Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Transmission dynamics and optimal control of brucellosis in Inner Mongolia of China

1. Department of Applied Mathematics, School of Science, Changchun University of Science and Technology, Changchun 130022, China
2. School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China
3. School of Mechatronic Engineering, North University of China, Taiyuan 030051, China
4. Complex Systems Research Center, Shanxi University Taiyuan 030006, China
5. China Animal Health And Epidemiology Center, Qingdao 266032, China

A multigroup model is developed to characterize brucellosis transmission, to explore potential effects of key factors, and to prioritize control measures. The global threshold dynamics are completely characterized by theory of asymptotic autonomous systems and Lyapunov direct method. We then formulate a multi-objective optimization problem and, by the weighted sum method, transform it into a scalar optimization problem on minimizing the total cost for control. The existence of optimal control and its characterization are well established by Pontryagin's Maximum Principle. We further parameterize the model and compute optimal control strategy for Inner Mongolia in China. In particular, we expound the effects of sheep recruitment, vaccination of sheep, culling of infected sheep, and health education of human on the dynamics and control of brucellosis. This study indicates that current control measures in Inner Mongolia are not working well and Brucellosis will continue to increase. The main finding here supports opposing unregulated sheep breeding and suggests vaccination and health education as the preferred necessary emergency intervention control. The policymakers must take a new look at the current control strategy, and, in order to control brucellosis better in Inner Mongolia, the governments have to preemptively press ahead with more effective measures.

  Figure/Table
  Supplementary
  Article Metrics

Keywords Brucellosis; epidemic model; dynamical analysis; global stability; optimal control

Citation: Linhua Zhou, Meng Fan, Qiang Hou, Zhen Jin, Xiangdong Sun. Transmission dynamics and optimal control of brucellosis in Inner Mongolia of China. Mathematical Biosciences and Engineering, 2018, 15(2): 543-567. doi: 10.3934/mbe.2018025

References

  • [1] B. Aïnseba,C. Benosman,P. Magal, A model for ovine brucellosis incorporating direct and indirect transmission, J. Biol. Dyn., 4 (2010): 2-11.
  • [2] A. H. Al-Talafhah,S. Q. Lafi,Y. Al-Tarazi, Epidemiology of ovine brucellosis in Awassi sheep in Northern Jordan, Prev. Vet. Med., 60 (2003): 297-306.
  • [3] H. K. Aulakh,P. K. Patil,S. Sharma,H. Kumar,V. Mahajan,K. S. Sandhu, A study on the Epidemiology of Bovine Brucellosis in Punjab (India) Using Milk-ELISA, Acta Vet. Brun., 77 (2008): 393-399.
  • [4] H. W. Boone, Malta fever in China, China Medical Mission, 19 (1905): 167-173.
  • [5] R. S. Cantrell,C. Cosner,W. F. Fagan, Brucellosis, botflies, and brainworms: The impact of edge habitats on pathogen transmission and species extinction, J. Math. Biol., 42 (2001): 95-119.
  • [6] W. J. Chen,B. Y. Cui,Q. H. Zhang, Analysis of epidemic characteristics on brucellosis in Inner Mongolia, Chinese Journal of Control of Endemic Disease, 23 (2008): 56-58.
  • [7] T. J. Clayton, Optimal Cotnrol of Epidemic Models Involving Rabies and West Nile Viruses Ph. D thesis, University of Tennessee, 2008.
  • [8] Committee of China Animal Husbandry Yearbook Editors, China Animal Husbandry Yearbook, China Agriculture Press, Beijing, 2011.
  • [9] J. B. Ding,K. R. Mao,J. S. Cheng,Z. H. Dai,Y. W. Jiang, The application and research advances of Brucella vaccines, Acta Microbiol. Sin., 46 (2006): 856.
  • [10] A. D'Orazi,M. Mignemi,F. Geraci, Spatial distribution of brucellosis in sheep and goats in Sicily from 2001 to 2005, Vet. Ital., 43 (2007): 541-548.
  • [11] J. F. Du,J. Zhang, Analysis of brucellosis monitoring results in Hexigten Banner, Chinese Journal of Epidemiology, 22 (2003): 459-461.
  • [12] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Controls, SpringerVerlag, New York, 1975.
  • [13] S. L. Gang,Y. L. Zhao,S. Y. Zhang, Analysis of 1990 to 2001surveillance effect of national major surveilla nce place for brucellosis, Chinese Journal of Control of Endemic Disease, 5 (2002): 285-288.
  • [14] J. Gonzíez-Guzmán,R. Naulin, Analysis of a model of bovine brucellosis using singular perturbations, J. Math. Biol., 33 (1994): 211-223.
  • [15] W. D. Guo,H. Y. Chi, Epidemiological analysis of human brucellosis in Inner Mongolia Autonomous Region from 2002-2006, China Tropical Medicine, 8 (2008): 604-606.
  • [16] Q. Hou,X. D. Sun,J. Zhang,Y. J. Liu,Y. M. Wang,Z. Jin, Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region, China, Math. Biosci., 242 (2013): 51-58.
  • [17] X. W. Hu, What is the best prevention and control of brucella?, Veterinary Orientation, 15 (2015): 16-18.
  • [18] A. Konak,D. W. Coitb,A. E. Smithc, Multi-objective optimization using genetic algorithms: A tutorial, Reliab. Eng. Syst. Safe., 91 (2006): 992-1007.
  • [19] D. L. Lukes, Differential Equations: Classical to Controlled, vol. 162 of Mathematics in Science and Engineering, Academic Press, New York, 1982.
  • [20] J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, Pa. , 1976.
  • [21] S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Chapman & Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca Raton, 2007.
  • [22] T. F. Man,D. L. Wang,B. Y. Cui, Analysis on surveillance data of brucellosis in China, 2009, Disease Surveillance, 25 (2010): 944-946.
  • [23] L. Markus, Asymptotically autonomous differential systems, In: S. Lefschetz (ed. ), Contributions to the Theory of Nonlinear Oscillations III, Princeton: Princeton University Press, Annals of Mathematics Studies, 3 (1956), 17–29.
  • [24] R. T. Marler,J. S. Arora, Survey of multi-objective optimization methods for engineering, Struct. Multidiscip. Optim., 26 (2004): 369-395.
  • [25] Ministry of Health of the People's Republic of China, China Health Statistics Yearbook, People's Medical Publishing House Beijing, 2011.
  • [26] J. B. Muma,N. Toft,J. Oloya,A. Lund,K. Nielsen,K. Samui,E. Skjerve, Evaluation of three serological tests for brucellosis in naturally infected cattle using latent class analysis, Vet. Microbiol., 125 (2007): 187-192.
  • [27] National Bureau of Statistics of China, China Population Statistics Yearbook, China Statistical Publishing House, Beijing, 2010, Availiable from: http://www.stats.gov.cn/tjsj/ndsj/2010/indexch.htm.
  • [28] R. M. Neilan,S. Lenhart, An introduction to optimal control with an application in disease modeling, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 75 (2010): 67-81.
  • [29] G. Pappas,P. Papadimitriou,N. Akritidis,L. Christou,E. V. Tsianos, The new global map of human brucellosis, Lancet Infect. Dis., 6 (2006): 91-99.
  • [30] D. R. Piao,Y. L. Li,H. Y. Zhao,B. Y. Cui, Epidemic situation analysis of human brucellosis in Inner Mongolia during 1952 to 2007, Chinese Journal of Epidemiology, 28 (2009): 420-423.
  • [31] L. S. Pontryagin,V. G. Boltyanskii,R. V. Gamkrelize,E. F. Mishchenko, The mathematical theory of optimal processes, Trudy Mat.inst.steklov, 16 (1962): 119-158.
  • [32] D. Q. Shang,D. L. Xiao,J. M. Yin, Epidemiology and control of brucellosis in China, Vet. Microbiol., 90 (2002): p165.
  • [33] X. T. Shi,S. P. Gu,M. X. Zheng,H. L. Ma, The prevalence and control of brucellosis disease, China Animal Husbandry and Veterinary Medicine, 37 (2010): 204-207.
  • [34] J. L. Solorio-Rivera,J. C. Segura-Correa,L. G. Sánchez-Gil, Seroprevalence of and risk factors for brucellosis of goats in herds of Michoacan, Mexico, Prev. Vet. Med., 82 (2007): 282-290.
  • [35] The Sate Council of China, National animal disease prevention and control for the medium and long term planning (2012-2020), 2012. Availiable from: http://www.gov.cn/zwgk/2012-05/25/content_2145581.htm.
  • [36] H. R. Thieme, Convergence results and a Poinca'e-Bendixson trichotomy for asymptotically automous differential equations, J. Math. Biol., 30 (1992): 755-763.
  • [37] P. Van Den Driessche,J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002): 29-48.
  • [38] D. L. Wang,T. F. Li,S. L. Jiang,F. Q. Liu,J. Q. Wang, Analysis of national brucellosis surveillance in 2007, Chinese Journal of Control of Endemic Disease, 23 (2008): 443-445.
  • [39] H. B. Wang,Z. M. Wang,L. Dong, Investigation of brucellosis epidemic situation in northwest of Inner Mongolia chifeng city from 2003 to 2004, Endemic. Dis. Bull., 26 (2006): 67-68.
  • [40] L. J. Wu, Prevention and control of livestock brucella in Inner Mongolia, Veterinary Orientation, 9 (2012): 17-19.
  • [41] W. W. Yin,H. Sun, Epidemic situation and strategy proposal for human brucellosis in China, Disease Surveillance, 24 (2009): 475-477.
  • [42] F. Y. Zhao,T. Z. Li, A study on brucellosis prevention and vaccination, Veterinary Orientation, 151 (2010): 24-27.
  • [43] Y. L. Zhao,D. L. Wang,S. L. Giang, Analysis on the surveillance results of the national main monitoring station of the brucellosis in 2001 to 2004, Chinese Journal of Control of Endemic Disease, 42 (2005): 120-134.
  • [44] J. Zinsstag,F. Roth,D. Orkhon,G. Chimed-Ochir,M. Nansalmaa,J. Kolar,P. Vounatsou, A model of animal human brucellosis transmission in Mongolia, Prev. Vet. Med., 69 (2005): 77-95.

 

This article has been cited by

  • 1. Peng Guan, Wei Wu, Desheng Huang, Trends of reported human brucellosis cases in mainland China from 2007 to 2017: an exponential smoothing time series analysis, Environmental Health and Preventive Medicine, 2018, 23, 1, 10.1186/s12199-018-0712-5
  • 2. Paride O. Lolika, Steady Mushayabasa, Dynamics and Stability Analysis of a Brucellosis Model with Two Discrete Delays, Discrete Dynamics in Nature and Society, 2018, 2018, 1, 10.1155/2018/6456107
  • 3. Xuhua Ran, Jiajia Cheng, Miaomiao Wang, Xiaohong Chen, Haoxian Wang, Yu Ge, Hongbo Ni, Xiao-Xuan Zhang, Xiaobo Wen, Brucellosis seroprevalence in dairy cattle in China during 2008-2018: a systematic review and meta-analysis, Acta Tropica, 2018, 10.1016/j.actatropica.2018.10.002
  • 4. Xuhua Ran, Xiaohong Chen, Miaomiao Wang, Jiajia Cheng, Hongbo Ni, Xiao-Xuan Zhang, Xiaobo Wen, Brucellosis seroprevalence in ovine and caprine flocks in China during 2000–2018: a systematic review and meta-analysis, BMC Veterinary Research, 2018, 14, 1, 10.1186/s12917-018-1715-6
  • 5. Yun Lin, Minghan Xu, Xingyu Zhang, Tao Zhang, Abdallah M. Samy, An exploratory study of factors associated with human brucellosis in mainland China based on time-series-cross-section data from 2005 to 2016, PLOS ONE, 2019, 14, 6, e0208292, 10.1371/journal.pone.0208292

Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved