Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Epidemic threshold conditions for seasonally forced SEIR models

1. Department of Mathematics and Statistics, McMaster University, Hamilton, ON Canada L8S 4K1
2. Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049

In this paper we derive threshold conditions for eradication of diseases that can be described by seasonally forced susceptible-exposed-infectious-recovered (SEIR) models or their variants. For autonomous models, the basic reproduction number $\mathcal{R}_0 < 1$ is usually both necessary and sufficient for the extinction of diseases. For seasonally forced models, $\mathcal{R}_0$ is a function of time $t$. We find that for models without recruitment of susceptible individuals (via births or loss of immunity), max$_t{\mathcal{R}_0(t)} < 1$ is required to prevent outbreaks no matter when and how the disease is introduced. For models with recruitment, if the latent period can be neglected, the disease goes extinct if and only if the basic reproduction number $\bar{\mathcal{R}}$ of the time-average systems (the autonomous systems obtained by replacing the time-varying parameters with their long-term time averages) is less than 1. Otherwise, $\bar{\mathcal{R}} < 1$ is sufficient but not necessary for extinction. Thus, reducing $\bar{\mathcal{R}}$ of the average system to less than 1 is sufficient to prevent or curtail the spread of an endemic disease.
  Figure/Table
  Supplementary
  Article Metrics

Keywords seasonal forcing; basic reproduction number.; epidemic models

Citation: Junling Ma, Zhien Ma. Epidemic threshold conditions for seasonally forced SEIR models. Mathematical Biosciences and Engineering, 2006, 3(1): 161-172. doi: 10.3934/mbe.2006.3.161

 

This article has been cited by

  • 1. Wendi Wang, Xiao-Qiang Zhao, Threshold Dynamics for Compartmental Epidemic Models in Periodic Environments, Journal of Dynamics and Differential Equations, 2008, 20, 3, 699, 10.1007/s10884-008-9111-8
  • 2. Yuguo Lin, Daqing Jiang, Taihui Liu, Nontrivial periodic solution of a stochastic epidemic model with seasonal variation, Applied Mathematics Letters, 2015, 45, 103, 10.1016/j.aml.2015.01.021
  • 3. Yongli Cai, Xixi Wang, Weiming Wang, Min Zhao, Stochastic Dynamics of an SIRS Epidemic Model with Ratio-Dependent Incidence Rate, Abstract and Applied Analysis, 2013, 2013, 1, 10.1155/2013/172631
  • 4. Yongli Cai, Weiming Wang, Dynamics of a parasite-host epidemiological model in spatial heterogeneous environment, Discrete and Continuous Dynamical Systems - Series B, 2015, 20, 4, 989, 10.3934/dcdsb.2015.20.989
  • 5. Nicolas Bacaër, Rachid Ouifki, Growth rate and basic reproduction number for population models with a simple periodic factor, Mathematical Biosciences, 2007, 210, 2, 647, 10.1016/j.mbs.2007.07.005
  • 6. Xiuxiang Liu, Xiao-Qiang Zhao, A Periodic Epidemic Model with Age Structure in a Patchy Environment, SIAM Journal on Applied Mathematics, 2011, 71, 6, 1896, 10.1137/100813610
  • 7. M. Marvá, R. Bravo de la Parra, J.-C. Poggiale, Approximate aggregation of a two time scales periodic multi-strain SIS epidemic model: A patchy environment with fast migrations, Ecological Complexity, 2012, 10, 34, 10.1016/j.ecocom.2011.09.002
  • 8. Jean M. Tchuenche, Alexander Nwagwo, Richard Levins, Global behaviour of an SIR epidemic model with time delay, Mathematical Methods in the Applied Sciences, 2007, 30, 6, 733, 10.1002/mma.810
  • 9. Yicang Zhou, Hui Cao, The basic reproduction number of discrete SIR and SEIS models with periodic parameters, Discrete and Continuous Dynamical Systems - Series B, 2012, 18, 1, 37, 10.3934/dcdsb.2013.18.37
  • 10. Tailei Zhang, Junli Liu, Zhidong Teng, Existence of positive periodic solutions of an SEIR model with periodic coefficients, Applications of Mathematics, 2012, 57, 6, 601, 10.1007/s10492-012-0036-5
  • 11. Xinzhi Liu, Peter Stechlinski, Transmission dynamics of a switched multi-city model with transport-related infections, Nonlinear Analysis: Real World Applications, 2013, 14, 1, 264, 10.1016/j.nonrwa.2012.06.003
  • 12. Xinzhi Liu, Peter Stechlinski, SIS models with switching and pulse control, Applied Mathematics and Computation, 2014, 232, 727, 10.1016/j.amc.2013.12.100
  • 13. Alexis Erich S. Almocera, Van Kinh Nguyen, Esteban A. Hernandez-Vargas, Multiscale model within-host and between-host for viral infectious diseases, Journal of Mathematical Biology, 2018, 10.1007/s00285-018-1241-y
  • 14. Junli Liu, Tailei Zhang, Epidemic spreading of an SEIRS model in scale-free networks, Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 8, 3375, 10.1016/j.cnsns.2010.11.019
  • 15. Curtis L. Wesley, Linda J.S. Allen, The basic reproduction number in epidemic models with periodic demographics, Journal of Biological Dynamics, 2009, 3, 2-3, 116, 10.1080/17513750802304893
  • 16. Guy Katriel, Lewi Stone, Attack rates of seasonal epidemics, Mathematical Biosciences, 2012, 235, 1, 56, 10.1016/j.mbs.2011.10.007
  • 17. Gilberto González-Parra, Abraham J. Arenas, Lucas Jódar, Piecewise finite series solutions of seasonal diseases models using multistage Adomian method, Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 11, 3967, 10.1016/j.cnsns.2009.02.023
  • 18. Yangjun Ma, Maoxing Liu, Qiang Hou, Jinqing Zhao, Modelling seasonal HFMD with the recessive infection in Shandong, China, Mathematical Biosciences and Engineering, 2013, 10, 4, 1159, 10.3934/mbe.2013.10.1159
  • 19. Zhenguo Bai, Dan Liu, Modeling seasonal measles transmission in China, Communications in Nonlinear Science and Numerical Simulation, 2015, 25, 1-3, 19, 10.1016/j.cnsns.2014.09.030
  • 20. M. Marvá, R. Bravo de la Parra, P. Auger, Reproductive Numbers for Nonautonomous Spatially Distributed Periodic SIS Models Acting on Two Time Scales, Acta Biotheoretica, 2012, 60, 1-2, 139, 10.1007/s10441-011-9141-1
  • 21. Juan Zhang, Zhen Jin, Gui-Quan Sun, Xiang-Dong Sun, Shigui Ruan, Modeling Seasonal Rabies Epidemics in China, Bulletin of Mathematical Biology, 2012, 74, 5, 1226, 10.1007/s11538-012-9720-6
  • 22. Nicolas Bacaër, Souad Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, Journal of Mathematical Biology, 2006, 53, 3, 421, 10.1007/s00285-006-0015-0
  • 23. Xiao-Yan Zhao, Shu-Min Guo, Mini Ghosh, Xue-Zhi Li, Stability and Persistence of an Avian Influenza Epidemic Model with Impacts of Climate Change, Discrete Dynamics in Nature and Society, 2016, 2016, 1, 10.1155/2016/7871251
  • 24. Xinzhi Liu, Peter Stechlinski, , Infectious Disease Modeling, 2017, Chapter 5, 135, 10.1007/978-3-319-53208-0_5
  • 25. TAILEI ZHANG, JUNLI LIU, ZHIDONG TENG, DIFFERENTIAL SUSCEPTIBILITY TIME-DEPENDENT SIR EPIDEMIC MODEL, International Journal of Biomathematics, 2008, 01, 01, 45, 10.1142/S1793524508000059
  • 26. Jean M. Tchuenche, Christinah Chiyaka, Global dynamics of a time delayedSIRmodel with varying population size, Dynamical Systems, 2012, 27, 2, 145, 10.1080/14689367.2011.607798
  • 27. Shigui Ruan, Modeling the transmission dynamics and control of rabies in China, Mathematical Biosciences, 2017, 286, 65, 10.1016/j.mbs.2017.02.005
  • 28. Rigobert C. Ngeleja, Livingstone S. Luboobi, Yaw Nkansah-Gyekye, Plague disease model with weather seasonality, Mathematical Biosciences, 2018, 10.1016/j.mbs.2018.05.013
  • 29. Maia Martcheva, A non-autonomous multi-strain SIS epidemic model, Journal of Biological Dynamics, 2009, 3, 2-3, 235, 10.1080/17513750802638712
  • 30. Zhenguo Bai, Yicang Zhou, Existence of two periodic solutions for a non-autonomous SIR epidemic model, Applied Mathematical Modelling, 2011, 35, 1, 382, 10.1016/j.apm.2010.07.002
  • 31. Drew Posny, Jin Wang, Computing the basic reproductive numbers for epidemiological models in nonhomogeneous environments, Applied Mathematics and Computation, 2014, 242, 473, 10.1016/j.amc.2014.05.079
  • 32. JINLIANG WANG, SHENGQIANG LIU, YASUHIRO TAKEUCHI, THRESHOLD DYNAMICS IN A PERIODIC SVEIR EPIDEMIC MODEL, International Journal of Biomathematics, 2011, 04, 04, 493, 10.1142/S1793524511001490
  • 33. Edgar Pereira, César M. Silva, Jacques A.L. da Silva, A generalized nonautonomous SIRVS model, Mathematical Methods in the Applied Sciences, 2013, 36, 3, 275, 10.1002/mma.2586
  • 34. Tailei Zhang, Zhidong Teng, Shujing Gao, Threshold conditions for a non-autonomous epidemic model with vaccination, Applicable Analysis, 2008, 87, 2, 181, 10.1080/00036810701772196
  • 35. Yukihiko Nakata, Toshikazu Kuniya, Global dynamics of a class of SEIRS epidemic models in a periodic environment, Journal of Mathematical Analysis and Applications, 2010, 363, 1, 230, 10.1016/j.jmaa.2009.08.027
  • 36. Yeting Zhu, Boyang Xu, Xinze Lian, Wang Lin, Zumu Zhou, Weiming Wang, A Hand-Foot-and-Mouth Disease Model with Periodic Transmission Rate in Wenzhou, China, Abstract and Applied Analysis, 2014, 2014, 1, 10.1155/2014/234509
  • 37. Nicolas Bacaër, Approximation of the Basic Reproduction Number R 0 for Vector-Borne Diseases with a Periodic Vector Population, Bulletin of Mathematical Biology, 2007, 69, 3, 1067, 10.1007/s11538-006-9166-9
  • 38. Abraham J. Arenas, Gilberto González-Parra, Benito M. Chen-Charpentier, Dynamical analysis of the transmission of seasonal diseases using the differential transformation method, Mathematical and Computer Modelling, 2009, 50, 5-6, 765, 10.1016/j.mcm.2009.05.005
  • 39. NECIBE TUNCER, MAIA MARTCHEVA, MODELING SEASONALITY IN AVIAN INFLUENZA H5N1, Journal of Biological Systems, 2013, 21, 04, 1340004, 10.1142/S0218339013400044
  • 40. Tailei Zhang, Junli Liu, Zhidong Teng, A non-autonomous epidemic model with time delay and vaccination, Mathematical Methods in the Applied Sciences, 2009, n/a, 10.1002/mma.1142
  • 41. Feng Rao, Weiming Wang, Zhibin Li, Stability analysis of an epidemic model with diffusion and stochastic perturbation, Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 6, 2551, 10.1016/j.cnsns.2011.10.005
  • 42. Nicolas Bacaër, Xamxinur Abdurahman, Resonance of the epidemic threshold in a periodic environment, Journal of Mathematical Biology, 2008, 57, 5, 649, 10.1007/s00285-008-0183-1
  • 43. Xinzhi Liu, Peter Stechlinski, Infectious disease models with time-varying parameters and general nonlinear incidence rate, Applied Mathematical Modelling, 2012, 36, 5, 1974, 10.1016/j.apm.2011.08.019
  • 44. G. Katriel, Existence of Periodic Solutions for the Periodically Forced Sir Model, Journal of Mathematical Sciences, 2014, 201, 3, 335, 10.1007/s10958-014-1993-x
  • 45. Christopher Mitchell, Christopher Kribs, A Comparison of Methods for Calculating the Basic Reproductive Number for Periodic Epidemic Systems, Bulletin of Mathematical Biology, 2017, 79, 8, 1846, 10.1007/s11538-017-0309-y
  • 46. Harshana Rajakaruna, Mark Lewis, Temperature cycles affect colonization potential of calanoid copepods, Journal of Theoretical Biology, 2017, 419, 77, 10.1016/j.jtbi.2017.01.044
  • 47. Jean M. Tchuenche, A $$\textit{SIR}$$ SIR epidemic model with incubation period, Afrika Matematika, 2015, 26, 1-2, 77, 10.1007/s13370-013-0189-8
  • 48. Joseph Livni, Lewi Stone, The stabilizing role of the Sabbath in pre-monarchic Israel:a mathematical model, Journal of Biological Physics, 2015, 41, 2, 203, 10.1007/s10867-014-9373-9
  • 49. Zhenguo Bai, Yicang Zhou, Tailei Zhang, Existence of multiple periodic solutions for an SIR model with seasonality, Nonlinear Analysis: Theory, Methods & Applications, 2011, 74, 11, 3548, 10.1016/j.na.2011.03.008
  • 50. Manli Jin, Yuguo Lin, Periodic solution of a stochastic SIRS epidemic model with seasonal variation, Journal of Biological Dynamics, 2018, 12, 1, 1, 10.1080/17513758.2017.1396369
  • 51. Xinzhi Liu, Peter Stechlinski, Pulse and constant control schemes for epidemic models with seasonality, Nonlinear Analysis: Real World Applications, 2011, 12, 2, 931, 10.1016/j.nonrwa.2010.08.017
  • 52. Toshikazu Kuniya, Yukihiko Nakata, Permanence and extinction for a nonautonomous SEIRS epidemic model, Applied Mathematics and Computation, 2012, 218, 18, 9321, 10.1016/j.amc.2012.03.011
  • 53. Xinzhi Liu, Peter Stechlinski, , Infectious Disease Modeling, 2017, Chapter 4, 83, 10.1007/978-3-319-53208-0_4
  • 54. Qianqian Qu, Cong Fang, Le Zhang, Wanru Jia, Jie Weng, Yong Li, A mumps model with seasonality in China, Infectious Disease Modelling, 2017, 2, 1, 1, 10.1016/j.idm.2016.10.001
  • 55. Daihai He, David J. D. Earn, The cohort effect in childhood disease dynamics, Journal of The Royal Society Interface, 2016, 13, 120, 20160156, 10.1098/rsif.2016.0156
  • 56. Xinzhi Liu, Peter Stechlinski, , Infectious Disease Modeling, 2017, Chapter 3, 43, 10.1007/978-3-319-53208-0_3
  • 57. Mark Jackson, Benito M. Chen-Charpentier, Modeling plant virus propagation with seasonality, Journal of Computational and Applied Mathematics, 2018, 10.1016/j.cam.2018.06.022
  • 58. Kanghuai Liu, Zhigang Chen, Jia Wu, Leilei Wang, FCNS: A Fuzzy Routing-Forwarding Algorithm Exploiting Comprehensive Node Similarity in Opportunistic Social Networks, Symmetry, 2018, 10, 8, 338, 10.3390/sym10080338
  • 59. Yongli Cai, Xinze Lian, Zhihang Peng, Weiming Wang, Spatiotemporal transmission dynamics for influenza disease in a heterogenous environment, Nonlinear Analysis: Real World Applications, 2019, 46, 178, 10.1016/j.nonrwa.2018.09.006
  • 60. Nicholas C Grassly, Christophe Fraser, Seasonal infectious disease epidemiology, Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1600, 2541, 10.1098/rspb.2006.3604
  • 61. Christopher Mitchell, Christopher Kribs, Invasion reproductive numbers for periodic epidemic models, Infectious Disease Modelling, 2019, 10.1016/j.idm.2019.04.002
  • 62. Bassidy Dembele, Avner Friedman, Abdul-Aziz Yakubu, Malaria model with periodic mosquito birth and death rates, Journal of Biological Dynamics, 2009, 3, 4, 430, 10.1080/17513750802495816
  • 63. Maia Martcheva, , An Introduction to Mathematical Epidemiology, 2015, Chapter 11, 281, 10.1007/978-1-4899-7612-3_11
  • 64. Yicang Zhou, Zhenguo Bai, Addendum, Discrete and Continuous Dynamical Systems - Series B, 2011, 15, 3, 915, 10.3934/dcdsb.2011.15.915
  • 65. v b, Test high volume of citations, Testing new deposit code, 2012, 4, 2, 28, 10.5555/20120925-a1
  • 66. Daihai He, Jonathan Dushoff, Raluca Eftimie, David J. D. Earn, Patterns of spread of influenza A in Canada, Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 1770, 20131174, 10.1098/rspb.2013.1174
  • 67. Daihai He, Jonathan Dushoff, Troy Day, Junling Ma, David J. D. Earn, Inferring the causes of the three waves of the 1918 influenza pandemic in England and Wales, Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 1766, 20131345, 10.1098/rspb.2013.1345
  • 68. Karsten Hempel, David J. D. Earn, A century of transitions in New York City's measles dynamics, Journal of The Royal Society Interface, 2015, 12, 106, 20150024, 10.1098/rsif.2015.0024
  • 69. Olga Krylova, David J. D. Earn, Effects of the infectious period distribution on predicted transitions in childhood disease dynamics, Journal of The Royal Society Interface, 2013, 10, 84, 20130098, 10.1098/rsif.2013.0098
  • 70. Irena Papst, David J. D. Earn, Invariant predictions of epidemic patterns from radically different forms of seasonal forcing, Journal of The Royal Society Interface, 2019, 16, 156, 20190202, 10.1098/rsif.2019.0202

Reader Comments

your name: *   your email: *  

Copyright Info: 2006, Junling Ma, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved