Mathematical Biosciences and Engineering, 2016, 13(4): 723-739. doi: 10.3934/mbe.2016016.

Primary: 92D30, 34D23; Secondary: 05C82.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate

1. Mathematics and Science College, Shanghai Normal University, Shanghai, 200234
2. Mathematics and Science College, Shanghai Normal University, Shanghai 200234

In this paper, we develop and analyze an SIS epidemic model with a general nonlinear incidence rate, as well as degree-dependent birth and natural death, on heterogeneous networks. We analytically derive the epidemic threshold $R_0$ which completely governs the disease dynamics: when $R_0<1 the="" disease-free="" equilibrium="" is="" globally="" asymptotically="" stable="" i="" e="" the="" disease="" will="" die="" out="" when="" r_0="">1$, the disease is permanent. It is interesting that the threshold value $R_0$ bears no relation to the functional form of the nonlinear incidence rate and degree-dependent birth. Furthermore, by applying an iteration scheme and the theory of cooperative system respectively, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. Our results improve and generalize some known results. To illustrate the theoretical results, the corresponding numerical simulations are also given.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Heterogeneous network; nonlinear incidence; epidemic spreading; equilibrium; global stability.

Citation: Shouying Huang, Jifa Jiang. Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate. Mathematical Biosciences and Engineering, 2016, 13(4): 723-739. doi: 10.3934/mbe.2016016

References

  • 1. Appl. Math. Modelling, 33 (2009), 2919-2926.
  • 2. Physica A, 390 (2011), 471-481.
  • 3. Phys. Rev. E, 77 (2008), 036113, 8pp.
  • 4. SIAM Rev., 42 (2000), 599-653.
  • 5. Int. J. Biomath., 9 (2016), 1650009, 25pp.
  • 6. B. Lond. Math. Soc., 26 (1994), 455-458.
  • 7. Math. Biosci. Eng., 11 (2014), 1295-1317.
  • 8. Commun. Nonlinear Sci. Numer. Simul., 27 (2015), 30-39.
  • 9. Appl. Math. Comput., 218 (2012), 6519-6525.
  • 10. Math. Biosci., 28 (1976), 221-236.
  • 11. Physica A, 427 (2015), 234-243.
  • 12. J. Stat. Mech., 2004 (2004), p08008.
  • 13. Math. Biosci. Eng., 12 (2015), 415-429.
  • 14. Complex Sciences, Springer Berlin Heidelberg, 5 (2009), 2118-2126.
  • 15. China sci. press, Beijing, 2004.
  • 16. Phys. Rev. E, 70 (2004), 030902.
  • 17. Phys. Rev. E, 63 (2001), 066117.
  • 18. J. Differ. Equations, 188 (2003), 135-163.
  • 19. Phys. Rev. E, 81 (2010), 056108, 9pp.
  • 20. SIAM J. Appl. Math., 68 (2008), 1495-1502.
  • 21. Phys. Lett. A, 364 (2007), 189-193.
  • 22. Nonlinear Anal. Theory Methods Appl., 70 (2009), 3273-3278.
  • 23. Physica A, 394 (2014), 24-32.
  • 24. Int. J. Biomath., 8 (2015), 1550007, 11pp.
  • 25. Appl. Math. Comput., 217 (2011), 7053-7064.
  • 26. Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2588-2594.
  • 27. Appl. Math. Modell., 36 (2012), 5808-5817.

 

This article has been cited by

  • 1. Hai-Feng Huo, Fang-Fang Cui, Hong Xiang, Dynamics of an SAITS alcoholism model on unweighted and weighted networks, Physica A: Statistical Mechanics and its Applications, 2018, 496, 249, 10.1016/j.physa.2018.01.003
  • 2. Shouying Huang, Fengde Chen, Yanhong Zhang, Global analysis of epidemic spreading with a general feedback mechanism on complex networks, Advances in Difference Equations, 2019, 2019, 1, 10.1186/s13662-019-2095-3
  • 3. Hong Xiang, Fang-Fang Cui, Hai-Feng Huo, Analysis of the SAITS alcoholism model on scale-free networks with demographic and nonlinear infectivity, Journal of Biological Dynamics, 2019, 13, 1, 621, 10.1080/17513758.2019.1683629

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Shouying Huang, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved