Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

On the mathematical modelling of tumor-induced angiogenesis

1. G. Millán Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos Ⅲ de Madrid, 28911 Leganés, Spain
2. ADAMSS, Universitá degli Studi di Milano, 20133 MILANO, Italy

An angiogenic system is taken as an example of extremely complex ones in the field of Life Sciences, from both analytical and computational points of view, due to the strong coupling between the kinetic parameters of the relevant branching -growth -anastomosis stochastic processes of the capillary network, at the microscale, and the family of interacting underlying biochemical fields, at the macroscale. To reduce this complexity, for a conceptual stochastic model we have explored how to take advantage of the system intrinsic multiscale structure: one might describe the stochastic dynamics of the cells at the vessel tip at their natural microscale, whereas the dynamics of the underlying fields is given by a deterministic mean field approximation obtained by an averaging at a suitable mesoscale. But the outcomes of relevant numerical simulations show that the proposed model, in presence of anastomosis, is not self-averaging, so that the "propagation of chaos" assumption cannot be applied to obtain a deterministic mean field approximation. On the other hand we have shown that ensemble averages over many realizations of the stochastic system may better correspond to a deterministic reaction-diffusion system.

  Article Metrics

Keywords Angiogenesis; stochastic differential equations; birth and death processes; growth processes; mean field approximation; hybrid models; propagation of chaos; ensemble average

Citation: Luis L. Bonilla, Vincenzo Capasso, Mariano Alvaro, Manuel Carretero, Filippo Terragni. On the mathematical modelling of tumor-induced angiogenesis. Mathematical Biosciences and Engineering, 2017, 14(1): 45-66. doi: 10.3934/mbe.2017004


  • [1] L. Ambrosio,V. Capasso,E. Villa, On the approximation of mean densities of random closed sets, Bernoulli, 15 (2009): 1222-1242.
  • [2] A. R. A. Anderson,M. A. J. Chaplain, Continuous and discrete mathematical models of tumour-induced angiogenesis, Bull. Math. Biol., 60 (1998): 857-900.
  • [3] C. Birdwell,A. Brasier,L. Taylor, Two-dimensional peptide mapping of fibronectin from bovine aortic endothelial cells and bovine plasma, Biochem. Biophys. Res. Commun., 97 (1980): 574-581.
  • [4] L. L. Bonilla,V. Capasso,M. Alvaro,M. Carretero, Hybrid modelling of tumor-induced angiogenesis, Physical Review E, 90 (2014): 062716.
  • [5] P. Bremaud, null, Point Processes and Queues. Martingale Dynamics, Springer-Verlag, New-York, 1981.
  • [6] M. Burger,V. Capasso,D. Morale, On an aggregation model with long and short range interactions, Nonlinear Anal. Real World Appl., 8 (2007): 939-958.
  • [7] M. Burger,V. Capasso,L. Pizzocchero, Mesoscale averaging of nucleation and growth models, Multiscale Modeling and Simulation, 5 (2006): 564-592.
  • [8] V. Capasso, Randomness and Geometric Structures in Biology in Pattern Formation in Morphogenesis. Problems and Mathematical Issues (eds. V. Capasso, M. Gromov, A. Harel-Bellan, N. Morozova and L. L. Pritchard), Springer, Heidelberg, 2013.
  • [9] V. Capasso,D. Bakstein, null, An Introduction to Continuous-time Stochastic Processes, 3 edition, Birkhäuser, Boston, 2015.
  • [10] V. Capasso,D. Morale, Stochastic modelling of tumour-induced angiogenesis, J. Math. Biol., 58 (2009): 219-233.
  • [11] V. Capasso,D. Morale,G. Facchetti, The Role of Stochasticity for a Model of Retinal Angiogenesis, IMA J. Appl. Math., 77 (2012): 729-747.
  • [12] V. Capasso,E. Villa, On the geometric densities of random closed sets, Stoch. Anal. Appl., 26 (2008): 784-808.
  • [13] P. F. Carmeliet, Angiogenesis in life, disease and medicine, Nature, 438 (2005): 932-936.
  • [14] P. Carmeliet,R. K. Jain, Molecular mechanisms and clinical applications of angiogenesis, Nature, 473 (2011): 298-307.
  • [15] P. Carmeliet,M. Tessier-Lavigne, Common mechanisms of nerve and blood vessel wiring, Nature, 436 (2005): 193-200.
  • [16] A. Carpio,G. Duro, Well posedness of a kinetic model for angiogenesis, Nonlinear Analysis; Real World Applications, 30 (2016): 184-212.
  • [17] N. Champagnat and S. Méléard, Invasion and adaptive evolution for individual-based spatially structured populations, J. Math. Biol., textbf55 (2007), 147-188.
  • [18] M. Chaplain,A. Stuart, A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor, IMA J. Math. Appl. Med. Biol., 10 (1993): 149-168.
  • [19] M. Corada,L. Zanetta,F. Orsenigo,F. Breviario,M. G. Lampugnani,S. Bernasconi,F. Liao,D. J. Hicklin,P. Bohlen,E. Dejana, A monoclonal antibody to vascular endothelialcadherin inhibits tumor angiogenesis without side effects on endothelial permeability, Blood, 100 (2002): 905-911.
  • [20] S. L. Cotter, V. Klika, L. Kimpton, S. Collins and A. E. P. Heazell, A stochastic model for early placental development J. R. Soc. Interface, 11 (2014), 20140149, Available from: http://rsif.royalsocietypublishing.org/content/11/97/20140149.
  • [21] R. F. Gariano,T. W. Gardner, Retinal angiogenesis in development and disease, Nature, 438 (2004): 960-966.
  • [22] J. Folkman, Tumour angiogenesis, Adv. Cancer Res., 19 (1974): 331-358.
  • [23] J. W. Gibbs, Elementary Principles of Statistical Mechanics Yale Bicentennial Publications, Scribner and Sons, New York, 1902.
  • [24] H. A. Harrington,M. Maier,L. Naidoo,N. Whitaker,P. G. Kevrekidis, A hybrid model for tumor-induced angiogenesis in the cornea in the presence of inhibitors, Mathematical and Computer Modelling, 46 (2007): 513-524.
  • [25] R. K. Jain,P. F. Carmeliet, Vessels of death or life, Sci. Am., 285 (2001): 38-45.
  • [26] S. Karlin,H. M. Taylor, null, A Second Course in Stochastic Processes, Academic Press, New York, 1981.
  • [27] N. V. Mantzaris,S. Webb,H. G. Othmer, Mathematical modeling of tumor-induced angiogenesis, J. Math. Biol., 49 (2004): 111-187.
  • [28] D. Morale,V. Capasso,K. Ölschlaeger, An interacting particle system modelling aggregation behavior: From individuals to populations, J. Math. Biol., 50 (2005): 49-66.
  • [29] K. Oelschläger, On the derivation of reaction-diffusion equations as limit dynamics of systems of moderately interacting stochastic processes, Probab. Theor. Relat. Fields, 82 (1989): 565-586.
  • [30] M. J. Plank,B. D. Sleeman, Lattice and non-lattice models of tumour angiogenesis, Bull. Math. Biol., 66 (2004): 1785-1819.
  • [31] M. Hubbard,P. F. Jones,B. D. Sleeman, The foundations of a unified approach to mathematical modelling of angiogenesis, Int. J. Adv. Eng. Sci. and Appl. Math., 1 (2009): 43-52.
  • [32] P. E. Protter, null, Stochastic Integration and Differential Equations, Second Edition, Springer-Verlag, Heidelberg, 2004.
  • [33] G. G. Roussas, null, A Course in Mathematical Statistics, 2 edition, Academic Press, San Diego, CA, 1997.
  • [34] M. Scianna,L. Munaron,L. Preziosi, A multiscale hybrid approach for vasculogenesis and related potential blocking therapies, Prog. Biophys. Mol. Biol., 106 (2011): 450-462.
  • [35] A. Stéphanou,S. R. McDougall,A. R. A. Anderson,M. A. J. Chaplain, Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis, Math. Comput. Modelling, 44 (2006): 96-123.
  • [36] C. L. Stokes,D. A. Lauffenburger, Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis, J. Theor. Biol., 152 (1991): 377-403.
  • [37] S. Sun,M. F. Wheeler,M. Obeyesekere,C. W. Patrick Jr., A deterministic model of growth factor-induced angiogenesis, Bull. Math. Biol., 67 (2005): 313-337.
  • [38] S. Sun,M. F. Wheeler,M. Obeyesekere,C. W. Patrick Jr., A multiscale angiogenesis modeling using mixed finite element methods, Multiscale Model. Simul., 4 (2005): 1137-1167.
  • [39] K. R. Swanson,R. C. Rockne,J. Claridge,M. A. Chaplain,E. C. Alvord Jr,A. R. A. Anderson, Quantifying the role of angiogenesis in malignant progression of gliomas: In silico modeling integrates imaging and histology, Cancer Res., 71 (2011): 7366-7375.
  • [40] A. S. Sznitman, Topics in propagation of chaos, in École d'Été de Probabilités de Saint-Flour XIX-1989 , Lecture Notes in Math., Springer, Berlin, 1464 (1991), 165-251.
  • [41] F. Terragni,M. Carretero,V. Capasso,L. L. Bonilla, Stochastic model of tumor-induced angiogenesis: Ensemble averages and deterministic equations, Physical Review E, 93 (2016): 022413.
  • [42] S. Tong,F. Yuan, Numerical simulations of angiogenesis in the cornea, Microvascular Research, 61 (2001): 14-27.


This article has been cited by

  • 1. Vincenzo Capasso, Franco Flandoli, On stochastic distributions and currents, Mathematics and Mechanics of Complex Systems, 2016, 4, 3-4, 373, 10.2140/memocs.2016.4.373
  • 2. Meryem Alkama, Abdelilah Larrache, Mostafa Rachik, Ilias Elmouki, Optimal duration and dosage of BCG intravesical immunotherapy: A free final time optimal control approach, Mathematical Methods in the Applied Sciences, 2018, 41, 5, 2209, 10.1002/mma.4745
  • 3. Luis L. Bonilla, M. Carretero, F. Terragni, , Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications, 2018, Chapter 6, 97, 10.1007/978-3-319-76599-0_6
  • 4. Wen-song Hong, Gang-qing Zhang, Simulation analysis for tumor radiotherapy based on three-component mathematical models, Journal of Applied Clinical Medical Physics, 2019, 20, 3, 22, 10.1002/acm2.12516
  • 5. Luis L. Bonilla, Manuel Carretero, Filippo Terragni, , Stochastic Dynamics Out of Equilibrium, 2019, Chapter 13, 413, 10.1007/978-3-030-15096-9_13

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Vincenzo Capasso, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved