Mathematical Biosciences and Engineering, 2016, 13(3): 495-507. doi: 10.3934/mbe.2016003.

Primary: 60G20, 60J70; Secondary: 65C30.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Successive spike times predicted by a stochastic neuronal model with a variable input signal

1. Dipartimento di Matematica e Applicazioni, Università degli studi di Napoli, FEDERICO II, Via Cinthia, Monte S.Angelo, Napoli, 80126
2. Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli Federico II, Via Cintia, 80126 Napoli

Two different stochastic processes are used to model the evolution of the membrane voltage of a neuron exposed to a time-varying input signal. The first process is an inhomogeneous Ornstein-Uhlenbeck process and its first passage time through a constant threshold is used to model the first spike time after the signal onset. The second process is a Gauss-Markov process identified by a particular mean function dependent on the first passage time of the first process. It is shown that the second process is also of a diffusion type. The probability density function of the maximum between the first passage time of the first and the second process is considered to approximate the distribution of the second spike time. Results obtained by simulations are compared with those following the numerical and asymptotic approximations. A general equation to model successive spike times is given. Finally, examples with specific input signals are provided.
  Figure/Table
  Supplementary
  Article Metrics

Keywords LIF neuronal model; Gauss-Markov processes; first passage time.

Citation: Giuseppe D'Onofrio, Enrica Pirozzi. Successive spike times predicted by a stochastic neuronal model with a variable input signal. Mathematical Biosciences and Engineering, 2016, 13(3): 495-507. doi: 10.3934/mbe.2016003

References

  • 1. Biological Cybernetics, 95 (2006), 1-19.
  • 2. Methodol. Comput. Appl. Prob., 13 (2011), 29-57.
  • 3. Neural Computation, 22 (2010), 2558-2585.
  • 4. Math. Biosci. Eng., 11 (2014), 189-201.
  • 5. Applied Mathematics and Computation, 232 (2014), 799-809.
  • 6. Journal of Computational and Applied Mathematics, 285 (2015), 59-71.
  • 7. Advances in Cognitive Neurodynamics (IV), 11 (2015), 299-305.
  • 8. Neural Computation, 15 (2003), 253-276.
  • 9. Adv. Appl. Prob., 33 (2001), 453-482.
  • 10. The Journal of Neuroscience, 24 (2004), 2989-3001.
  • 11. Math. Bios. Eng., 11 (2014), 285-302.
  • 12. Math. Bios. Eng., 11 (2014), 49-62.
  • 13. Biol. Cybern., 99 (2008), 253-262.
  • 14. Physical Review E, 55 (1997), 2040-2043.
  • 15. Physical Review E, 69 (2004), 022901-1-022901-4.
  • 16. Biological Cybernetics, 35 (1979), 1-9.
  • 17. Mathematica Japonica, 50 (1999), 247-322.
  • 18. Journal of Computational Neuroscience, 39 (2015), 29-51.
  • 19. Academic Press, Boston (USA), 1994.
  • 20. Neural Computation, 11 (1997), 935-951.
  • 21. PNAS, 110 (2013), E1438-E1443.
  • 22. Neural Computation, 26 (2014), 819-859.
  • 23. J. Stat. Phys., 140 (2010), 1130-1156.
  • 24. J. Appl. Probab., 48 (2011), 420-434.
  • 25. PLoS Comput. Biol., 8 (2012), e1002615, 1-19.
  • 26. SIAM, 1989.
  • 27. J. Stat. Phys., 140 (2010), 1130-1156.

 

This article has been cited by

  • 1. Giuseppe D’Onofrio, Enrica Pirozzi, Two-boundary first exit time of Gauss-Markov processes for stochastic modeling of acto-myosin dynamics, Journal of Mathematical Biology, 2017, 74, 6, 1511, 10.1007/s00285-016-1061-x
  • 2. G. D'Onofrio, P. Lansky, E. Pirozzi, On two diffusion neuronal models with multiplicative noise: The mean first-passage time properties, Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28, 4, 043103, 10.1063/1.5009574
  • 3. Pengfei Xu, Yanfei Jin, Mean first-passage time in a delayed tristable system driven by correlated multiplicative and additive white noises, Chaos, Solitons & Fractals, 2018, 112, 75, 10.1016/j.chaos.2018.04.040
  • 4. Mario Abundo, Enrica Pirozzi, Integrated stationary Ornstein–Uhlenbeck process, and double integral processes, Physica A: Statistical Mechanics and its Applications, 2018, 494, 265, 10.1016/j.physa.2017.12.043
  • 5. Giacomo Ascione, Enrica Pirozzi, , Computer Aided Systems Theory – EUROCAST 2017, 2018, Chapter 1, 3, 10.1007/978-3-319-74727-9_1
  • 6. Aniello Buonocore, Amelia G. Nobile, Enrica Pirozzi, Carlo Cattani, Simulation of sample paths for Gauss-Markov processes in the presence of a reflecting boundary, Cogent Mathematics, 2017, 4, 1, 10.1080/23311835.2017.1354469
  • 7. A. Buonocore, A.G. Nobile, E. Pirozzi, Generating random variates from PDF of Gauss–Markov processes with a reflecting boundary, Computational Statistics & Data Analysis, 2018, 118, 40, 10.1016/j.csda.2017.08.008
  • 8. Enrica Pirozzi, Colored noise and a stochastic fractional model for correlated inputs and adaptation in neuronal firing, Biological Cybernetics, 2018, 112, 1-2, 25, 10.1007/s00422-017-0731-0
  • 9. G. D’Onofrio, E. Pirozzi, Asymptotics of Two-boundary First-exit-time Densities for Gauss-Markov Processes, Methodology and Computing in Applied Probability, 2018, 10.1007/s11009-018-9617-4
  • 10. Alexander Vidybida, Olha Shchur, Relation Between Firing Statistics of Spiking Neuron with Delayed Fast Inhibitory Feedback and Without Feedback, Fluctuation and Noise Letters, 2018, 17, 01, 1850005, 10.1142/S0219477518500050
  • 11. Giuseppe D’Onofrio, Claudio Macci, Enrica Pirozzi, Asymptotic Results for First-Passage Times of Some Exponential Processes, Methodology and Computing in Applied Probability, 2018, 10.1007/s11009-018-9659-7
  • 12. Angelo Pirozzi, Enrica Pirozzi, , Encyclopedia of Computational Neuroscience, 2019, Chapter 100665-1, 1, 10.1007/978-1-4614-7320-6_100665-1
  • 13. Giuseppe D’Onofrio, Enrica Pirozzi, Marcelo O. Magnasco, , Computer Aided Systems Theory – EUROCAST 2015, 2015, Chapter 22, 166, 10.1007/978-3-319-27340-2_22
  • 14. Olha Shchur, Alexander Vidybida, First Passage Time Distribution for Spiking Neuron with Delayed Excitatory Feedback, Fluctuation and Noise Letters, 2019, 2050005, 10.1142/S0219477520500054
  • 15. Virginia Giorno, Amelia G. Nobile, On the Construction of a Special Class of Time-Inhomogeneous Diffusion Processes, Journal of Statistical Physics, 2019, 10.1007/s10955-019-02369-2
  • 16. Mario Abundo, Enrica Pirozzi, On the Integral of the Fractional Brownian Motion and Some Pseudo-Fractional Gaussian Processes, Mathematics, 2019, 7, 10, 991, 10.3390/math7100991
  • 17. Giacomo Ascione, Yuliya Mishura, Enrica Pirozzi, Fractional Ornstein-Uhlenbeck Process with Stochastic Forcing, and its Applications, Methodology and Computing in Applied Probability, 2019, 10.1007/s11009-019-09748-y

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Giuseppe D'Onofrio, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved