Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Syntrophic microbial communities on straw as biofilm carrier increase the methane yield of a biowaste-digesting biogas reactor

1 Institute of Microbiology and Biotechnology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany;
2 Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany;
3 Present address: Renergon GmbH, Kalmenbrunnenstraße 2/1, D-89129 Langenau, Germany

Special Issues: Biofilm engineering - Harnessing the power of beneficial biofilms

Biogas from biowaste can be an important source of renewable energy, but the fermentation process of low-structure waste is often unstable. The present study uses a full-scale biogas reactor to test the hypothesis that straw as an additional biofilm carrier will increase methane yield; and this effect is mirrored in a specific microbial community attached to the straw. Better reactor performance after addition of straw, at simultaneously higher organic loading rate and specific methane yield confirmed the hypothesis. The microbial communities on straw as a biofilm carrier and of the liquid reactor content were investigated using 16S rDNA amplicon sequencing by means of 454 pyrosequencing technology. The results revealed high diversity of the bacterial communities in the liquid reactor content as well as the biofilms on the straw. The most abundant archaea in all samples belonged to the genera Methanoculleus and Methanosarcina. Addition of straw resulted in a significantly different microbial community attached to the biofilm carrier. The bacterium Candidatus Cloacamonas acidaminovorans and methanogenic archaea of the genus Methanoculleus dominated the biofilm on straw. Syntrophic interactions between the hydrogenotrophic Methanoculleus sp. and members of the hydrogen-producing bacterial community within biofilms may explain the improved methane yield. Thus, straw addition can be used to improve and to stabilize the anaerobic process in substrates lacking biofilm-supporting structures.
  Article Metrics

Keywords anaerobic digestion; fiber-rich plant material; food leftovers; agricultural residues; Candidatus Cloacamonas acidaminovorans; Methanoculleus sp

Citation: Frank R. Bengelsdorf, Christina Gabris, Lisa Michel, Manuel Zak, Marian Kazda. Syntrophic microbial communities on straw as biofilm carrier increase the methane yield of a biowaste-digesting biogas reactor. AIMS Bioengineering, 2015, 2(3): 264-276. doi: 10.3934/bioeng.2015.3.264


  • 1. Mshandete AM, Björnsson L, Kivaisi AK, et al. (2008) Performance of biofilm carriers in anaerobic digestion of sisal leaf waste leachate. EJB 11: 93-100.
  • 2. Andersson J, Björnsson L (2002) Evaluation of straw as a biofilm carrier in the methanogenic stage of two-stage anaerobic digestion of crop residues. Bioresour Technol 85: 51-56.    
  • 3. Flemming H, Wingender J (2010) The biofilm matrix. Nat Rev Micro 8: 623-633.
  • 4. Schink B, Stams AM (2013) Syntrophism among prokaryotes. In Rosenberg E, DeLong E, Lory S, Stackebrandt E, Thompson F (eds.), The Prokaryotes. Springer Berlin Heidelberg; 471-493.
  • 5. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147: 3-9.
  • 6. Langer S, Schropp D, Bengelsdorf FR, et al. (2013) Dynamics of biofilm formation during anaerobic digestion of organic waste. Anaerobe 29: 44-51.
  • 7. Westerholm M, Levén L, Schnürer A (2012) Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia. Appl Environ Microbiol 78: 7619-7625.    
  • 8. Fotidis IA, Karakashev D, Angelidaki I (2013) The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels. Int J Environ Sci Technol E-pub: 1-8.
  • 9. Bengelsdorf FR, Gerischer U, Langer S, et al. (2013) Stability of a biogas-producing bacterial, archaeal and fungal community degrading food residues. FEMS Microbiol Ecol 84: 201-212.    
  • 10. Fernández N, Díaz E, Amils R, et al. (2008) Analysis of microbial community during biofilm development in an anaerobic wastewater treatment reactor. Microb Ecol 56: 121-132.    
  • 11. Nettmann E, Bergmann I, Pramschufer S, et al. (2010) Polyphasic analyses of methanogenic archaea communities in agricultural biogas plants. Appl Environ Microbiol 76: 2540-2548.    
  • 12. Bengelsdorf FR. 2011. Characterization of the microbial community in a biogas reactor supplied with organic residues. Ph. D. thesis. Ulm University, Ulm.
  • 13. McKenna P, Hoffmann C, Minkah N, et al. 2008. The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathog; e20.
  • 14. Nicol GW, Glover LA, Prosser JI. (2003) The impact of grassland management on archaeal community structure in upland pasture rhizosphere soil. Environ Microbiol 5: 152-162.    
  • 15. Cole JR, Wang Q, Cardenas E, et al. (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37: D141-D145.    
  • 16. Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbiol Biotechnol 38: 560-564.
  • 17. Koster IW, Lettinga G (1988) Anaerobic digestion at extreme ammonia concentrations. Biological Wastes 25: 51-59.    
  • 18. Li A, Chu Y, Wang X, et al. (2013) A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. Biotechnol Biofuels 6: 3.    
  • 19. Martínez MA, Romero H, Perotti NI (2014) Two amplicon sequencing strategies revealed different facets of the prokaryotic community associated with the anaerobic treatment of vinasses from ethanol distilleries. Bioresour Technol 153: 388-392.    
  • 20. Wirth R, Kovacs E, Maroti G, et al. (2012) Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels 5: 41-56.
  • 21. Kröber M, Bekel T, Diaz NN, et al. (2009) Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142: 38-49.    
  • 22. Freundt EA, Whitcomb RF, Barile MF, et al. (1984) Proposal for elevation of the family Acholeplasmataceae to ordinal rank: Acholeplasmatales. Int J Syst Bacteriol 34: 346-349.    
  • 23. Razin S (2006) The genus Mycoplasma and related genera (Class Mollicutes). In Dworkin M, Falkow S, Rosenberg E, Schleifer K, Stackebrandt E (eds.), The Prokaryotes. Springer New York; 836-904.
  • 24. Pelletier E, Kreimeyer A, Bocs S, et al. (2008) “Candidatus Cloacamonas acidaminovorans”: genome sequence reconstruction provides a first glimpse of a new bacterial division. J Bacteriol 190: 2572-2579.    
  • 25. Whitman W, Bowen T, Boone D (2006) The Methanogenic Bacteria, In Dworkin M, Falkow S, Rosenberg E, Schleifer K, Stackebrandt E (eds.), The Prokaryotes, 3rd ed., Springer, New York. 3: 165-207.
  • 26. Lykidis A, Chen C, Tringe SG, et al. (2011) Multiple syntrophic interactions in a terephthalate-degrading methanogenic consortium. ISME J 5: 122-130.    
  • 27. Sun L, Müller B, Westerholm M, et al. (2014) Syntrophic acetate oxidation in industrial CSTR biogas digesters. J Biotechnol 171: 39-44.    
  • 28. Kazda M, Zak M, Kern M, et al. (2013) Treatment of liquid and solidmunicipal waste in anaerobic digestion optimized for biogas production. Fresenius Environ Bull 22: 2048-2052.


This article has been cited by

  • 1. Sharif Ahmed, Daniel Einfalt, Marian Kazda, Co-Digestion of Sugar Beet Silage Increases Biogas Yield from Fibrous Substrates, BioMed Research International, 2016, 2016, 1, 10.1155/2016/2147513
  • 2. Sharif Ahmed, Marian Kazda, Characteristics of on-demand biogas production by using sugar beet silage, Anaerobe, 2017, 10.1016/j.anaerobe.2017.04.016
  • 3. Martin Alexander Fischer, Simon Güllert, Sarah Refai, Sven Künzel, Uwe Deppenmeier, Wolfgang R. Streit, Ruth Anne Schmitz, Long-term investigation of microbial community composition and transcription patterns in a biogas plant undergoing ammonia crisis, Microbial Biotechnology, 2018, 10.1111/1751-7915.13313
  • 4. Martin A. Fischer, Andrea Ulbricht, Sven C. Neulinger, Sarah Refai, Kati Waßmann, Sven Künzel, Ruth A. Schmitz, Immediate Effects of Ammonia Shock on Transcription and Composition of a Biogas Reactor Microbiome, Frontiers in Microbiology, 2019, 10, 10.3389/fmicb.2019.02064
  • 5. Kerstin Maurus, Sharif Ahmed, Wiebke Getz, Marian Kazda, Sugar beet silage as highly flexible feedstock for on demand biogas production, Sugar Industry, 2018, 691, 10.36961/si20165
  • 6. Abigail W. Porter, Sarah J. Wolfson, Lily. Young, Pharmaceutical transforming microbes from wastewater and natural environments can colonize microplastics, AIMS Environmental Science, 2020, 7, 1, 99, 10.3934/environsci.2020006
  • 7. Shah Faisal, El-Sayed Salama, Sedky H. A. Hassan, Byong-Hun Jeon, Xiangkai Li, Biomethane enhancement via plastic carriers in anaerobic co-digestion of agricultural wastes, Biomass Conversion and Biorefinery, 2020, 10.1007/s13399-020-00779-x

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Frank R. Bengelsdorf, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved