Mathematical Biosciences and Engineering, 2016, 13(2): 443-460. doi: 10.3934/mbe.2015011.

Primary: 92C17, 92C50; Secondary: 35Q92.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A multiscale model for glioma spread including cell-tissue interactions and proliferation

1. WWU Münster, Institute for Computational und Applied Mathematics and Cluster of Excellence EXC 1003, Cells in Motion, Orleans-Ring 10, 48149 Münster
2. Technische Universität Kaiserslautern, Felix-Klein-Zentrum für Mathematik, Paul-Ehrlich-Str. 31, 67663 Kaiserslautern

Glioma is a broad class of brain and spinal cord tumors arising from glia cells, which are the main brain cells that can develop into neoplasms.They are highly invasive and lead to irregular tumor margins which are not precisely identifiable by medical imaging, thus rendering a precise enough resection very difficult.The understanding of glioma spread patterns is hence essential for both radiological therapy as well as surgical treatment.In this paper we propose a multiscale model for glioma growth including interactions of the cells with the underlying tissuenetwork, along with proliferative effects. Our current accounting for two subpopulations of cells to accomodate proliferation according to the go-or-grow dichtomotyis an extension of the setting in [16].As in that paper, we assume that cancer cells use neuronal fiber tracts as invasive pathways. Hence, the individualstructure of brain tissue seems to be decisive for the tumor spread. Diffusion tensor imaging (DTI) is able to provide suchinformation, thus opening the way for patient specificmodeling of glioma invasion. Starting from a multiscale model involving subcellular (microscopic) and individual (mesoscale)cell dynamics, we perform a parabolic scaling to obtain an approximating reaction-diffusion-transport equation on themacroscale of the tumor cell population. Numerical simulations based on DTI data are carried out in order to assess theperformance of our modeling approach.
  Figure/Table
  Supplementary
  Article Metrics

Keywords diffusiontensor imaging; Multiscale model; macrosccopic scaling; reaction-diffusion-transport equations.; kinetic transport equations; glioma invasion

Citation: Christian Engwer, Markus Knappitsch, Christina Surulescu. A multiscale model for glioma spread including cell-tissue interactions and proliferation. Mathematical Biosciences and Engineering, 2016, 13(2): 443-460. doi: 10.3934/mbe.2015011

References

  • 1. SIAM Journal on Numerical Analysis, 39 (2002), 1749-1779.
  • 2. Computing, 82 (2008), 103-119.
  • 3. Computing, 82 (2008), 121-138.
  • 4. Blood, 105 (2005), 3561-3568.
  • 5. Mathematical and Computer Modelling, 51 (2010), 441-451.
  • 6. Math. Models Methods Appl. Sci., 22 (2012), 1130001, 37 pp.
  • 7. Math. Models Methods Appl. Sci., 23 (2013), 1861-1913.
  • 8. Journal of Neuro-Oncology, 63 (2003), 109-116.
  • 9. Mathematical Modelling of Natural Phenomena, 7 (2012), 105-135.
  • 10. in The gliomas (eds. M. Berger and C. Wilson), W.B. Saunders Company, Philadelphia, (1999), 210-225.
  • 11. J. of Clinical Neurosci., 14 (2007), 1041-1048.
  • 12. Journal of Neuro-Oncology, 34 (1997), 37-59.
  • 13. Journal of Neuro-Oncology, 70 (2004), 217-228.
  • 14. IEEE Transactions on Medical Imaging, 28 (2009), 269-286.
  • 15. Ph.D. thesis, Université Nice-Sophia Antipolis, 2008.
  • 16. Journal of Math. Biol., 71 (2015), 551-582.
  • 17. IMA J. Math. Medicine and Biol., 32 (2015), doi:10.1093/imammb/dqv030, 2015.
  • 18. Multiscale Modeling and Simulation, 3 (2005), 362-394.
  • 19. IMA Journal of Numerical Analysis, 29 (2009), 235-256.
  • 20. Neuro-Oncology, 12 (2010), 466-472.
  • 21. International Journal of Cancer, 67 (1996), 275-282.
  • 22. Neurosurgery, 39 (1996), 235-252.
  • 23. SIAM Journal for Applied Mathematics, 61 (2000), 43-73.
  • 24. Cell, 144 (2011), 646-674.
  • 25. Math Med Biol, 29 (2012), 49-65.
  • 26. Europ. J. Appl. Math., 14 (2003), 613-636.
  • 27. Journal of Mathematical Biology, 53 (2006), 585-616.
  • 28. SIAM Journal on Applied Mathematics, 61 (2000), 751-775.
  • 29. Cancer Res., 68 (2008), 650-656.
  • 30. Mathematical Biosciences and Engineering, 8 (2011), 575-589.
  • 31. Mathematical Models and Methods in Applied Sciences, 23 (2012), 1150017, 25 pp.
  • 32. Oxford University Press, 1993.
  • 33. Genes Dev., 23 (2009), 397-418.
  • 34. Mathematical Models and Methods in Applied Sciences, 24 (2014), 2383-2436.
  • 35. Journal of Neurosurgery, 18 (1961), 636-644.
  • 36. Discr. Cont. Dyn. Syst. B, 20 (2015), 189-213.
  • 37. Journal of Math. Anal. Appl., 408 (2013), 597-614.
  • 38. in Adhesion Molecules and Chemokynes in Lymphocyte Trafficking (ed. A. Hamann), Harwood Acad. Publ. (1997), 55-88.
  • 39. J. Theoretical Biol., 323 (2013), 25-39.
  • 40. The Journal of Cell Biology, 179 (2007), 777-791.
  • 41. IMA Journal of Applied Mathematics, 80 (2015), 1300-1321.
  • 42. SIAM J. Math. Analysis, 46 (2014), 1969-2007.
  • 43. Neurocarciology, 46 (2004), 339-350.
  • 44. Journal of Mathematical Biology, 58 (2009), 819-844.
  • 45. Magnetic resonance in Medicine, 52 (2004), 1358-1372.
  • 46. Neuron, 40 (2003), 885-895.
  • 47. Frontiers in Bioscience, 4 (1999), 188-199.
  • 48. Journal of neural engineering, 11 (2014), 016002, 14pp.
  • 49. SIAM Journal on Numerical Analysis, 15 (1978), 152-161.
  • 50. Neuro-Oncology, 4 (2002), 278-299.

 

This article has been cited by

  • 1. Martina Conte, Luca Gerardo-Giorda, Maria Groppi, Glioma invasion and its interplay with nervous tissue and therapy: A multiscale model, Journal of Theoretical Biology, 2020, 486, 110088, 10.1016/j.jtbi.2019.110088
  • 2. Nadia Loy, Luigi Preziosi, Kinetic models with non-local sensing determining cell polarization and speed according to independent cues, Journal of Mathematical Biology, 2020, 80, 1-2, 373, 10.1007/s00285-019-01411-x
  • 3. Tao Jin, Mingfa Liu, Yan Liu, Yuanzhi Li, Zhennan Xu, Haoqi He, Jie Liu, Yuxuan Zhang, Yiquan Ke, Lcn2-derived Circular RNA (hsa_circ_0088732) Inhibits Cell Apoptosis and Promotes EMT in Glioma via the miR-661/RAB3D Axis, Frontiers in Oncology, 2020, 10, 10.3389/fonc.2020.00170
  • 4. Thomas Lorenz, Viability in a non-local population model structured by size and spatial position, Journal of Mathematical Analysis and Applications, 2020, 124249, 10.1016/j.jmaa.2020.124249
  • 5. Robyn Shuttleworth, Dumitru Trucu, Cell-Scale Degradation of Peritumoural Extracellular Matrix Fibre Network and Its Role Within Tissue-Scale Cancer Invasion, Bulletin of Mathematical Biology, 2020, 82, 6, 10.1007/s11538-020-00732-z
  • 6. CHRISTINA SURULESCU, MICHAEL WINKLER, Does indirectness of signal production reduce the explosion-supporting potential in chemotaxis–haptotaxis systems? Global classical solvability in a class of models for cancer invasion (and more), European Journal of Applied Mathematics, 2020, 1, 10.1017/S0956792520000236
  • 7. Lei Yu, Si Gui, Yawei Liu, Xiaoyu Qiu, Guozhong Zhang, Xi’an Zhang, Jun Pan, Jun Fan, Songtao Qi, Binghui Qiu, Exosomes derived from microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating AGAP2, Aging, 2019, 11, 15, 5300, 10.18632/aging.102092
  • 8. Alexander Hunt, Christina Surulescu, A Multiscale Modeling Approach to Glioma Invasion with Therapy, Vietnam Journal of Mathematics, 2017, 45, 1-2, 221, 10.1007/s10013-016-0223-x
  • 9. Christian Stinner, Christina Surulescu, Aydar Uatay, Global existence for a go-or-grow multiscale model for tumor invasion with therapy, Mathematical Models and Methods in Applied Sciences, 2016, 26, 11, 2163, 10.1142/S021820251640011X
  • 10. Jason Vickress, Michael Lock, Simon Lo, Slav Yartsev, Potential benefit of rotational radiation therapy, Future Oncology, 2017, 13, 10, 873, 10.2217/fon-2016-0535
  • 11. Amanda Swan, Thomas Hillen, John C. Bowman, Albert D. Murtha, A Patient-Specific Anisotropic Diffusion Model for Brain Tumour Spread, Bulletin of Mathematical Biology, 2018, 80, 5, 1259, 10.1007/s11538-017-0271-8
  • 12. Christian Engwer, Christian Stinner, Christina Surulescu, On a structured multiscale model for acid-mediated tumor invasion: The effects of adhesion and proliferation, Mathematical Models and Methods in Applied Sciences, 2017, 27, 07, 1355, 10.1142/S0218202517400188

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Christian Engwer, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved