Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Delay induced spatiotemporal patterns in a diffusive intraguild predation model with Beddington-DeAngelis functional response

1. School of Science, Zhejiang University of Science & Technology, Hangzhou, 310023, China
2. School of Mathematics and Statistics, Central South University, Changsha, 410083, China
3. Department of Mathematics and Statistics, University of New Brunswick, Fredericton, E3B 5A3, Canada

A diffusive intraguild predation model with delay and Beddington-DeAngelis functional response is considered. Dynamics including stability and Hopf bifurcation near the spatially homogeneous steady states are investigated in detail. Further, it is numerically demonstrated that delay can trigger the emergence of irregular spatial patterns including chaos. The impacts of diffusion and functional response on the model's dynamics are also numerically explored.
  Article Metrics

Keywords Intraguild predation; delay; diffusion; Beddington-DeAngelis functional response; spatiotemporal dynamics; Hopf bifurcation; chaos

Citation: Renji Han, Binxiang Dai, Lin Wang. Delay induced spatiotemporal patterns in a diffusive intraguild predation model with Beddington-DeAngelis functional response. Mathematical Biosciences and Engineering, 2018, 15(3): 595-627. doi: 10.3934/mbe.2018027


  • [1] J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Spring-Verlag, New York, 2003.
  • [2] G. A. Polis,C. A. Myers,R. D. Holt, The ecology and evolution of intraguild predation: Potential competitors that each other, Ann. Rev. Ecol. Sys., 20 (1989): 297-330.
  • [3] M. H. Posey,A. H. Hines, Complex predator-prey interactions within an estuarine benthic community, Ecol., 72 (1991): 2155-2169.
  • [4] G. A. Polis,R. D. Holt, Intraguild predation: The dynamics of complex trophic interactions, Trends Ecol. Evol., 7 (1992): 151-154.
  • [5] R. D. Holt,G. A. Polis, A theoretical framework for intraguild predation, Am. Nat., 149 (1997): 745-764.
  • [6] M. Arim,P. A. Marquet, Intraguild predation: A widespread interaction related to species biology, Ecol. Let., 7 (2004): 557-564.
  • [7] P. Amarasekare, Trade-offs, temporal, variation, and species coexistence in communities with intraguild predation, Ecol., 88 (2007): 2720-2728.
  • [8] R. Hall, Intraguild predation in the presence of a shared natural enemy, Ecol., 92 (2011): 352-361.
  • [9] Y. S. Wang,D. L. DeAngelis, Stability of an intraguild predation system with mutual predation, Commun. Nonlinear Sci. Numer. Simulat., 33 (2016): 141-159.
  • [10] I. Velazquez,D. Kaplan,J. X. Velasco-Hernandez,S. A. Navarrete, Multistability in an open recruitment food web model, Appl. Math. Comp., 163 (2005): 275-294.
  • [11] S. B. Hsu,S. Ruan,T. H. Yang, Analysis of three species Lotka-Volterra food web models with omnivory, J. Math. Anal. Appl., 426 (2015): 659-687.
  • [12] P. A. Abrams,S. R. Fung, Prey persistence and abundance in systems with intraguild predation and type-2 functional response, J. Theor. Biol., 264 (2010): 1033-1042.
  • [13] A. Verdy,P. Amarasekare, Alternative stable states in communities with intraguild predatiion, J. Theor. Biol., 262 (2010): 116-128.
  • [14] M. Freeze,Y. Chang,W. Feng, Analysis of dynamics in a complex food chain with ratio-dependent functional response, J. Appl. Anal. Comput., 4 (2014): 69-87.
  • [15] Y. Kang,L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator, J. Math. Biol., 67 (2013): 1227-1259.
  • [16] H. I. Freedman,V. S. H. Rao, Stability criteria for a system involving two time delays, SIAM J. Appl. Math., 46 (1986): 552-560.
  • [17] G. S. K. Wolkowicz,H. X. Xia, Global asymptotic behavior of chemostat model with discrete delays, SIAM J. Appl. Math., 57 (1997): 1019-1043.
  • [18] Y. L. Song,M. A. Han,J. J. Wei, Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays, Physica D, 200 (2005): 185-204.
  • [19] S. Ruan, On nonlinear dynamics of predator-prey models with discrete delay, Math. Mod. Nat. Phen., 4 (2009): 140-188.
  • [20] X. Y. Meng,H. F. Huo,X. B. Zhao,H. Xiang, Stability and Hopf bifurcation in a three-species system with feedback delays, Nonlinear Dyn., 64 (2011): 349-364.
  • [21] M. Y. Li,H. Shu, Multiple stable periodic oscillations in a mathematical model of CTL-response to HTLV-I infection, Bull. Math. Biol., 73 (2011): 1774-1793.
  • [22] H. Shu,L. Wang,J. Watmough, Sustained and transient oscillations and chaos induced by delayed antiviral inmune response in an immunosuppressive infective model, J. Math. Biol., 68 (2014): 477-503.
  • [23] M. Yamaguchi,Y. Takeuchi,W. Ma, Dynamical properties of a stage structured three-species model with intra-guild predation, J. Comput. Appl. Math., 201 (2007): 327-338.
  • [24] H. Shu,X. Hu,L. Wang,J. Watmough, Delayed induced stability switch, multitype bistability and chaos in an intraguild predation model, J. Math. Biol., 71 (2015): 1269-1298.
  • [25] A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern perspectives, Springer-Verlag, New York, 2001.
  • [26] T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001): 433-463.
  • [27] C. V. Pao, Systems of parabolic equations with continuous and discrete delays, J. Math. Anal. Appl., 205 (1997): 157-185.
  • [28] C. V. Pao, Convergence of solutions of reaction-diffusion systems with time delays, Nonlinear Anal., 48 (2002): 349-362.
  • [29] J. Wang,J. P. Shi,J. J. Wei, Dyanmics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, J. Diff. Equat., 251 (2011): 1276-1304.
  • [30] C. Tian, Delay-driven spatial patterns in a plankton allelopathic system, Chaos, 22(2012), 013129, 7 pp.
  • [31] C. Tian,L. Zhang, Hopf bifurcation analysis in a diffusive food-chain model with time delay, Comput. Math. Appl., 66 (2013): 2139-2153.
  • [32] W. Zuo,J. Wei, Global stability and Hopf bifurcations of a Beddington-DeAngelis type predator-prey system with diffusion and delay, Appl. Math. Comput., 223 (2013): 423-435.
  • [33] J. Zhao,J. Wei, Dynamics in a diffusive plankton system with delay and toxic substances effect, Nonlinear Anal., 22 (2015): 66-83.
  • [34] L. Zhu,H. Zhao,X. M. Wang, Bifurcation analysis of a delay reaction-diffusion malware propagation model with feedback control, Commun. Nonlinear Sci. Numer. Simulat., 22 (2015): 747-768.
  • [35] Y. Li,M. X. Wang, Hopf bifurcation and global stability of a delayed predator-prey model with prey harvesting, Comput. Math. Appl., 69 (2015): 398-410.
  • [36] H. Y. Zhao,X. Zhang,X. Huang, Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion, Appl. Math. Comput., 266 (2015): 462-480.
  • [37] Q. X. Ye, Z. Y. Li, M. X. Wang and Y. P. Wu, Introduction to Reaction-diffusion Equations (Second Edition), Science Press, Bei Jing, 2011.
  • [38] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin/New York, 1981.
  • [39] S. Ruan,J. Wei, On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testoterone secretion, Math. Med. Biol., 18 (2001): 41-52.
  • [40] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.
  • [41] B. Hassard, N. Kazarinoff and Y. Wan, Theory and Applications of Hopf bifurcation, Cambridge University Press, Cambridge, 1981.
  • [42] J. Y. Wakano,C. Hauert, Pattern formation and chaos in spatial ecological public goods games, J. Theor. Biol., 268 (2011): 30-38.
  • [43] M. Banerjee, S. Ghoral and N. Mukherjee, Approximated spiral and target patterns in Bazykin's prey-predator model: Multiscale perturbation analysis, Int. J. Bifurcat. Chaos, 27 (2017), 1750038, 14 pp.
  • [44] H. Malchow, S. V. Petrovskii and E. Venturino, Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, Simulations, Chapman & Hall / CRC Press, 2008.
  • [45] Q. Ouyang, Pattern Formation in Reaction-Diffusion Systems Shanghai Scientific and Technological Education Publishing House, SHANGHAI, 2000.


This article has been cited by

  • 1. Dawei Zhang, Binxiang Dai, A free boundary problem for the diffusive intraguild predation model with intraspecific competition, Journal of Mathematical Analysis and Applications, 2019, 10.1016/j.jmaa.2019.01.050
  • 2. Renji Han, Binxiang Dai, Yuming Chen, Pattern formation in a diffusive intraguild predation model with nonlocal interaction effects, AIP Advances, 2019, 9, 3, 035046, 10.1063/1.5084948
  • 3. Dawei Zhang, Binxiang Dai, Spreading and vanishing in a diffusive intraguild predation model with intraspecific competition and free boundary, Mathematical Methods in the Applied Sciences, 2019, 10.1002/mma.5797
  • 4. Dawei Zhang, Binxiang Dai, The diffusive intraguild predation model with intraspecific competition and double free boundaries, Applicable Analysis, 2020, 1, 10.1080/00036811.2020.1716971

Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved