Mathematical Biosciences and Engineering, 2010, 7(4): 919-922. doi: 10.3934/mbe.2010.7.919.

92B05, 92C50, 92D30, 93C15.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Rotating antibiotics does not minimize selection for resistance

1. Institute of Integrative Biology, ETH Zürich, CH-8092 Zurich

N/A
  Figure/Table
  Supplementary
  Article Metrics

Keywords antibiotics; drug resistance; cycling; Epidemiology; mixing.

Citation: Sebastian Bonhoeffer, Pia Abel zur Wiesch, Roger D. Kouyos. Rotating antibiotics does not minimize selection for resistance. Mathematical Biosciences and Engineering, 2010, 7(4): 919-922. doi: 10.3934/mbe.2010.7.919

 

This article has been cited by

  • 1. Roger D. Kouyos, Pia Abel zur Wiesch, Sebastian Bonhoeffer, Christophe Fraser, Informed Switching Strongly Decreases the Prevalence of Antibiotic Resistance in Hospital Wards, PLoS Computational Biology, 2011, 7, 3, e1001094, 10.1371/journal.pcbi.1001094
  • 2. Antonio L. C. Gomes, James E. Galagan, Daniel Segrè, James M. McCaw, Resource Competition May Lead to Effective Treatment of Antibiotic Resistant Infections, PLoS ONE, 2013, 8, 12, e80775, 10.1371/journal.pone.0080775
  • 3. Hildegard Uecker, Sebastian Bonhoeffer, Modeling antimicrobial cycling and mixing: Differences arising from an individual-based versus a population-based perspective, Mathematical Biosciences, 2017, 294, 85, 10.1016/j.mbs.2017.09.002
  • 4. Daniel Nichol, Peter Jeavons, Alexander G. Fletcher, Robert A. Bonomo, Philip K. Maini, Jerome L. Paul, Robert A. Gatenby, Alexander R.A. Anderson, Jacob G. Scott, Rustom Antia, Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance, PLOS Computational Biology, 2015, 11, 9, e1004493, 10.1371/journal.pcbi.1004493
  • 5. Nienke L Plantinga, Bastiaan HJ Wittekamp, Pleun J van Duijn, Marc JM Bonten, Fighting antibiotic resistance in the intensive care unit using antibiotics, Future Microbiology, 2015, 10, 3, 391, 10.2217/fmb.14.146
  • 6. D. E. Ramsay, J. Invik, S. L. Checkley, S. P. Gow, N. D. Osgood, C. L. Waldner, Application of dynamic modelling techniques to the problem of antibacterial use and resistance: a scoping review, Epidemiology and Infection, 2018, 1, 10.1017/S0950268818002091
  • 7. Gabriel G. Perron, Sergey Kryazhimskiy, Daniel P. Rice, Angus Buckling, Multidrug Therapy and Evolution of Antibiotic Resistance: When Order Matters, Applied and Environmental Microbiology, 2012, 78, 17, 6137, 10.1128/AEM.01078-12
  • 8. Pleun J van Duijn, Marc JM Bonten, Antibiotic rotation strategies to reduce antimicrobial resistance in Gram-negative bacteria in European intensive care units: study protocol for a cluster-randomized crossover controlled trial, Trials, 2014, 15, 1, 10.1186/1745-6215-15-277
  • 9. François Blanquart, Evolutionary epidemiology models to predict the dynamics of antibiotic resistance, Evolutionary Applications, 2019, 10.1111/eva.12753
  • 10. Roderich Roemhild, Hinrich Schulenburg, Evolutionary ecology meets the antibiotic crisis, Evolution, Medicine, and Public Health, 2019, 2019, 1, 37, 10.1093/emph/eoz008
  • 11. Rafael Peña-Miller, Robert Beardmore, Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits, Mathematical Biosciences and Engineering, 2010, 7, 4, 923, 10.3934/mbe.2010.7.923

Reader Comments

your name: *   your email: *  

Copyright Info: 2010, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved