. Rendall, A proof of bistability for the dual futile cycle, Nonlinear AnalReal., 24 (2015), 175–189.
 6. C. Conradi, E. Feliu, M. Mincheva, et al., Identifying parameter regions for multistationarity, PLOS Computat. Biol., 13 (2017), e1005751.
 7. C. Conradi and M. Mincheva, Catalytic constants enable the emergence of bistability in dual phosphorylation, J. R. Soc. Interface, 11 (2014), 20140158.
 8. D. Flockerzi, K. Holstein and C. Conradi, Nsite phosphorylation systems with 2N1 steady states, Bull. Math. Biol., 76 (2014), 1892–1916.
 9. K. Holstein, D. Flockerzi and C. Conradi, Multistationarity in Sequential Distributed Multisite Phosphorylation Networks, Bull. Math. Biol., 75 (2013), 2028–2058.
 10. C. Conradi, A. Iosif and T. Kahle, Multistationarity in the space of total concentrations for systems that admit a monomial parametrization, T. Bull. Math. Biol., 2019, 1–36.
 11. M. Thomson and J. Gunawardena, Unlimited multistability in multisite phosphorylation systems, Nature, 460 (2009), 274.
 12. E. Feliu, A. D. Rendall and C. Wiuf, A proof of unlimited multistability for phosphorylation cycles, preprint, arXiv:1904.02983.
 13. F. Bihan, A. Dickenstein and M. Giaroli, Lower bounds for positive roots and regions of multistationarity in chemical reaction networks, J. Algebra, (2019), to appear.
 14. E. Feliu and C. Wiuf, Simplifying biochemical models with intermediate species, J. R. Soc. Interface, 10 (2013), 20130484.
 15. E. Feliu and A. Sadeghimanesh, The multistationarity structure of networks with intermediates and a binomial core network, B. Math. Biol., 81 (2019), 2428–2462.
 16. M. P. Millán and A. Dickenstein, The structure of MESSI biochemical networks, SIAM J. Appl. Dyn. Syst., 17 (2018), 1650–1682.
 17. A. G. Kušnirenko, Newton polyhedra and Bezout's theorem, Funkcional. Anal. i Priložen, 10 (1976), 82–83. English translation: Funct. Anal. Appl., 10 (1977), 233–235.
 18. A. Dickenstein, M. Giaroli, M. P. Millán, et al., Detecting the multistationarity structure in enzymatic networks, work in progress.
 19. F. Bihan, F. Santos and PJ. Spaenlehauer, A polyhedral method for sparse systems with many positive solutions, SIAM J. Appl. Algebra Geom., 2 (2018), 620–645.
 20. M. Giaroli, F. Bihan and A. Dickenstein, Regions of multistationarity in cascades of GoldbeterKoshland loops, J. Math. Biol., 78 (2019), 1115–1145.
 21. J. De Loera, J. Rambau and F. Santos, Triangulations: Structures for Algorithms and Applications, 2010, Series Algorithms and Computation in Mathematics, Springer, Berlin.
 22. W.A. Stein, et al., Sage Mathematics Software (Version 8.4), The Sage Development Team, 2018. Available from: http://www.sagemath.org.
 23. Maple 18 (2014) Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
 24. E. Feliu, On the reaction rate constants that enable multistationarity in the twosite phosphorylation cycle, preprint, arXiv:1809.07275.
 25. A. CornishBowden, Fundamentals of Enzyme Kinetics, 4th Ed., WileyBlackwell, 2012.
This article has been cited by:
 1. Frédéric Bihan, Alicia Dickenstein, Magalí Giaroli, Lower bounds for positive roots and regions of multistationarity in chemical reaction networks, Journal of Algebra, 2019, 10.1016/j.jalgebra.2019.10.002
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *