Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Rotating antibiotics selects optimally against antibiotic resistance, in theory

1. Department of Mathematics, Imperial College London, SW7 2AZ, London

The purpose of this paper is to use mathematical models to investigate the claim made in the medical literature over a decade ago that the routine rotation of antibiotics in an intensive care unit (ICU) will select against the evolution and spread of antibiotic-resistant pathogens. In contrast, previous theoretical studies addressing this question have demonstrated that routinely changing the drug of choice for a given pathogenic infection may in fact lead to a greater incidence of drug resistance in comparison to the random deployment of different drugs.
   Using mathematical models that do not explicitly incorporate the spatial dynamics of pathogen transmission within the ICU or hospital and assuming the antibiotics are from distinct functional groups, we use a control theoretic-approach to prove that one can relax the medical notion of what constitutes an antibiotic rotation and so obtain protocols that are arbitrarily close to the optimum. Finally, we show that theoretical feedback control measures that rotate between different antibiotics motivated directly by the outcome of clinical studies can be deployed to good effect to reduce the prevalence of antibiotic resistance below what can be achieved with random antibiotic use.
  Figure/Table
  Supplementary
  Article Metrics

Keywords antibiotic rotation; drug resistance.; Control theory; epidemiology

Citation: Robert E. Beardmore, Rafael Peña-Miller. Rotating antibiotics selects optimally against antibiotic resistance, in theory. Mathematical Biosciences and Engineering, 2010, 7(3): 527-552. doi: 10.3934/mbe.2010.7.527

 

This article has been cited by

  • 1. A. A. Cheng, H. Ding, T. K. Lu, Enhanced killing of antibiotic-resistant bacteria enabled by massively parallel combinatorial genetics, Proceedings of the National Academy of Sciences, 2014, 111, 34, 12462, 10.1073/pnas.1400093111
  • 2. Nienke L Plantinga, Bastiaan HJ Wittekamp, Pleun J van Duijn, Marc JM Bonten, Fighting antibiotic resistance in the intensive care unit using antibiotics, Future Microbiology, 2015, 10, 3, 391, 10.2217/fmb.14.146
  • 3. Uri Obolski, Lilach Hadany, Implications of stress-induced genetic variation for minimizing multidrug resistance in bacteria, BMC Medicine, 2012, 10, 1, 10.1186/1741-7015-10-89
  • 4. Antonio L. C. Gomes, James E. Galagan, Daniel Segrè, James M. McCaw, Resource Competition May Lead to Effective Treatment of Antibiotic Resistant Infections, PLoS ONE, 2013, 8, 12, e80775, 10.1371/journal.pone.0080775
  • 5. Philipp Schuetz, Robert Eric Beardmore, Antibiotic strategies in critical care: back to square one?, The Lancet Infectious Diseases, 2018, 18, 4, 360, 10.1016/S1473-3099(18)30057-4
  • 6. Roger D. Kouyos, Pia Abel zur Wiesch, Sebastian Bonhoeffer, Christophe Fraser, Informed Switching Strongly Decreases the Prevalence of Antibiotic Resistance in Hospital Wards, PLoS Computational Biology, 2011, 7, 3, e1001094, 10.1371/journal.pcbi.1001094
  • 7. Portia M. Mira, Kristina Crona, Devin Greene, Juan C. Meza, Bernd Sturmfels, Miriam Barlow, Paul J Planet, Rational Design of Antibiotic Treatment Plans: A Treatment Strategy for Managing Evolution and Reversing Resistance, PLOS ONE, 2015, 10, 5, e0122283, 10.1371/journal.pone.0122283
  • 8. Gabriel G. Perron, R. Fredrik Inglis, Pleuni S. Pennings, Sarah Cobey, Fighting microbial drug resistance: a primer on the role of evolutionary biology in public health, Evolutionary Applications, 2015, 8, 3, 211, 10.1111/eva.12254
  • 9. Christiane P. Goulart, Mentar Mahmudi, Kristina A. Crona, Stephen D. Jacobs, Marcelo Kallmann, Barry G. Hall, Devin C. Greene, Miriam Barlow, Norman Johnson, Designing Antibiotic Cycling Strategies by Determining and Understanding Local Adaptive Landscapes, PLoS ONE, 2013, 8, 2, e56040, 10.1371/journal.pone.0056040
  • 10. Ellsworth M. Campbell, Lin Chao, Bryan A. White, A Population Model Evaluating the Consequences of the Evolution of Double-Resistance and Tradeoffs on the Benefits of Two-Drug Antibiotic Treatments, PLoS ONE, 2014, 9, 1, e86971, 10.1371/journal.pone.0086971
  • 11. Hildegard Uecker, Sebastian Bonhoeffer, Modeling antimicrobial cycling and mixing: Differences arising from an individual-based versus a population-based perspective, Mathematical Biosciences, 2017, 294, 85, 10.1016/j.mbs.2017.09.002
  • 12. Esther van Kleef, Julie V Robotham, Mark Jit, Sarah R Deeny, William J Edmunds, Modelling the transmission of healthcare associated infections: a systematic review, BMC Infectious Diseases, 2013, 13, 1, 10.1186/1471-2334-13-294
  • 13. Chang-Ro Lee, Ill Cho, Byeong Jeong, Sang Lee, Strategies to Minimize Antibiotic Resistance, International Journal of Environmental Research and Public Health, 2013, 10, 9, 4274, 10.3390/ijerph10094274
  • 14. Francisco Pimenta, Ana Cristina Abreu, Lúcia Chaves Simões, Manuel Simões, What should be considered in the treatment of bacterial infections by multi-drug therapies: A mathematical perspective?, Drug Resistance Updates, 2014, 17, 3, 51, 10.1016/j.drup.2014.08.001
  • 15. D. E. Ramsay, J. Invik, S. L. Checkley, S. P. Gow, N. D. Osgood, C. L. Waldner, Application of dynamic modelling techniques to the problem of antibacterial use and resistance: a scoping review, Epidemiology and Infection, 2018, 1, 10.1017/S0950268818002091
  • 16. Gabriel G. Perron, Sergey Kryazhimskiy, Daniel P. Rice, Angus Buckling, Multidrug Therapy and Evolution of Antibiotic Resistance: When Order Matters, Applied and Environmental Microbiology, 2012, 78, 17, 6137, 10.1128/AEM.01078-12
  • 17. François Blanquart, Evolutionary epidemiology models to predict the dynamics of antibiotic resistance, Evolutionary Applications, 2019, 10.1111/eva.12753
  • 18. Pleun J van Duijn, Marc JM Bonten, Antibiotic rotation strategies to reduce antimicrobial resistance in Gram-negative bacteria in European intensive care units: study protocol for a cluster-randomized crossover controlled trial, Trials, 2014, 15, 1, 10.1186/1745-6215-15-277
  • 19. David McAdams, Kristofer Wollein Waldetoft, Christine Tedijanto, Marc Lipsitch, Sam P. Brown, Andrew Fraser Read, Resistance diagnostics as a public health tool to combat antibiotic resistance: A model-based evaluation, PLOS Biology, 2019, 17, 5, e3000250, 10.1371/journal.pbio.3000250

Reader Comments

your name: *   your email: *  

Copyright Info: 2010, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved