Order reprints

Global stability for epidemic model with constant latency and infectious periods

Gang Huang Edoardo Beretta Yasuhiro Takeuchi

*Corresponding author:  


In recent years many delay epidemiological models have been proposed to study at which stage of the epidemics the delays can destabilize the disease free equilibrium, or the endemic equilibrium, giving rise to stability switches. One of these models is the SEIR model with constant latency time and infectious periods [2], for which the authors have proved that the two delays are harmless in inducing stability switches. However, it is left open the problem of the global asymptotic stability of the endemic equilibrium whenever it exists. Even the Lyapunov functions approach, recently proposed by Huang and Takeuchi to study many delay epidemiological models, fails to work on this model. In this paper, an age-infection model is presented for the delay SEIR epidemic model, such that the properties of global asymptotic stability of the equilibria of the age-infection model imply the same properties for the original delay-differential epidemic model. By introducing suitable Lyapunov functions to study the global stability of the disease free equilibrium (when $\mathcal{R}_0\leq 1$) and of the endemic equilibria (whenever $ \mathcal{R}_0>1$) of the age-infection model, we can infer the corresponding global properties for the equilibria of the delay SEIR model in [2], thus proving that the endemic equilibrium in [2] is globally asymptotically stable whenever it exists.
    Furthermore, we also present a review of the SIR, SEIR epidemic models, with and without delays, appeared in literature, that can be seen as particular cases of the approach presented in the paper.

Please supply your name and a valid email address you yourself

Fields marked*are required

Article URL   http://www.aimspress.com/MBE/article/2576.html
Article ID   1551-0018_2012_2_297
Editorial Email  
Your Name *
Your Email *
Quantity *

Copyright © AIMS Press All Rights Reserved