Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

The interplay between models and public health policies: Regional control for a class of spatially structured epidemics (think globally, act locally)

1. ADAMSS, Universitá degli Studi di Milano, 20133 MILANO, Italy
2. Faculty of Mathematics, "Alexandru Ioan Cuza" University of Iași, "Octav Mayer" Institute of Mathematics of the Romanian Academy, Iași 700506, Romania

A review is presented here of the research carried out, by a group including the authors, on the mathematical analysis of epidemic systems. Particular attention is paid to recent analysis of optimal control problems related to spatially structured epidemics driven by environmental pollution. A relevant problem, related to the possible eradication of the epidemic, is the so called zero stabilization. In a series of papers, necessary conditions, and sufficient conditions of stabilizability have been obtained. It has been proved that it is possible to diminish exponentially the epidemic process, in the whole habitat, just by reducing the concentration of the pollutant in a nonempty and sufficiently large subset of the spatial domain. The stabilizability with a feedback control of harvesting type is related to the magnitude of the principal eigenvalue of a certain operator. The problem of finding the optimal position (by translation) of the support of the feedback stabilizing control is faced, in order to minimize both the infected population and the pollutant at a certain finite time.

  Article Metrics

Keywords Epidemic systems; nonlinear models; man-environment epidemics; reaction-diffusion systems; stabilization; principal eigenvalue; feedback control; optimal regional control

Citation: Vincenzo Capasso, Sebastian AniȚa. The interplay between models and public health policies: Regional control for a class of spatially structured epidemics (think globally, act locally). Mathematical Biosciences and Engineering, 2018, 15(1): 1-20. doi: 10.3934/mbe.2018001


  • [1] H. Abbey, An examination of the Reed-Frost theory of epidemics, Human Biology, 24 (1952): 201-233.
  • [2] S. Aniţa,V. Capasso, A stabilizability problem for a reaction-diffusion system modelling a class of spatially structured epidemic model, Nonlinear Anal. Real World Appl., 3 (2002): 453-464.
  • [3] S. Aniţa,V. Capasso, A stabilization strategy for a reaction-diffusion system modelling a class of spatially structured epidemic systems (think globally, act locally), Nonlinear Anal. Real World Appl., 10 (2009): 2026-2035.
  • [4] S. Aniţa,V. Capasso, On the stabilization of reaction-diffusion systems modelling a class of man-environment epidemics: A review, Mathematical Methods in Applied Sciences, 33 (2010): 1235-1244.
  • [5] S. Aniţa,V. Capasso, Stabilization of a reaction-diffusion system modelling a class of spatially structured epidemic systems via feedback control, Nonlinear Anal. Real World Appl., 13 (2012): 725-735.
  • [6] S. Aniţa,V. Capasso, Stabilization of a reaction-diffusion system modelling malaria transmission, Discrete and Continuous Dynamical Systems, Series B, 17 (2012): 1673-1684.
  • [7] S. Aniţa and V. Capasso, Regional control in optimal harvesting of population dynamics, Submitted, 2015.
  • [8] V. Arnăutu,V. Barbu,V. Capasso, Controlling the spread of a class of epidemics, Appl. Math. Optimiz., 20 (1989): 297-317.
  • [9] D. G. Aronson, The asymptotic speed of propagation of a simple epidemic, in Nonlinear Diffusion, (W. E. Fitzgibbon and A. F. Walker eds. ) Pitman, London, 1977, 1-23.
  • [10] P. Babak, Nonlocal initial problems for coupled reaction-diffusion systems and their applications, Nonlinear Anal. RWA, 8 (2007): 980-996.
  • [11] N. T. J. Bailey, A simple stochastic epidemic, Biometrika, 37 (1950): 193-202.
  • [12] M. S. Bartlett, Some evolutionary stochastic processes, J. Roy. Stat. Soc. Ser. B, 11 (1949): 211-229.
  • [13] E. Beretta,V. Capasso, On the general structure of epidemic systems. Global asymptotic stability, Computers and Mathematics in Applications, 12 (1986): 677-694.
  • [14] D. Bernoulli, Réflexions sur les avantages de l'inoculation, Mercure de France, June (1760): 173-190.
  • [15] D. J. Bradley, Epidemiological models Theory and reality, in The Population Dynamics of Infectious Diseases, (R. M. Anderson Ed. ) Chapman and Hall, London-New York, 2008, 320-333.
  • [16] F. Brauer, Some infectious disease models with population dynamics and general contact rates, Differential and Integral Equations, 3 (1990): 827-836.
  • [17] J. Brownlee, The mathematical theory of random migration and epidemic distribution, Proc. Roy. Soc. Edinburgh, 31 (1912): 262-289.
  • [18] S. Busenberg,K. L. Cooke,M. Iannelli, Endemic thresholds and stability in a class of age-structured epidemics, SIAM J. Appl. Math., 48 (1988): 1379-1395.
  • [19] V. Capasso, Mathematical Structures of Epidemic Systems (corrected 2nd printing), Lecture Notes Biomath. , vol. 97, Springer-Verlag, Heidelberg, 2008.
  • [20] V. Capasso, Global solution for a diffusive nonlinear deterministic epidemic model, SIAM J. Appl. Math., 35 (1978): 274-284.
  • [21] V. Capasso, Asymptotic stability for an integro-differential reaction-diffusion system, J. Math. Anal. Appl., 103 (1984): 575-588.
  • [22] V. Capasso,D. Bakstein, null, An Introduction to Continuous-Time Stochastic Processes. Theory, Models, and Applications to Finance, Biology and Medicine, Third Edition, Birkhäuser, New York, 2015.
  • [23] V. Capasso and B. Forte, Model building as an inverse problem in Biomathematics, in Frontiers in Mathematical Biology, (S. A. Levin Ed. ) Lecture Notes in Biomathematics, SpringerVerlag, Heidelberg, 100 (1994), 600-608.
  • [24] V. Capasso,K. Kunisch, A reaction-diffusion system arising in modelling man-environment diseases, Quarterly Appl. Math., 46 (1988): 431-450.
  • [25] V. Capasso,L. Maddalena, Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases, J. Math. Biol., 13 (1981): 173-184.
  • [26] V. Capasso,L. Maddalena, Saddle point behaviour for a reaction-diffusion system: Application to a class of epidemic models, Math. Comput. Simulation, 24 (1982): 540-547.
  • [27] V. Capasso,L. Maddalena, Periodic solutions for a reaction-diffusion system modelling the spread of a class of epidemics, SIAM J. Appl. Math., 43 (1983): 417-427.
  • [28] V. Capasso and S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Revue d'Epidemiologie et de la Sante' Publique, 27 (1979), 121-132; Errata corrige, 28 (1980), p390.
  • [29] V. Capasso,G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Mathematical Biosciences, 42 (1978): 43-61.
  • [30] V. Capasso and H. R. Thieme, A threshold theorem for a reaction-diffusion epidemic system, in Differential Equations and Applications (R. Aftabizadeh, ed. ), Ohio Univ. Press, Athens, OH, 1989,128-133.
  • [31] V. Capasso,R. E. Wilson, Analysis of a reaction-diffusion system modelling man-environment-man epidemics, SIAM J. Appl. Math., 57 (1997): 327-346.
  • [32] C. Castillo-Chavez,K. L. Cooke,W. Huang,S. A. Levin, On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Part 1: Single population models, J. Math. Biol., 27 (1989): 373-398.
  • [33] C. Castillo-Chavez, K. L. Cooke, W. Huang and S. A. Levin, On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Part 2: Multiple group models, in Mathematical and Statistical Approaches to AIDS Epidemiology, (C. Castillo-Chavez ed. ) Lecture Notes in Biomathematics, Springer-Verlag, Heidelberg, 83 (1989), 200-217.
  • [34] C. T. Codeço, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infectious Diseases, 1 (2001): 1-14.
  • [35] K. Dietz, Introduction to McKendrick (1926) Applications of mathematics to medical problems, in Breakthroughs in Statistics Volume Ⅲ, (S. Kotz and N. L. Johnson eds) SpringerVerlag, Heidelberg, 1997, 17-26.
  • [36] K. Dietz, Mathematization in sciences epidemics: The fitting of the first dynamic models to data, J. Contemp. Math. Anal., 44 (2009): 97-104.
  • [37] A. d'Onofrio,P. Manfredi,E. Salinelli, Vaccination behaviour, information, and the dynamics of SIR vaccine preventable diseases, Theoretical Population Biology, 71 (2007): 301-317.
  • [38] J. L. Doob, Markoff chains-denumerable case, Trans. Am. Math. Society, 58 (1945): 455-473.
  • [39] En'ko, On the course of epidemics of some infectious diseases, (Translation from Russian by K. Dietz) Int. J. Epidemiology, 18 (1989), 749-755.
  • [40] S. N. Ethier,T. G. Kurtz, null, Markov Processes, Characterization and Convergence, , Wiley, New York, 1986.
  • [41] W. Farr, Progress of epidemics, Second Report of the Registrar General, null (1840): 91-98.
  • [42] W. H. Frost, Some conceptions of epidemics in general, Am. J. Epidemiology, 103 (1976): 141-151.
  • [43] D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comp. Physics, 22 (1976): 403-434.
  • [44] B. S. Goh, Global stability in a class of predator-prey models, Bull. Math. Biol., 40 (1978): 525-533.
  • [45] W. H. Hamer, Epidemic disease in England, Lancet, 1 (1906): 733-739.
  • [46] A. Henrot,M. Pierre, null, Variation et Optimisation de Formes. Une Analyse Géométrique, , Springer, Berlin, 2005.
  • [47] O. A. van Herwaarden,J. Grasman, Stochastic epidemics: Major outbreaks and the duration of the endemic period, J. Math. Biol., 35 (1997): 793-813.
  • [48] H. W. Hethcote,P. van den Driessche, Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991): 271-287.
  • [49] F. Hoppensteadt, null, Mathematical Theories of Populations: Demographics, Genetics and Epidemics, , SIAM, Philadelphia, 1975.
  • [50] D. G. Kendall, Mathematical models of the spread of infection, in Mathematics and Computer Science in Biology and Medicine, H. M. S. O. , London, 1965,213-225.
  • [51] W. O. Kermack,A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London, Ser. A, 115 (1927): 700-721.
  • [52] M. A. Krasnoselkii, null, Positive Solutions of Operator Equations, , Nordhooff, Groningen, 1964.
  • [53] M. A. Krasnoselkii, Translation Along Trajectories of Differential Equations AMS, Providence, R. I. , 1968.
  • [54] J. L. Lions, null, Controlabilité Exacte, Stabilisation et Perturbation de Systémes Distribués, , Masson, Paris, 1988.
  • [55] W. M. Liu,H. M. Hethcote,S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987): 359-380.
  • [56] W. M. Liu,S. A. Levin,Y. Iwasa, Influence of nonlinear incidence rate upon the behaviour of SIRS epidemiological models, J. Math. Biol., 23 (1986): 187-204.
  • [57] A. J. Lotka, Martini's equations for the epidemiology of immunizing diseases, Nature, 111 (1923): 633-634.
  • [58] G. Macdonald, The analysis of malaria parasite rates in infants, Tropical Disease Bull., 47 (1950): 915-938.
  • [59] E. Martini, null, Berechnungen und Beobachtungen zur Epidemiologie und Bekämpfung der Malaria, , Gente, Hamburg, 1921.
  • [60] I. Näsell,W. M. Hirsch, The transmission dynamics of schistosomiasis, Comm. Pure Appl. Math., 26 (1973): 395-453.
  • [61] A. Pugliese, An SEI epidemic model with varying population size, in Differential Equation Models in Biology, Epidemiology and Ecology, (S. Busenberg and M. Martelli eds. ) Lecture Notes in Biomathematics, Springer-Verlag, Heidelberg, 92 (1991), 121-138.
  • [62] M. Puma, null, Elementi per una Teoria Matematica del Contagio, , Editoriale Aeronautica, Rome, 1939.
  • [63] R. Ross, null, The Prevention of Malaria, London, Murray, 1911.
  • [64] R. E. Serfling, Historical review of epidemic theory, Human Biology, 24 (1952): 145-165.
  • [65] N. C. Severo, Generalizations of some stochastic epidemic models, Math. Biosci., 4 (1969): 395-402.
  • [66] H. E. Soper, The interpretation of periodicity in disease prevalence, J. Roy. Stat. Soc., 92 (1929): 34-73.
  • [67] W. Y. Tan, null, Stochastic Models with Applications to Genetics, Cancers, AIDS and Other Biomedical Systems, , World Scientific, Singapore, 2002.
  • [68] H. R. Thieme, null, Mathematics in Population Biology, , Princeton University Press, Princeton, N. J., 2003.
  • [69] E. B. Wilson,J. Worcester, The law of mass action in epidemiology, Proc. Nat. Acad. Sci., 31 (1945): 24-34.


Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved