Mathematical Biosciences and Engineering, 2010, 7(3): 641-656. doi: 10.3934/mbe.2010.7.641.

Primary: 92B05, 92D25; Secondary: 34A34, 34D23.

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

A mathematical study of a syntrophic relationship of a model of anaerobic digestion process

1. UMR Analyses des Systèmes et Biométrie, INRA 02 Place, INRA-INRIA MERE research team, Viala, 34060 Montpellier
2. LBE-INRA, UR050, Avenue des Étangs, 11100 Narbonne & INRA-INRIA MERE research team, UMR Analyses des Systèmes et Biométrie, INRA 02 Place Viala, 34060 Montpellier

A mathematical model involving the syntrophic relationship of two major populations of bacteria (acetogens and methanogens), each responsible for a stage of the methane fermentation process is proposed. A detailed qualitative analysis is carried out. The local and global stability analyses of the equilibria are performed. We demonstrate, under general assumptions of monotonicity, relevant from an applied point of view, the global asymptotic stability of a positive equilibrium point which corresponds to the coexistence of acetogenic and methanogenic bacteria.
  Article Metrics

Keywords Syntrophic relationship; Mathematical modelling; Anaerobic digestion; Coexistence.; Asymptotic stability

Citation: Miled El Hajji, Frédéric Mazenc, Jérôme Harmand. A mathematical study of a syntrophic relationship of a model of anaerobic digestion process. Mathematical Biosciences and Engineering, 2010, 7(3): 641-656. doi: 10.3934/mbe.2010.7.641


This article has been cited by

  • 1. Tewfik Sari, Miled El Hajji, Jérôme Harmand, The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat, Mathematical Biosciences and Engineering, 2012, 9, 3, 627, 10.3934/mbe.2012.9.627
  • 2. Marion Weedermann, Analysis of a model for the effects of an external toxin on anaerobic digestion, Mathematical Biosciences and Engineering, 2012, 9, 2, 445, 10.3934/mbe.2012.9.445
  • 3. T. Sari, M.J. Wade, Generalised approach to modelling a three-tiered microbial food-web, Mathematical Biosciences, 2017, 291, 21, 10.1016/j.mbs.2017.07.005
  • 4. Simon M. Stump, Christopher A. Klausmeier, Competition and coexistence between a syntrophic consortium and a metabolic generalist, and its effect on productivity, Journal of Theoretical Biology, 2016, 404, 348, 10.1016/j.jtbi.2016.06.019
  • 5. Marion Weedermann, Gunog Seo, Gail Wolkowicz, Mathematical model of anaerobic digestion in a chemostat: effects of syntrophy and inhibition, Journal of Biological Dynamics, 2013, 7, 1, 59, 10.1080/17513758.2012.755573
  • 6. Marion Weedermann, Gail S. K. Wolkowicz, Joanna Sasara, Optimal biogas production in a model for anaerobic digestion, Nonlinear Dynamics, 2015, 81, 3, 1097, 10.1007/s11071-015-2051-z
  • 7. Tewfik Sari, Jérôme Harmand, A model of a syntrophic relationship between two microbial species in a chemostat including maintenance, Mathematical Biosciences, 2016, 275, 1, 10.1016/j.mbs.2016.02.008
  • 8. E.I.P. Volcke, M. Sbarciog, E.J.L. Noldus, B. De Baets, M. Loccufier, Steady state multiplicity of two-step biological conversion systems with general kinetics, Mathematical Biosciences, 2010, 228, 2, 160, 10.1016/j.mbs.2010.09.004
  • 9. Alma Mašić, Hermann J. Eberl, Persistence in a Single Species CSTR Model with Suspended Flocs and Wall Attached Biofilms, Bulletin of Mathematical Biology, 2012, 74, 4, 1001, 10.1007/s11538-011-9707-8
  • 10. M.J. Wade, R.W. Pattinson, N.G. Parker, J. Dolfing, Emergent behaviour in a chlorophenol-mineralising three-tiered microbial ‘food web’, Journal of Theoretical Biology, 2016, 389, 171, 10.1016/j.jtbi.2015.10.032
  • 11. Y. Daoud, N. Abdellatif, T. Sari, J. Harmand, A. Morozov, Steady state analysis of a syntrophic model: the effect of a new input substrate concentration, Mathematical Modelling of Natural Phenomena, 2018, 13, 3, 31, 10.1051/mmnp/2018037
  • 12. Miled El Hajji, How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat?, International Journal of Biomathematics, 2018, 1850111, 10.1142/S1793524518501115
  • 13. T. Meadows, M. Weedermann, G. S. K. Wolkowicz, Global Analysis of a Simplified Model of Anaerobic Digestion and a New Result for the Chemostat, SIAM Journal on Applied Mathematics, 2019, 79, 2, 668, 10.1137/18M1198788
  • 14. Marco Mauri, Jean-Luc Gouzé, Hidde de Jong, Eugenio Cinquemani, Kiran Raosaheb Patil, Enhanced production of heterologous proteins by a synthetic microbial community: Conditions and trade-offs, PLOS Computational Biology, 2020, 16, 4, e1007795, 10.1371/journal.pcbi.1007795
  • 15. Matthew J. Wade, Not Just Numbers: Mathematical Modelling and Its Contribution to Anaerobic Digestion Processes, Processes, 2020, 8, 8, 888, 10.3390/pr8080888

Reader Comments

your name: *   your email: *  

Copyright Info: 2010, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved