Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

A Metapopulation Model Of Granuloma Formation In The Lung During Infection With Mycobacterium Tuberculosis

1. Biosystems Group, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143
2. Department of Mathematics, University of Michigan, 525 E. University Ave., Ann Arbor, MI 48109
3. Department of Microbiology and Immunology, University of Michigan Medical School, 1150 Medical Center Drive, Ann Arbor, MI 48109

The immune response to Mycobacterium tuberculosis infection (Mtb) is the formation of unique lesions, called granulomas. How well these granulomas form and function is a key issue that might explain why individuals experience different disease outcomes. The spatial structures of these granulomas are not well understood. In this paper, we use a metapopulation framework to develop a spatio-temporal model of the immune response to Mtb. Using this model, we are able to investigate the spatial organization of the immune response in the lungs to Mtb. We identify both host and pathogen factors that contribute to successful infection control. Additionally, we identify specific spatial interactions and mechanisms important for successful granuloma formation. These results can be further studied in the experimental setting.
  Article Metrics

Keywords chemotaxis; metapopulation; mathematical model; diffusion.; granuloma; Mycobacterium tuberculosis

Citation: Suman Ganguli, David Gammack, Denise E. Kirschner. A Metapopulation Model Of Granuloma Formation In The Lung During Infection With Mycobacterium Tuberculosis. Mathematical Biosciences and Engineering, 2005, 2(3): 535-560. doi: 10.3934/mbe.2005.2.535


This article has been cited by

  • 1. Simeone Marino, Denise Kirschner, A Multi-Compartment Hybrid Computational Model Predicts Key Roles for Dendritic Cells in Tuberculosis Infection, Computation, 2016, 4, 4, 39, 10.3390/computation4040039
  • 2. Phillip P Salvatore, Alvaro Proaño, Emily A Kendall, Robert H Gilman, David W Dowdy, Linking Individual Natural History to Population Outcomes in Tuberculosis, The Journal of Infectious Diseases, 2018, 217, 1, 112, 10.1093/infdis/jix555
  • 3. Denise Kirschner, Elsje Pienaar, Simeone Marino, Jennifer J. Linderman, A review of computational and mathematical modeling contributions to our understanding of Mycobacterium tuberculosis within-host infection and treatment, Current Opinion in Systems Biology, 2017, 3, 170, 10.1016/j.coisb.2017.05.014
  • 4. Simeone Marino, Jennifer J. Linderman, Denise E. Kirschner, A multifaceted approach to modeling the immune response in tuberculosis, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 4, 479, 10.1002/wsbm.131
  • 5. Simeone Marino, Mohammed El-Kebir, Denise Kirschner, A hybrid multi-compartment model of granuloma formation and T cell priming in Tuberculosis, Journal of Theoretical Biology, 2011, 280, 1, 50, 10.1016/j.jtbi.2011.03.022
  • 6. Luca Albergante, Jon Timmis, Lynette Beattie, Paul M. Kaye, Denis Thieffry, A Petri Net Model of Granulomatous Inflammation: Implications for IL-10 Mediated Control of Leishmania donovani Infection, PLoS Computational Biology, 2013, 9, 11, e1003334, 10.1371/journal.pcbi.1003334
  • 7. Sudha Bhavanam, Gina R Rayat, Monika Keelan, Dennis Kunimoto, Steven J Drews, Understanding the pathophysiology of the human TB lung granuloma usingin vitrogranuloma models, Future Microbiology, 2016, 11, 8, 1073, 10.2217/fmb-2016-0005
  • 8. Yimin Du, Jianhong Wu, Jane M. Heffernan, A simple in-host model for Mycobacterium tuberculosis that captures all infection outcomes, Mathematical Population Studies, 2017, 24, 1, 37, 10.1080/08898480.2015.1054220
  • 9. Michael J. Pitcher, Ruth Bowness, Simon Dobson, Stephen H. Gillespie, A spatially heterogeneous network-based metapopulation software model applied to the simulation of a pulmonary tuberculosis infection, Applied Network Science, 2018, 3, 1, 10.1007/s41109-018-0091-2
  • 10. Peter J. White, Geoff P. Garnett, , Modelling Parasite Transmission and Control, 2010, Chapter 9, 127, 10.1007/978-1-4419-6064-1_9
  • 11. Mohammad Fallahi-Sichani, Simeone Marino, JoAnne L. Flynn, Jennifer J. Linderman, Denise E. Kirschner, , Systems Biology of Tuberculosis, 2013, Chapter 7, 127, 10.1007/978-1-4614-4966-9_7
  • 12. Nicholas Kwasi-Do Ohene Opoku, Gaston K. Mazandu, MODELLING THE HUMAN IMMUNE RESPONSE DYNAMICS DURING PROGRESSION FROM MYCOBACTERIUM LATENT INFECTION TO DISEASE, Applied Mathematical Modelling, 2019, 10.1016/j.apm.2019.11.013
  • 13. Nan Zhang, Natasha Strydom, Sandeep Tyagi, Heena Soni, Rokeya Tasneen, Eric L. Nuermberger, Rada M. Savic, Mechanistic Modeling of Mycobacterium tuberculosis Infection in Murine Models for Drug and Vaccine Efficacy Studies, Antimicrobial Agents and Chemotherapy, 2020, 64, 3, 10.1128/AAC.01727-19
  • 14. Martin J. Blaser, Denise Kirschner, The equilibria that allow bacterial persistence in human hosts, Nature, 2007, 449, 7164, 843, 10.1038/nature06198
  • 16. Sarah B. Minucci, Rebecca L. Heise, Angela M. Reynolds, Review of Mathematical Modeling of the Inflammatory Response in Lung Infections and Injuries, Frontiers in Applied Mathematics and Statistics, 2020, 6, 10.3389/fams.2020.00036

Reader Comments

your name: *   your email: *  

Copyright Info: 2005, Suman Ganguli, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved