
Mathematical Biosciences and Engineering, 2019, 16(3): 16251653. doi: 10.3934/mbe.2019078.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Global dynamics of an agestructured malaria model with prevention
1 College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, Peoples Republic of China
2 Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, Peoples Republic of China
Received: , Accepted: , Published:
Special Issues: Mathematical Modeling of MosquitoBorne Diseases
Keywords: Malaria model; prevention age; latent age; basic reproduction number; global stability
Citation: ZhongKai Guo, HaiFeng Huo, Hong Xiang. Global dynamics of an agestructured malaria model with prevention. Mathematical Biosciences and Engineering, 2019, 16(3): 16251653. doi: 10.3934/mbe.2019078
References:
 1. World Health Organization,World malaria report, 2016. Available from: http://www.who.int/ malaria/publications/worldmalariareport2016/en/.
 2. CDC. malaria, malaria worldwide, 2018. Available from: https://www.cdc.gov/malaria/ about/biology/index.html.
 3. R. Ross, The Prevention of Malaria, 2^{nd} edition, Murray, London, 1911.
 4. G. Macdonald, The epidemiology and control of malaria, Oxford University press, London, 1957.
 5. S. A. Gourley, R. Liu and J. Wu, Some vector borne diseases with structured host populations: Extinction and spatial spread, SIAM J. Appl. Math., 67 (2007), 408–433.
 6. Fatmawati and H. Tasman, An optimal control strategy to reduce the spread of malaria resistance, Math. Biosci., 262 (2015), 73–79.
 7. S. Ruan, D. Xiao and J. C. Beier, On the delayed RossMacdonald model for malaria transmission, B. Math. Biol., 70 (2008), 1098–1114.
 8. L. M. Cai, X. Z. Li, B. Fang, et al., Global properties of vector–host disease models with time delays, J. Math. Biol., 74 (2017), 1397–1423.
 9. J. Xu and Y. Zhou, Hopf bifurcation and its stability for a vectorborne disease model with delay and reinfection, Appl. Math. Model., 40 (2016), 1685–1702.
 10. Y. Lou and X. Q. Zhao, A climatebased malaria transmission model with structured vector population, SIAM J. Appl. Math., 70 (2010), 2023–2044.
 11. Y. X. Dang, Z. P. Qiu, X. Z. Li, et al., Global dynamics of a vectorhost epidemic model with age of infection, Math. Biosci. Eng., 14 (2017), 1159–1186.
 12. D. Gao and S. Ruan, A multipatch malaria model with logistic growth populations, SIAM J. Appl. Math., 72 (2012), 819–841.
 13. J. Li, Y. Zhao and S. Li, Fast and slow dynamics of malaria model with relapse, Math. Biosci., 246 (2013), 94–104.
 14. B. Cao, H. F. Huo and H. Xiang, Global stability of an agestructure epidemic model with imperfect vaccination and relapse, Physica A, 486 (2017), 638–655.
 15. X. Duan, S. Yuan and X. Li, Global stability of an SVIR model with age of vaccination, Appl. Math. Comput., 226 (2014), 528–540.
 16. H. Inaba and H. Sekine, A mathematical model for chagas disease with infectionagedependent infectivity, Math. Biosci., 190 (2004), 39–69.
 17. L.Wang, Z. Liu and X. Zhang, Global dynamics for an agestructured epidemic model with media impact and incomplete vaccination, Nonlinear Anal. RWA, 32 (2016), 136–158.
 18. H. Chen, W. Wang, R. Fu, et al., Global analysis of a mathematical model on malaria with competitive strains and immune responses, Appl. Math. Comput., 259 (2015), 132–152.
 19. H. Xiang, Y. L. Tang and H. F. Huo, A viral model with intracellular delay and humoral immunity, B. Malays. Math. Sci. So., 40 (2017), 1011–1023.
 20. H. F. Huo, F. F. Cui and H. Xiang, Dynamics of an SAITS alcoholism model on unweighted and weighted networks, Physica A, 496 (2018), 249–262.
 21. H. Xiang, Y. Y. Wang and H. F. Huo, Analysis of the binge drinking models with demographics and nonlinear infectivity on networks, J. Appl. Anal. Comput., 8 (2018), 1535–1554.
 22. Y. Cai, J. Jiao, Z. Gui, et al., Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329 (2018), 210–226.
 23. X. B. Zhang, Q. H. Shi, S. H. Ma, et al., Dynamic behavior of a stochastic SIQS epidemic model with Lévy jumps, Nonlinear Dynam., 93 (2018), 1481–1493.
 24. Z. Du and Z. Feng, Existence and asymptotic behaviors of traveling waves of a modified vectordisease model, Commun. pur. appl. anal., 17 (2018), 1899–1920.
 25. Malaria vaccine. Available from: https://en.wikipedia.org/wiki/Malaria_vaccine.
 26. G. Webb, Theory of nonlinear agedependent population dynamics, marcel dekker, New York, 1985.
 27. M. Iannelli, Mathematical theory of agestructured population dynamics, Giadini Editori e Stampatori, Pisa, 1994.
 28. H. L. Smith and H. R. Thieme, Dynamical systems and population persistence, American Mathematical Society, Providence, 2011.
 29. P. Magal and X. Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Appl. Math., 37 (2005), 251–275.
 30. E. M. C. D'Agata, P. Magal, S. Ruan, et al., Asymptotic behavior in nosocomial epidemic models with antibiotic resistance, Differ. Integral Equ., 19 (2006), 573–600.
 31. C. J. Browne and S. S. Pilyugin, Global analysis of agestructured withinhost virus model, Discrete Cont. Dyn. S. B, 18 (2013), 1999–2017.
 32. H. M. Wei, X. Z. Li and M. Martcheva, An epidemic model of a vectorborne disease with direct transmission and time delay, J. Math. Anal. Appl., 342 (2008), 895–908.
 33. J. Wang, J. Lang and X. Zou, Analysis of an age structured hiv infection model with virustocell infection and celltocell transmission, Nonlinear Anal. RWA, 34 (2017), 75–96.
 34. J. K. Hale and P. Waltman, Persistence in infinitedimensional systems, SIAM J. Appl. Math., 20 (1989), 388–395.
 35. Z. K. Guo, H. F. Huo, X. Hong, Bifurcation analysis of an agestructured alcoholism model, J. Biol. Dynam., 12 (2018), 1009–1033.
This article has been cited by:
 1. Zhe Yin, Yongguang Yu, Zhenzhen Lu, Stability Analysis of an AgeStructured SEIRS Model with Time Delay, Mathematics, 2020, 8, 3, 455, 10.3390/math8030455
 2. ShuangLin Jing, HaiFeng Huo, Hong Xiang, Modeling the Effects of Meteorological Factors and Unreported Cases on Seasonal Influenza Outbreaks in Gansu Province, China, Bulletin of Mathematical Biology, 2020, 82, 6, 10.1007/s11538020007476
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *