Mathematical Biosciences and Engineering, 2015, 12(6): 1303-1320. doi: 10.3934/mbe.2015.12.1303.

Primary: 92C45, 92C50; Secondary: 92B05.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

The performance of discrete models of low reynolds number swimmers

1. Department of Mathematics, University of California Irvine, Irvine, CA
2. School of Mathematics, University of Minnesota, Minneapolis, MN 55445

Swimming by shape changes at low Reynolds number is widely used in biology andunderstanding how the performance of movement depends on the geometric pattern ofshape changes is important to understand swimming of microorganisms and in designing lowReynolds number swimming models. Thesimplest models of shape changes are those that comprise a series of linkedspheres that can change their separation and/or their size. Herein we comparethe performance of three models in which these modes are used in different ways.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Cell motility; low Reynolds number flows.; swimming

Citation: Qixuan Wang, Hans G. Othmer. The performance of discrete models of low reynolds number swimmers. Mathematical Biosciences and Engineering, 2015, 12(6): 1303-1320. doi: 10.3934/mbe.2015.12.1303

References

  • 1. Journal of Physics: Condensed Matter, 21 (2009), 204108.
  • 2. Journal of Nonlinear Science, 18 (2008), 277-302.
  • 3. The European Physical Journal E: Soft Matter and Biological Physics, 28 (2009), 279-284.
  • 4. Mathematical Models and Methods in Applied Sciences, 21 (2011), 361-387.
  • 5. Phys. Rev. Lett, 93 (2004), 186001.
  • 6. New Journal of Physics, 7 (2005), 234.
  • 7. New Journal of Physics, 10 (2008), 063016.
  • 8. Eur Biophys J, 35 (2006), 328-39.
  • 9. PNAS, 107 (2010), 11376.
  • 10. J. Fluid Mech., 74 (1976), 1-29.
  • 11. Journal of Fluid Mechanics, 44 (1970), 419-440.
  • 12. Journal of fluid mechanics, 490 (2003), 15-35.
  • 13. Molecular BioSystems, 6 (2010), 648-661.
  • 14. Am J Physiol Cell Physiol, 282 (2001), C595-C605.
  • 15. Nat Rev Mol Cell Biol, 9 (2008), 730-736.
  • 16. Journal of Fluid mechanics, 44 (1970), 791-810.
  • 17. The Journal of Cell Biology, 181 (2008), 879-884.
  • 18. arXiv:0711.3700.
  • 19. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 217 (1953), 96-121.
  • 20. Journal of Fluid Mechanics, 99 (1980), 411-431.
  • 21. Biophysical journal, 25 (1979), 113-127.
  • 22. J. Fluid Mech, 75 (1976), 705-714.
  • 23. Butterworth-Heinemann Boston, 1991.
  • 24. Nature, 453 (2008), 51-55.
  • 25. Repts. on Prog. in Phys., 72 (2009), 096601.
  • 26. SIAM Review, 1975, 161-230.
  • 27. Communications on Pure and Applied Mathematics, 5 (1952), 109-118.
  • 28. Physics of Fluids (1994-present), 22 (2010), 111901.
  • 29. arXiv:1007.2101v1.
  • 30. Proceedings of the National Academy of Sciences, 108 (2011), 15727-15732.
  • 31. Biophysical journal, 89 (2005), 724-733.
  • 32. Cambridge Univ Pr, 1992.
  • 33. Amer. J. Physics, 45 (1977), 3-11.
  • 34. Am. J. Phys, 45 (1977), 3-11.
  • 35. EMBO reports, 11 (2010), 744-750.
  • 36. J. Fluid Mech., 198 (1989), 557-585.
  • 37. Physical Review Letters, 98 (2007), 068105.
  • 38. PloS one, 6 (2011), e27532.
  • 39. PhD thesis, University of Minnesota, 2012.
  • 40. Frontiers in Applications of Mathematics, Springer Verlag, New York, 2012.
  • 41. J. Cell Sci., 119 (2006), 3833-3844.

 

This article has been cited by

  • 1. F. Box, E. Han, C. R. Tipton, T. Mullin, On the motion of linked spheres in a Stokes flow, Experiments in Fluids, 2017, 58, 4, 10.1007/s00348-017-2321-2
  • 2. Hao Wu, Marco Avila Ponce de León, Hans G. Othmer, Getting in shape and swimming: the role of cortical forces and membrane heterogeneity in eukaryotic cells, Journal of Mathematical Biology, 2018, 10.1007/s00285-018-1223-0
  • 3. Qixuan Wang, Hans G. Othmer, Analysis of a model microswimmer with applications to blebbing cells and mini-robots, Journal of Mathematical Biology, 2018, 76, 7, 1699, 10.1007/s00285-018-1225-y
  • 4. Qixuan Wang, Optimal Strokes of Low Reynolds Number Linked-Sphere Swimmers, Applied Sciences, 2019, 9, 19, 4023, 10.3390/app9194023
  • 5. Antonio DeSimone, , The Mathematics of Mechanobiology, 2020, Chapter 1, 1, 10.1007/978-3-030-45197-4_1

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Qixuan Wang, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved