Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Optimal control of a Tuberculosis model with state and control delays

1. Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
2. Institute of Computational and Applied Mathematics, University of Münster, D-48149 Münster, Germany

We introduce delays in a tuberculosis (TB) model, representing the time delay on the diagnosis and commencement of treatment of individuals with active TB infection. The stability of the disease free and endemic equilibriums is investigated for any time delay. Corresponding optimal control problems, with time delays in both state and control variables, are formulated and studied. Although it is well-known that there is a delay between two to eight weeks between TB infection and reaction of body's immune system to tuberculin, delays for the active infected to be detected and treated, and delays on the treatment of persistent latent individuals due to clinical and patient reasons, which clearly justifies the introduction of time delays on state and control measures, our work seems to be the first to consider such time-delays for TB and apply time-delay optimal control to carry out the optimality analysis.

  Article Metrics

Keywords Tuberculosis; time delays; stability; optimal control

Citation: Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences and Engineering, 2017, 14(1): 321-337. doi: 10.3934/mbe.2017021


  • [1] R. Bellmann and K. L. Cooke, Differential-Difference Equations Academic Press, New York, 1963.
  • [2] B. Buonomo,M. Cerasuolo, The effect of time delay in plant-pathogen interactions with host demography, Math. Biosci. Eng., 12 (2015): 473-490.
  • [3] C. Büskens, Optimierungsmethoden und Sensitivitätsanalyse Für Optimale Steuerprozesse mit Steuer-und Zustands-Beschränkungen PhD thesis, Institut für Numerische Mathematik, Universität Münster, Germany, 1998.
  • [4] C. Büskens,H. Maurer, SQP methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control, J. Comput. Appl. Math., 120 (2000): 85-108.
  • [5] C. Castillo-Chavez,Z. Feng, To treat or not to treat: The case of tuberculosis, J. Math. Biol., 35 (1997): 629-656.
  • [6] T. Cohen,M. Murray, Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness, Nat. Med., 10 (2004): 1117-1121.
  • [7] R. V. Culshaw,S. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells, Math. Biosci., 165 (2000): 27-39.
  • [8] J. Dieudonné, Foundations of Modern Analysis Academic Press, New York, 1960.
  • [9] R. Fourer,D. M. Gay,B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, Duxbury Press, Brooks-Cole Publishing Company, null (1993).
  • [10] L. Göllmann,H. Maurer, Theory and applications of optimal control problems with multiple time-delays, Special Issue on Computational Methods for Optimization and Control, J. Ind. Manag. Optim., 10 (2014): 413-441.
  • [11] M. G. M. Gomes,P. Rodrigues,F. M. Hilker,N. B. Mantilla-Beniers,M. Muehlen,A. C. Paulo,G. F. Medley, Implications of partial immunity on the prospects for tuberculosis control by post-exposure interventions, J. Theoret. Biol., 248 (2007): 608-617.
  • [12] J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations Springer-Verlag, New York, 1993.
  • [13] H. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000): 599-653.
  • [14] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics Academic Press, San Diego, 1993.
  • [15] M. L. Lambert,P. Van der Stuyft, Delays to tuberculosis treatment: Shall we continue to blame the victim?, Trop. Med. Int. Health, 10 (2005): 945-946.
  • [16] H. Maurer,C. Büskens,J.-H. R. Kim,Y. Kaya, Optimization methods for the verification of second order sufficient conditions for bang-bang controls, Optimal Control Appl. Methods, 26 (2005): 129-156.
  • [17] N. P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control SIAM Advances in Design and Control, Vol. DC 24, SIAM Publications, Philadelphia, 2012.
  • [18] P. Rodrigues,C. Rebelo,M. G. M. Gomes, Drug resistance in tuberculosis: A reinfection model, Theor. Popul. Biol., 71 (2007): 196-212.
  • [19] P. Rodrigues,C. J. Silva,D. F. M. Torres, Cost-effectiveness analysis of optimal control measures for tuberculosis, Bull. Math. Biol., 76 (2014): 2627-2645.
  • [20] H. Schättler,U. Ledzewicz,H. Maurer, Sufficient conditions for strong local optimality in optimal control problems with $L^2$-type objectives and control constraints, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014): 2657-2679.
  • [21] L. F. Shampine,S. Thompson, Solving DDEs in MATLAB, Appl. Numer. Math., 37 (2001): 441-458.
  • [22] C. J. Silva,D. F. M. Torres, Optimal control strategies for tuberculosis treatment: A case study in Angola, Numer. Algebra Control Optim., 2 (2012): 601-617.
  • [23] C. J. Silva,D. F. M. Torres, Optimal Control of Tuberculosis: A Review, Dynamics, Games and Science, CIM Series in Mathematical Sciences, 1 (2015): 701-722.
  • [24] C. T. Sreeramareddy, K. V. Panduru, J. Menten and J. Van den Ende, Time delays in diagnosis of pulmonary tuberculosis: A systematic review of literature BMC Infectious Diseases 9 (2009), p91.
  • [25] D. G. Storla, S. Yimer and G. A. Bjune, A systematic review of delay in the diagnosis and treatment of tuberculosis BMC Public Health 8 (2008), p15.
  • [26] K. Toman, Tuberculosis case-finding and chemotherapy: Questions and answers, WHO Geneva, 1979.
  • [27] P. W. Uys, M. Warren and P. D. van Helden, A threshold value for the time delay to TB diagnosis PLoS ONE 2(2007), e757.
  • [28] P. van den Driessche,J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosc., 180 (2002): 29-48.
  • [29] H. Yang,J. Wei, Global behaviour of a delayed viral kinetic model with general incidence rate, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015): 1573-1582.
  • [30] A. Wächter,L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006): 25-57.
  • [31] Systematic Screening for Active Tuberculosis --Principles and Recommendations Geneva, World Health Organization, 2013, http://www.who.int/tb/tbscreening/en/.
  • [32] Global Tuberculosis Report 2014 Geneva, World Health Organization, 2014, http://www.who.int/tb/publications/global_report/en/.
  • [33] Centers for Disease and Control Prevention http://www.cdc.gov/tb/topic/treatment/ltbi.htm


This article has been cited by

  • 1. Nasser Hassan Sweilam, Seham Mahyoub Al-Mekhlafi, Taghreed Abdul Rahman Assiri, Numerical Study for Time Delay Multistrain Tuberculosis Model of Fractional Order, Complexity, 2017, 2017, 1, 10.1155/2017/1047384
  • 2. Delfim Torres, Cristiana Silva, Filipe Rodrigues, Helmut Maurer, Optimal control of a delayed HIV model, Discrete and Continuous Dynamical Systems - Series B, 2017, 23, 1, 443, 10.3934/dcdsb.2018030
  • 3. Ana R.M. Carvalho, Carla M.A. Pinto, Non-integer order analysis of the impact of diabetes and resistant strains in a model for TB infection, Communications in Nonlinear Science and Numerical Simulation, 2018, 61, 104, 10.1016/j.cnsns.2018.01.012
  • 4. Weronika Wojtak, Cristiana J. Silva, Delfim F.M. Torres, Abdon Atangana, Gisèle Mophou, Jordan Hristov, Zakia Hammouch, Uniform asymptotic stability of a fractional tuberculosis model, Mathematical Modelling of Natural Phenomena, 2018, 13, 1, 9, 10.1051/mmnp/2018015
  • 5. C. J. Silva, D. F. M. Torres, E. Venturino, M. Ruzhansky, P. Agarwal, I. Area, E. T. Karimov, Optimal Spraying in Biological Control of Pests, Mathematical Modelling of Natural Phenomena, 2017, 12, 3, 51, 10.1051/mmnp/201712305
  • 6. U. Roman, Z. Gul, I. Saeed, U. Hakeem, S. Shafie, Control strategies of avian influenza pandemic model with time delay, International Journal of Biomathematics, 2017, 10, 07, 1750104, 10.1142/S1793524517501042
  • 7. Delfim Torres, Cristiana Silva, Modeling and optimal control of HIV/AIDS prevention through PrEP, Discrete and Continuous Dynamical Systems - Series S, 2017, 11, 1, 119, 10.3934/dcdss.2018008
  • 8. Diana Rocha, Cristiana J. Silva, Delfim F. M. Torres, Stability and optimal control of a delayed HIV model, Mathematical Methods in the Applied Sciences, 2016, 10.1002/mma.4207
  • 9. Simão P. S. Santos, Natália Martins, Delfim Torres, Noether currents for higher-order variational problems of Herglotz type with time delay, Discrete and Continuous Dynamical Systems - Series S, 2017, 11, 1, 91, 10.3934/dcdss.2018006
  • 10. Arianna Cecchetti, Pietro Ferragamo, Alice Zampini, Ezio Venturino, Optimal Control of an Ecogenetic Model, International Journal of Applied and Computational Mathematics, 2017, 3, S1, 473, 10.1007/s40819-017-0365-x
  • 11. S. Rosa, P. Rebelo, C.M. Silva, H. Alves, P.G. Carvalho, Optimal control of the customer dynamics based on marketing policy, Applied Mathematics and Computation, 2018, 330, 42, 10.1016/j.amc.2018.02.027
  • 12. Anthony A. E. Losio, Steady Mushayabasa, Modeling the Effects of Spatial Heterogeneity and Seasonality on Guinea Worm Disease Transmission, Journal of Applied Mathematics, 2018, 2018, 1, 10.1155/2018/5084687
  • 13. Riccardo Bonalli, Bruno Hérissé, Emmanuel Trélat, Continuity of Pontryagin Extremals with Respect to Delays in Nonlinear Optimal Control, SIAM Journal on Control and Optimization, 2019, 57, 2, 1440, 10.1137/18M119121X
  • 14. Mlyashimbi Helikumi, Moatlhodi Kgosimore, Dmitry Kuznetsov, Steady Mushayabasa, Backward Bifurcation and Optimal Control Analysis of a Trypanosoma brucei rhodesiense Model, Mathematics, 2019, 7, 10, 971, 10.3390/math7100971
  • 15. Malik Zaka Ullah, Abdullah K. Alzahrani, Dumitru Baleanu, An efficient numerical technique for a new fractional tuberculosis model with nonsingular derivative operator, Journal of Taibah University for Science, 2019, 13, 1, 1147, 10.1080/16583655.2019.1688543
  • 16. Eenezer Bonyah, Fahad Al Basir, Santanu Ray, , Mathematical Modelling, Optimization, Analytic and Numerical Solutions, 2020, Chapter 14, 301, 10.1007/978-981-15-0928-5_14
  • 17. Duo-Qing Sun, Xiao-Ying Ma, Characteristic Model-Based Adaptive Control for a Class of MIMO Uncertain Nonaffine Nonlinear Systems Governed by Differential Equations, Complexity, 2020, 2020, 1, 10.1155/2020/3649472
  • 18. Ismail Gad Ameen, Hegagi Mohamed Ali, , Advanced Applications of Fractional Differential Operators to Science and Technology, 2020, chapter 3, 41, 10.4018/978-1-7998-3122-8.ch003
  • 19. Legesse Lemecha Obsu, Shiferaw Feyissa Balcha, Optimal control strategies for the transmission risk of COVID-19, Journal of Biological Dynamics, 2020, 14, 1, 590, 10.1080/17513758.2020.1788182
  • 20. Ana P. Lemos-Paião, Cristiana J. Silva, Delfim F. M. Torres, , Mathematical Modelling and Analysis of Infectious Diseases, 2020, Chapter 12, 323, 10.1007/978-3-030-49896-2_12
  • 21. N.H. Sweilam, S.M. AL-Mekhlafi, S.A. Shatta, D. Baleanu, Numerical Study for a Novel Variable-Order Multiple Time Delay Awareness Programs Mathematical Model, Applied Numerical Mathematics, 2020, 10.1016/j.apnum.2020.07.016

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Helmut Maurer, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved