Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Ramp secret image sharing

1 National University of Defense Technology, Hefei 230037, China
2 Harbin University of Science and Technology, Harbin 150080, China

Special Issues: Information Multimedia Hiding & Forensics based on Intelligent Devices

Secret image sharing (SIS) belongs to but differs from secret sharing. In general, conventional (k,n) threshold SIS has the shortcoming of “all-or-nothing”. In this article, first we introduce ramp SIS definition. Then we propose a $(k_1,k_2,n)$ ramp SIS based on the Chinese remainder theorem (CRT). In the proposed scheme, on the one hand, when we collect any $k_1$ or more and less than $k_2$ shadows, the secret image will be disclosed in a progressive way. On the other hand, when we collect any $k_2$ or more shadows, the secret image will be disclosed losslessly. Furthermore, the disclosing method is only modular arithmetic, which can be used in some real-time applications. We give theoretical analyses and experiments to show the effectiveness of the proposed scheme.
  Figure/Table
  Supplementary
  Article Metrics

Keywords secret image sharing; ramp secret image sharing; Chinese remainder theorem; progressiveness; lossless recovery

Citation: Xuehu Yan, Longlong Li, Lintao Liu, Yuliang Lu, Xianhua Song. Ramp secret image sharing. Mathematical Biosciences and Engineering, 2019, 16(5): 4433-4455. doi: 10.3934/mbe.2019221

References

  • 1. Z. Qian, H. Xu, X. Luo, et al., New framework of reversible data hiding in encrypted jpeg bitstreams, IEEE Trans. Circuit Syst. Video Tech., 29 (2019), 351–362.
  • 2. Y. Zhang, C. Qin, W. Zhang, et al., On the fault-tolerant performance for a class of robust image steganography, Signal Process., 146 (2018), 99–111,
  • 3. A. Belazi and A. A. A. El-Latif, A simple yet efficient s-box method based on chaotic sine map, Optik-Int. J. Light Electron Opt., 130 (2017), 1438–1444.
  • 4. Y. Cheng, Z. Fu and B. Yu, Improved visual secret sharing scheme for qr code applications, IEEE Trans. Inf. Forensics Security., 13 (2018), 2393–2403.
  • 5. C. Kim, D. Shin, L. Leng, et al., Separable reversible data hiding in encrypted halftone image, Displays, 55 (2018), 71–79.
  • 6. Y. Ma, X. Luo, X. Li, et al., Selection of rich model steganalysis features based on decision rough set α -positive region reduction, IEEE Trans. Circuit Syst. Video Tech., 29 (2019), 336–350.
  • 7. G. Wang, F. Liu and W. Q. Yan, Basic visual cryptography using braille, Int. J. Digital Crime Forensics (IJDCF), 8 (2016), 85–93.
  • 8. X. Yan, S. Wang, X. Niu, et al., Generalized random grids-based threshold visual cryptography with meaningful shares, Signal Process., 109 (2015), 317–333.
  • 9. A. Shamir, How to share a secret, Commun. ACM, 22 (1979), 612–613.
  • 10. M. Naor and A. Shamir, Visual cryptography, in Advances in Cryptology-EUROCRYPT'94 Lecture Notes in Computer Science, Workshop on the Theory and Application of Cryptographic Techniques, (A DeSantis), Springer, 1995, 1–12.
  • 11. L. Liu, Y. Lu, X. Yan, et al., A progressive threshold secret image sharing with meaningful shares for gray-scale image, in Mobile Ad-Hoc and Sensor Networks (MSN), 2016 12th International Conference on, IEEE, 2016, 380–385.
  • 12. W. Ding, K. Liu, X. Yan, et al., Polynomial-based secret image sharing scheme with fully lossless recovery, Int. J. Digital Crime Forensics (IJDCF), 10 (2018), 120–136.
  • 13. L. Bao, S. Yi and Y. Zhou, Combination of sharing matrix and image encryption for lossless (k,n) -secret image sharing, IEEE Trans. Image Process., 26 (2017), 5618–5631.
  • 14. W. Ding, K. Liu, X. Yan, et al., A general (k,n) threshold secret image sharing construction based on matrix theory, Data Science: Third International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2017, Proceedings, Part I, (2017), 331–340.
  • 15. P. Li, Z. Liu and C. N. Yang, A construction method of (t,k,n)-essential secret image sharing scheme, Signal Process. Image Commun., 65 (2018), 210–220.
  • 16. Y. Liu and C. Yang, Scalable secret image sharing scheme with essential shadows, Signal Process. Image Commun., 58 (2017), 49–55.
  • 17. Y. Liu, C. Yang, Y. Wang, et al., Cheating identifiable secret sharing scheme using symmetric bivariate polynomial, Inf. Sci., 453 (2018), 21–29.
  • 18. X. Wu, C. N. Yang, Y. T. Zhuang, et al., Improving recovered image quality in secret image sharing by simple modular arithmetic, Signal Process. Image Commun., 66 (2018), 42–49.
  • 19. H. Chao and T. Fan, Generating random grid-based visual secret sharing with multi-level encoding, Signal Process. Image Commun., 57 (2017), 60–67.
  • 20. T. Guo and L. Zhou, Constructing visual cryptography scheme by hypergraph decomposition, Procedia Comput. Sci., 131 (2018), 336–343,
  • 21. Y. Ren, F. Liu, T. Guo, et al., Cheating prevention visual cryptography scheme using latin square, IET Inf. Secur., 11 (2017), 211–219.
  • 22. M. Sasaki and Y. Watanabe, Visual secret sharing schemes encrypting multiple images, IEEE Trans. Inf. Forensics Security, 13 (2018), 356–365.
  • 23. Z. Wang, G. R. Arce and G. Di Crescenzo, Halftone visual cryptography via error diffusion, IEEE Trans. Inf. Forensics Security, 4 (2009), 383–396.
  • 24. J. Weir and W. Yan, A comprehensive study of visual cryptography, in Transactions on DHMS V, LNCS 6010, Springer-Verlag, Springer, Berlin, Heidelberg, 2010, 70–105.
  • 25. Z. X. Fu and B. Yu, Visual cryptography and random grids schemes, in Digital-Forensics and Watermarking, Springer, Auckland, New Zealand, 2014, 109–122.
  • 26. F. Liu and C. Wu, Embedded extended visual cryptography schemes, IEEE Trans. Inf. Forensics Security, 6 (2011), 307–322.
  • 27. X. Wu and W. Sun, Visual secret sharing for general access structures by random grids, IET Inf. Secur., 6 (2012), 299–309.
  • 28. X. Yan, X. Liu and C. N. Yang, An enhanced threshold visual secret sharing based on random grids, J. Real-Time Image Proc., 14 (2018), 61–73.
  • 29. X. Yan and Y. Lu, Progressive visual secret sharing for general access structure with multiple decryptions, Multimed. Tools Appl., 77 (2018), 2653–2672.
  • 30. X. Yan, Y. Lu and L. Liu, General meaningful shadow construction in secret image sharing, IEEE Access, 6 (2018), 45246–45255.
  • 31. X. Yan, S. Wang and X. Niu, Threshold construction from specific cases in visual cryptography without the pixel expansion, Signal Process., 105 (2014), 389–398.
  • 32. C. N. Yang, C. C. Wu, et al., A discussion on the relationship between probabilistic visual cryptography and random grid, Inf. Sci., 278 (2014), 141–173.
  • 33. Y. C. Hou, Z. Y. Quan, C. F. Tsai, et al., Block-based progressive visual secret sharing, Inf. Sci., 233 (2013), 290–304.
  • 34. X. Yan and Y. Lu, Generalized general access structure in secret image sharing, J. Vis. Commun. Image Represent., 58 (2019), 89–101,
  • 35. S. K. Chen, Friendly progressive visual secret sharing using generalized random grids, Optical Engineer., 48 (2009), 117001–117001–7.
  • 36. W. P. Fang, Friendly progressive visual secret sharing, Pattern Recognit., 41 (2008), 1410–1414.
  • 37. C. P. Huang, C. H. Hsieh and P. S. Huang, Progressive sharing for a secret image, J. Syst. Softw., 83 (2010), 517–527.
  • 38. C.H.Lin, Y.S.Leeand T.H.Chen, Friendly progressive random-grid-basedvisualsecretsharing with adaptive contrast, J. Vis. Commun. Image Represent., 33 (2015), 31–41,
  • 39. G. R. Blakley and C. Meadows, Security of ramp schemes, Proc. Crypto, 196 (1984), 242–268.
  • 40. Q. Chen, D. Pei, C. Tang, et al., A note on ramp secret sharing schemes from error-correcting codes, Math. Com. Model., 57 (2013), 2695–2702.
  • 41. X. Gong, P. Hu, K. W. Shum, et al., A zigzag-decodable ramp secret sharing scheme, IEEETrans. Inf. Forensics Security., 13 (2018), 1906–1916.
  • 42. X. Jia, D. Wang, D. Nie, et al., A new threshold changeable secret sharing scheme based on thechinese remainder theorem, Inf. Sci., 473 (2019), 13–30,
  • 43. X. Yan, Y. Lu, L. Liu, et al., Chinese remainder theorem-based secret image sharing for (k, n)threshold, Cloud Computing and Security: Third International Conference, ICCCS 2017,RevisedSelected Papers, Part II, (2017), 433–440,
  • 44. C. Asmuth and J. Bloom, A modular approach to key safeguarding, IEEE Trans. Inf. Theory, 29(1983), 208–210.
  • 45. X. Yan, Y. Lu and L. Liu, A general progressive secret image sharing construction method, SignalProcess., Image Commun., 71 (2019), 66–75,
  • 46. C. Asmuth and J. Bloom, A modular approach to key safeguarding, IEEE Trans. Inf. Theory, 30(1983), 208–210.
  • 47. Z. Wang, A. C. Bovik, H. R. Sheikh, et al., Image quality assessment: from error visibility tostructural similarity, IEEE Trans. Image Process., 13 (2004), 600–612.
  • 48. Z. Wang and A. C. Bovik, A universal image quality index, IEEE Signal Process. Lett., 9 (2002),81–84.
  • 49. X. Yan, Y. Lu, H. Huang, et al., Clarity corresponding to contrast in visual cryptography, Social Computing: Second International Conference of Young Computer Scientists, Engineersand Educators, ICYCSEE 2016, Proceedings, Part I, (2016), 249–257.
  • 50. J. Huang, C. Wang and Y. Wang, A snr method of evaluating image quality based on the hvsmodel, J. HEBEI Uni. Sci. Tech., 23 (2002), 80–85.
  • 51. X. Yan, Y. Lu, L. Liu, et al., Random grids-based threshold visual secret sharing with improved visual quality, Digital Forensics and Watermarking: 15th International Workshop, IWDW 2016, Revised Selected Papers, (2016), 209–222.
  • 52. X. Zhou, Y. Lu, X. Yan, et al., Lossless and efficient polynomial-based secret image sharing with reduced shadow size, Symmetry, 10 (2018), 249.
  • 53. R. Z. Wang and C. H. Su, Secret image sharing with smaller shadow images, Pattern Recognit. Lett., 27 (2006), 551–555.

 

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved