Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

New kids on the block: emerging oleaginous yeast of biotechnological importance

Department of Chemical and Biomolecular Engineering, Clemson University, Clemson SC 29634, USA

† These authors contributed equally to this work.

Topical Section: Yeast Functional Genomics

There is growing interest in using oleaginous yeast for the production of a variety of fatty acids and fatty acid-derived oleochemicals. This is motivated by natural propensity for high flux through lipid biosynthesis that has naturally evolved, making them a logical starting point for additional genetic engineering to improve titers and productivities. Much of the academic and industrial focus has centered on yeast that have significant genetic engineering tool capabilities, such as Yarrowia lipolytica, and those that have naturally high lipid accumulation, such as Rhodosporidium toruloides and Lipomyces starkeyi; however, there are oleaginous yeast with phenotypes better aligned with typically inhibitory process conditions, such as high salt concentrations and lignocellulosic derived inhibitors. This review addresses the foundational work in characterizing two emerging oleaginous yeast of interest: Debaryomyces hansenii and Trichosporon oleaginosus. We focus on the physiological and metabolic properties of these yeast that make each attractive for bioprocessing of lignocellulose to fuels and chemicals, discuss their respective genetic engineering tools and highlight the critical barriers facing the broader implementation of these oleaginous yeast.
  Article Metrics

Keywords Debaryomyces hansenii; Trichosporon oleaginosus; oleaginous yeast; metabolic engineering; genetic engineering

Citation: Allison Yaguchi, Dyllan Rives, Mark Blenner. New kids on the block: emerging oleaginous yeast of biotechnological importance. AIMS Microbiology, 2017, 3(2): 227-247. doi: 10.3934/microbiol.2017.2.227


  • 1. Ageitos JM, Vallejo JA, Veiga-Crespo P, et al. (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biot 90: 1219–1227.    
  • 2. Beopoulos A, Cescut J, Haddouche R, et al. (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48: 375–387.    
  • 3. Kot AM, Blazejak S, Kurcz A, et al. (2016) Rhodotorula glutinis-potential source of lipids, carotenoids, and enzymes for use in industries. Appl Microbiol Biot 100: 6103–6117.    
  • 4. Ledesma-Amaro R, Nicaud JM (2016) Metabolic engineering for expanding the substrate range of Yarrowia lipolytica. Trends Biotechnol 34: 798–809.    
  • 5. Mannazzu I, Landolfo S, da Silva TL, et al. (2015) Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest. World J Microb Biot 31: 1665–1673.    
  • 6. Breuer U, Harms H (2006) Debaryomyces hansenii-an extremophilic yeast with biotechnological potential. Yeast 23: 415–437.    
  • 7. Prista C, Michan C, Miranda IM, et al. (2016) The halotolerant Debaryomyces hansenii, the Cinderella of non-conventional yeasts. Yeast 33: 523–533.    
  • 8. Fitzpatrick DA, Logue ME, Stajich JE, et al. (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6: 99.    
  • 9. Barnett J, Payne R, Yarrow D (2000) Yeasts: characteristics and identification.
  • 10. Davenport R (1980) Cold-tolerant yeasts and yeast-like organisms, In: Skinner FA, Passmore SM, Davenport RR, editor, Biology and Activities of Yeasts, London: Academic Press, 215–230.
  • 11. Norkrans B (1966) Studies on marine occurring yeasts: Growth related to pH, NaCl concentration and temperature. Arch Mikrobiol 54: 374–392.    
  • 12. Tilbury RH (1980) Xerotolerant (osmophilic) yeasts, In: Skinner FA, Passmore SM, Davenport RR, Editor, Biology and Activities of Yeasts, 153–176.
  • 13. Bansal PK, Mondal AK (2000) Isolation and sequence of the HOG1 homologue from Debaryomyces hansenii by complementation of the hog1 Delta strain of Saccharomyces cerevisiae. Yeast 16: 81–88.    
  • 14. Kurtzman CP, Robnett CJ (2013) Relationships among genera of the Saccharomycotina (Ascomycota) from multigene phylogenetic analysis of type species. FEMS Yeast Res 13: 23–33.    
  • 15. National Collection of Yeast Cultures, 2017. Available from: http://www.ncyc.co.uk/.
  • 16. Nguyen HV, Gaillardin C, Neuveglise C (2009) Differentiation of Debaryomyces hansenii and Candida famata by rRNA gene intergenic spacer fingerprinting and reassessment of phylogenetic relationships among D-hansenii, C-famata, D-fabryi, C-flareri (=D-subglobosus) and D-prosopidis: description of D-vietnamensis sp nov closely related to D-nepalensis. Fems Yeast Research 9: 641–662.    
  • 17. Butinar L, Santos S, Spencermartins I, et al. (2005) Yeast diversity in hypersaline habitats. Fems Microbiol Lett 244: 229–234.    
  • 18. Nakase T, Suzuki M (1985) Taxonomic studies on Debaryomyces hansenii (Zopf) Lodder et Kreger-van Rij and related species. I. Chemotaxonomic investigations. J Gen Appl Microbiol 31: 49–69.    
  • 19. Lépingle A, Casaregola S, Neuvéglise C, et al. (2000) Genomic exploration of the Hemiascomycetous yeasts: 14. Debaryomyces hansenii, var. hansenii. FEBS Letters 487: 82–86.
  • 20. Ramfrez-Orozco M, Hernandez-Saavedra N, Ochoa JL (2001) Debaryomyces hansenii growth in nonsterile seawater ClO2-peptone-containing medium. Can J Microbiol 47: 676–679.    
  • 21. Riley R, Haridas S, Wolfe KH, et al. (2016) Comparative genomics of biotechnologically important yeasts. P Natl Acad Sci USA 113: 9882–9887.    
  • 22. Grigoriev IV, Nordberg H, Shabalov I, et al. (2012) The genome portal of the department of energy joint genome institute. Nucleic Acids Res 40: D26–D32.    
  • 23. Yadav JS, Loper JC (1999) Multiple P450alk (cytochrome P450 alkane hydroxylase) genes from the halotolerant yeast Debaryomyces hansenii. Gene 226: 139–146.    
  • 24. Yanischperron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119.    
  • 25. Biswas D, Datt M, Aggarwal M, et al. (2013) Molecular cloning, characterization, and engineering of xylitol dehydrogenase from Debaryomyces hansenii. Appl Microbiol Biotechnol 97: 1613–1623.    
  • 26. Dominguez JM, Gong CS, Tsao GT (1997) Production of xylitol from D-xylose by Debaryomyces hansenii. Appl Biochem Biotech 63–65: 117–127.
  • 27. Duarte LC, Nobre AP, Gírio FM, et al. (1994) Determination of the kinetic parameters in continuous cultivation by Debaryomyces hansenii grown on D-xylose. Biotechnology Techniques 8: 859–864.    
  • 28. Parajo JC, Dominguez H, Dominguez JM (1997) Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolysates. Enzyme Microb Tech 21: 18–24.    
  • 29. Cruz JM, Dominguez JM, Dominguez H, et al. (2000) Xylitol production from barley bran hydrolysates by continuous fermentation with Debaryomyces hansenii. Biotechnol Lett 22: 1895–1898.    
  • 30. Carvalheiro F, Duarte LC, Lopes S, et al. (2006) Supplementation requirements of brewery's spent grain hydrolysate for biomass and xylitol production by Debaryomyces hansenii CCMI 941. J Ind Microbiol Biotechnol 33: 646–654.    
  • 31. Kurian JK, Minu AK, Banerji A, et al. (2010) Bioconversion of hemicellulose hydrolysate of sweet sorghum bagasse to ethanol by using Pichia stipitis NCIM 3497 and Debaryomyces hansenii sp. Bioresources 5: 2404–2416.
  • 32. Nobre MF, Dacosta MS (1985) Factors favoring the accumulation of arabinitol in the yeast Debaryomyces hansenii. Can J Microbiol 31: 467–471.    
  • 33. Papagora C, Roukas T, Kotzekidou P (2013) Optimization of extracellular lipase production by Debaryomyces hansenii isolates from dry-salted olives using response surface methodology. Food Bioprod Process 91: 413–420.    
  • 34. Max B, Tugores F, Cortes-Dieguez S, et al. (2012) Bioprocess design for the microbial production of natural phenolic compounds by Debaryomyces hansenii. Appl Biochem Biotechnol 168: 2268–2284.    
  • 35. Girio FM, Amaro C, Azinheira H, et al. (2000) Polyols production during single and mixed substrate fermentations in Debaryomyces hansenii. Bioresource Technol 71: 245–251.    
  • 36. Jennings DH, Burke RM (1990) Compatible solutes-the mycological dimension and their role as physiological buffering agents. New Phytol 116: 277–283.    
  • 37. Adler L, Blomberg A, Nilsson A (1985) Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hansenii. J Bacteriol 162: 300–306.
  • 38. Larsson C, Gustafsson L (1987) Glycerol production in relation to the ATP pool and heat-production rate of the yeasts Debaryomyces hansenii and Saccharomyces cerevisiae during salt stress. Arch Microbiol 147: 358–363.    
  • 39. Merdinger E, Devine EM (1965) Lipids of Debaryomyces hansenii. J Bacteriol 89: 1488–1493.
  • 40. De FP, Li L, Nikolov Z, et al. (2012) Transformation of glycerol and cellulosic materials into high energy fuels, In: USPTO, editor, USA.
  • 41. Voronovsky A, Abbas C, Fayura L, et al. (2002) Development of a transformation system for the flavinogenic yeast. FEMS Yeast Research 2: 381–388.
  • 42. Tunbladjohansson I, Andre L, Adler L (1987) The sterol and phospholipid composition of the salt-tolerant yeast Debaryomyces hansenii grown at various concentrations of NaCl. Biochim Biophys Acta 921: 116–123.    
  • 43. Flores M, Dura MA, Marco A, et al. (2004) Effect of Debaryomyces spp. on aroma formation and sensory quality of dry-fermented sausages. Meat Sci 68: 439–446.
  • 44. Andrade MJ, Cordoba JJ, Casado EM, et al. (2010) Effect of selected strains of Debaryomyces hansenii on the volatile compound production of dry fermented sausage "salchichon". Meat Science 85: 256–264.    
  • 45. Salgado JM, Gonzalez-Barreiro C, Rodriguez-Solana R, et al. (2012) Study of the volatile compounds produced by Debaryomyces hansenii NRRL Y-7426 during the fermentation of detoxified concentrated distilled grape marc hemicellulosic hydrolysates. World J Microbiol Biotechnol 28: 3123–3134.
  • 46. Van den Tempel T, Jakobsen M (2000) The technological characteristics of Debaryomyces hansenii and Yarrowia lipolytica and their potential as starter cultures for production of Danablu. Int Dairy J 10: 263–270.    
  • 47. Sherman D, Durrens P, Beyne E, et al. (2004) Genolevures: comparative genomics and molecular evolution of hemiascomycetous yeasts. Nucleic Acids Research 32: D315–D318.    
  • 48. Dujon B, Sherman D, Fischer G, et al. (2004) Genome evolution in yeasts. Nature 430: 35–44.    
  • 49. Sugita T, Nakase T (1999) Non-universal usage of the leucine CUG codon and the molecular phylogeny of the genus Candida. Syst Appl Microbiol 22: 79–86.    
  • 50. Kumar S, Randhawa A, Ganesan K, et al. (2012) Draft genome sequence of salt-tolerant yeast Debaryomyces hansenii var. hansenii MTCC 234. Eukaryot Cell 11: 961–962.    
  • 51. Sacerdot C, Casaregola S, Lafontaine I, et al. (2008) Promiscuous DNA in the nuclear genomes of hemiascomycetous yeasts. FEMS Yeast Res 8: 846–857.    
  • 52. Bon E, Casaregola S, Blandin G, et al. (2003) Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. Nucleic Acids Research 31: 1121–1135.    
  • 53. Cong YS, Yarrow D, Li YY, et al. (1994) Linear DNA plasmids from Pichia etchellsii, Debaryomyces hansenii and Wingea robertsiae. Microbiol 140: 1327–1335.    
  • 54. Gunge N, Fukuda K, Morikawa S, et al. (1993) Osmophilic linear plasmids from the salt-tolerant yeast Debaryomyces hansenii. Curr Genet 23: 443–449.    
  • 55. Fukuda K, Jin-Shan C, Kawano M, et al. (2004) Stress responses of linear plasmids from Debaryomyces hansenii. Fems Microbiol Lett 237: 243–248.
  • 56. Dmytruk KV, Voronovsky AY, Sibirny AA (2006) Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments. Curr Genet 50: 183–191.    
  • 57. Ricaurte ML, Govind NS (1999) Construction of plasmid vectors and transformation of the marine yeast Debaryomyces hansenii. Mar Biotechnol 1: 15–19.    
  • 58. Minhas A, Biswas D, Mondal AK (2009) Development of host and vector for high-efficiency transformation and gene disruption in Debaryomyces hansenii. FEMS Yeast Res 9: 95–102.    
  • 59. Dohmen RJ, Strasser AWM, Honer CB, et al. (1991) An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast 7: 691–692.    
  • 60. Schiestl RH, Manivasakam P, Woods RA, et al. (1993) Introducing DNA into yeast by transformation. Methods 5: 70–85.
  • 61. Maggi RG, Govind NS (2004) Regulated expression of green fluorescent protein in Debaryomyces hansenii. J Ind Microbiol Biot 31: 301–310.    
  • 62. Rosel H, Kunze G (1998) Integrative transformation of the dimorphic yeast Arxula adeninivorans LS3 based on hygromycin B resistance. Curr Genet 33: 157–163.    
  • 63. Terentiev Y, Pico AH, Boer E, et al. (2004) A wide-range integrative yeast expression vector system based on Arxula adeninivorans-derived elements. J Ind Microbiol Biotechnol 31: 223–228.    
  • 64. Govind NS, Banaszak AT (1992) Isolation and characterization of an autonomously replicating sequence (ARSD) from the marine yeast Debaryomyces hansenii. Mol Mar Biol Biotechnol 1: 215–218.
  • 65. Boretsky Y, Voronovsky A, Liuta-Tehlivets O, et al. (1999) Identification of an ARS element and development of a high efficiency transformation system for Pichia guilliermondii. Curr Genet 36: 215–221.
  • 66. Rose MD, Broach JR (1991) Cloning genes by complementation in yeast. Method Enzymol 194: 195–230.    
  • 67. Pal S, Choudhary V, Kumar A, et al. (2013) Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. Bioresour Technol 147: 449–455.    
  • 68. Young EM, Tong A, Bui H, et al. (2014) Rewiring yeast sugar transporter preference through modifying a conserved protein motif. P Natl Acad Sci USA 111: 131–136.    
  • 69. Young E, Poucher A, Comer A, et al. (2011) Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Appl Environ Microb 77: 3311–3319.    
  • 70. Schwartz CM, Hussain MS, Blenner M, et al. (2016) Synthetic RNA polymerase III promoters facilitate high efficiency CRISPR-Cas9 mediated genome editing in Yarrowia lipolytica. ACS Synth Biol 5: 356–359.    
  • 71. Schwartz C, Shabbir-Hussain M, Frogue K, et al. (2016) Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica. ACS Synth Biol.
  • 72. Fell JW, Boekhout T, Fonseca A, et al. (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Micr 50: 1351–1371.    
  • 73. Gujjari P, Suh SO, Coumes K, et al. (2011) Characterization of oleaginous yeasts revealed two novel species: Trichosporon cacaoliposimilis sp. nov. and Trichosporon oleaginosus sp. nov. Mycologia 103: 1110–1118.
  • 74. Moon NJ, Hammond EG, Glatz BA (1978) Conversion of Cheese Whey and Whey Permeate to Oil and Single-Cell Protein. J Dairy Sci 61: 1537–1547.    
  • 75. Park WS, Murphy PA, Glatz BA (1990) Lipid metabolism and cell composition of the oleaginous yeast Apiotrichum curvatum grown at different carbon to nitrogen ratios. Can J Microbiol 36: 318–326.    
  • 76. Gong Z, Shen H, Zhou W, et al. (2015) Efficient conversion of acetate into lipids by the oleaginous yeast Cryptococcus curvatus. Biotechnol Biofuels 8: 189.    
  • 77. Chi ZY, Zheng YB, Ma JW, et al. (2011) Oleaginous yeast Cryptococcus curvatus culture with dark fermentation hydrogen production effluent as feedstock for microbial lipid production. Int J Hydrogen Energ 36: 9542–9550.    
  • 78. Kourist R, Bracharz F, Lorenzen J, et al. (2015) Genomics and transcriptomics analyses of the oil-accumulating basidiomycete yeast Trichosporon oleaginosus: insights into substrate utilization and alternative evolutionary trajectories of fungal mating systems. MBio 6: e00918-15.
  • 79. Xu X, Kim JY, Cho HU, et al. (2015) Bioconversion of volatile fatty acids from macroalgae fermentation into microbial lipids by oleaginous yeast. Chem Eng J 264: 735–743.    
  • 80. Davies RJ (1988) Yeast oil from cheese whey-process development, In: RSM, editor, Single Cell Oils, 99–145.
  • 81. Iassonova DR, Hammond EG, Beattie SE (2008) Oxidative stability of polyunsaturated triacylglycerols encapsulated in oleaginous yeast. J Am Oil Chem Soc 85: 711–716.    
  • 82. Wu S, Hu C, Zhao X, et al. (2010) Production of lipid from N-acetylglucosamine by Cryptococcus curvatus. Eur J Lipid Sci Tech 112: 727–733.    
  • 83. Bednarski W, Leman J, Tomasik J (1986) Utilization of beet molasses and whey for fat biosynthesis by a yeast. Agr Wastes 18: 19–26.    
  • 84. Beligon V, Poughon L, Christophe G, et al. (2015) Improvement and modeling of culture parameters to enhance biomass and lipid production by the oleaginous yeast Cryptococcus curvatus grown on acetate. Bioresour Technol 192: 582–591.    
  • 85. Christophe G, Deo JL, Kumar V, et al. (2012) Production of oils from acetic acid by the oleaginous yeast Cryptococcus curvatus. Appl Biochem Biotechnol 167: 1270–1279.    
  • 86. Glatz B, Hammond E, Hsu K, et al. (1984) Production and modification of fats and oils by yeast fermentation, In: C. Ratledge PD, J. Rattray, editor, Biotechnology for the Oils and Fats Industry, 163–176.
  • 87. Zhang X, Yan S, Tyagi RD, et al. (2014) Lipid production from Trichosporon oleaginosus cultivated with pre-treated secondary wastewater sludge. Fuel 134: 274–282.    
  • 88. Zhang XB, Shen HW, Yang XB, et al. (2016) Microbial lipid production by oleaginous yeasts on Laminaria residue hydrolysates. Rsc Advances 6: 26752–26756.    
  • 89. Chi ZY, Zheng YB, Jiang AP, et al. (2011) Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. Appl Biochem Biotech 165: 442–453.    
  • 90. Yu X, Zheng Y, Dorgan KM, et al. (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102: 6134–6140.    
  • 91. Zheng Y, Chi Z, Ahring BK, et al. (2012) Oleaginous yeast Cryptococcus curvatus for biofuel production: Ammonia's effect. Biomass and Bioenergy 37: 114–121.    
  • 92. Hassan M, Blanc PJ, Pareilleux A, et al. (1995) Production of cocoa butter equivalents from prickly-pear juice fermentation by an unsaturated fatty acid auxotroph of Cryptococcus curvatus grown in batch culture. Process Biochem 30: 629–634.    
  • 93. Liang YN, Jarosz K, Wardlow AT, et al. (2014) Lipid production by Cryptococcus curvatus on hydrolysates derived from corn fiber and sweet sorghum bagasse following dilute acid pretreatment. Appl Biochem Biotech 173: 2086–2098.    
  • 94. Cui Y, Liang Y (2015) Sweet sorghum syrup as a renewable material for microbial lipid production. Biochem Eng J 93: 229–234.
  • 95. Heredia L, Ratledge C (1988) Simultaneous utilization of glucose and xylose by Candida curvata, D in continuous culture. Biotechnol Lett 10: 25–30.    
  • 96. Görner C, Redai V, Bracharz F, et al. (2016) Genetic engineering and production of modified fatty acids by the non-conventional oleaginous yeast Trichosporon oleaginosus ATCC 20509. Green Chem 18: 2037–2046.    
  • 97. Gong Z, Zhou W, Shen H, et al. (2016) Co-utilization of corn stover hydrolysates and biodiesel-derived glycerol by Cryptococcus curvatus for lipid production. Bioresour Technol 219: 552–558.    
  • 98. Hassan M, Blanc PJ, Granger LM, et al. (1996) Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Process Biochem 31: 355–361.    
  • 99. Thiru M, Sankh S, Rangaswamy V (2011) Process for biodiesel production from Cryptococcus curvatus. Bioresource Technol 102: 10436–10440.    
  • 100. Seo YH, Lee IG, Han JI (2013) Cultivation and lipid production of yeast Cryptococcus curvatus using pretreated waste active sludge supernatant. Bioresource Technol 135: 304–308.    
  • 101. Close D, Ojumu J (2016) Draft genome sequence of the oleaginous yeast Cryptococcus curvatus ATCC 20509. Genome Announc 4.
  • 102. Meesters PAEP, Springer J, Eggink G (1997) Cloning and expression of the Delta(9) fatty acid desaturase gene from Cryptococcus curvatus ATCC 20509 containing histidine boxes and a cytochrome b(5) domain. Appl Microbiol Biot 47: 663–667.    
  • 103. Bundock P, Dendulkras A, Beijersbergen A, et al. (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. Embo J 14: 3206–3214.
  • 104. De Groot MJA, Bundock P, Hooykaas PJ, et al. (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16: 1074–1074.    
  • 105. Bredeweg EL, Pomraning KR, Dai Z, et al. (2017) A molecular genetic toolbox for Yarrowia lipolytica. Biotechnol Biofuels 10: 2.    
  • 106. Frandsen RJ, Andersson JA, Kristensen MB, et al. (2008) Efficient four fragment cloning for the construction of vectors for targeted gene replacement in filamentous fungi. BMC Mol Biol 9: 70.    


This article has been cited by

  • 1. Felix Bracharz, Teun Beukhout, Norbert Mehlmer, Thomas Brück, Opportunities and challenges in the development of Cutaneotrichosporon oleaginosus ATCC 20509 as a new cell factory for custom tailored microbial oils, Microbial Cell Factories, 2017, 16, 1, 10.1186/s12934-017-0791-9
  • 2. Allison Yaguchi, Alana Robinson, Erin Mihealsick, Mark Blenner, Metabolism of aromatics by Trichosporon oleaginosus while remaining oleaginous, Microbial Cell Factories, 2017, 16, 1, 10.1186/s12934-017-0820-8
  • 3. Allison Yaguchi, Michael Spagnuolo, Mark Blenner, Engineering yeast for utilization of alternative feedstocks, Current Opinion in Biotechnology, 2018, 53, 122, 10.1016/j.copbio.2017.12.003
  • 4. Kyungsoo Lee, Yong Jae Lee, Ho Nam Chang, Ki Jun Jeong, Engineering Trichosporon oleaginosus for enhanced production of lipid from volatile fatty acids as carbon source, Korean Journal of Chemical Engineering, 2019, 10.1007/s11814-018-0229-7
  • 5. Martina Braun, Jan Lorenzen, Mahmoud Masri, Yue Liu, Eszter Barath, Thomas Bartholomaeus Brück, Johannes A Lercher, Catalytic decomposition of the oleaginous yeast Cutaneotrichosporon oleaginosus and subsequent biocatalytic conversion of liberated free fatty acids, ACS Sustainable Chemistry & Engineering, 2019, 10.1021/acssuschemeng.8b04795
  • 6. D. Z. Nazmutdinov, N. N. Poroshina, N. I. Petukhova, Debaryomyces Hansenii D-43-1 - New Halotolerant Phenol Destructor, Bashkir chemistry journal, 2018, 25, 2, 57, 10.17122/bcj-2018-2-57-63
  • 7. Amit H. Batghare, Kuldeep Roy, Kaustubh C. Khaire, Vijayanand S. Moholkar, Mechanistic investigations in ultrasound-induced intensification of fermentative riboflavin production, Bioresource Technology Reports, 2020, 9, 100380, 10.1016/j.biteb.2020.100380
  • 8. Allison Yaguchi, Nicole Franaszek, Kaelyn O’Neill, Stephen Lee, Irnayuli Sitepu, Kyria Boundy-Mills, Mark Blenner, Identification of oleaginous yeasts that metabolize aromatic compounds, Journal of Industrial Microbiology & Biotechnology, 2020, 10.1007/s10295-020-02269-5
  • 9. Celina K. Yamakawa, Laura Kastell, Mikkel R. Mahler, José L. Martinez, Solange I. Mussatto, Exploiting new biorefinery models using non-conventional yeasts and their implications for sustainability, Bioresource Technology, 2020, 123374, 10.1016/j.biortech.2020.123374
  • 10. Dania Awad, Samer Younes, Matthias Glemser, Franz M. Wagner, Gerhard Schenk, Norbert Mehlmer, Thomas Brueck, Towards high-throughput optimization of microbial lipid production: from strain development to process monitoring, Sustainable Energy & Fuels, 2020, 10.1039/D0SE00540A
  • 11. Clara Navarrete, Irene Hjorth Jacobsen, José Luis Martínez, Alessandra Procentese, Cell Factories for Industrial Production Processes: Current Issues and Emerging Solutions, Processes, 2020, 8, 7, 768, 10.3390/pr8070768
  • 12. Clara Navarrete, José L. Martínez, Non-conventional yeasts as superior production platforms for sustainable fermentation based bio-manufacturing processes, AIMS Bioengineering, 2020, 7, 4, 289, 10.3934/bioeng.2020024

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Mark Blenner, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved