Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Proteomics for Cerebrospinal Fluid Biomarker Identification in Parkinsons Disease: Methods and Critical Aspects

Proteome Biochemistry, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy

Special Issue: Biofluid Biomarkers for Parkinson’s Disease

Parkinson's disease (PD), similar with other neurodegenerative disorders, would benefit from the identification of early biomarkers for differential diagnosis and prognosis to address prompt clinical treatments. Together with hypothesis driven approaches, PD has been investigated by high-throughput differential proteomic analysis of cerebrospinal fluid (CSF) protein content. The principal methodologies and techniques utilized in the proteomics field for PD biomarker discovery from CSF are presented in this mini review. The positive aspects and challenges in proteome-based biomarker research are also discussed.
  Figure/Table
  Supplementary
  Article Metrics

References

1. van Gool AJ, Hendrickson RC (2012) The proteomic toolbox for studying cerebrospinal fluid. Expert Rev Proteomics 9: 165-179.    

2. Craft GE, Chen A, Nairn AC (2013) Recent advances in quantitative neuroproteomics. Methods61: 186-218.

3. Yuan X, Desiderio DM (2005) Proteomics analysis of human cerebrospinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci 815: 179-189.    

4. Huang JT, McKenna T, Hughes C, et al. (2007) CSF biomarker discovery using label-free nano-LC-MS based proteomic profiling: technical aspects. J Sep Sci 30: 214-225.    

5. Giron P, Dayon L, Turck N, et al. (2011) Quantitative analysis of human cerebrospinal fluid proteins using a combination of cysteine tagging and amine-reactive isobaric labeling. J Proteome Res 10: 249-258.    

6. Parnetti L, Castrioto A, Chiasserini D, et al. (2013) Cerebrospinal fluid biomarkers in Parkinson disease. Nat Rev Neurol 9: 131-140.    

7. Constantinescu R, Mondello S (2012) Cerebrospinal fluid biomarker candidates for parkinsonian disorders. Front Neurol 3: 187.

8. Abdi F, Quinn JF, Jankovic J, et al. (2006) Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J Alzheimers Dis 9: 293-348.

9. Lehnert S, Jesse S, Rist W, et al. (2012) iTRAQ and multiple reaction monitoring as proteomic tools for biomarker search in cerebrospinal fluid of patients with Parkinson's disease dementia. Exp Neurol 234: 499-505.    

10. Constantinescu R, Andreasson U, Li S, et al. (2010) Proteomic profiling of cerebrospinal fluid in parkinsonian disorders. Parkinsonism Relat Disord 16: 545-549.    

11. Sinha A, Srivastava N, Singh S, et al. (2009) Identification of differentially displayed proteins in cerebrospinal fluid of Parkinson's disease patients: a proteomic approach. Clin Chim Acta 400:14-20.    

12. Jesse S, Lehnert S, Jahn O, et al. (2012) Differential sialylation of serpin A1 in the early diagnosis of Parkinson's disease dementia. PLoS One 7: e48783.    

13. Olivieri S, Conti A, Iannaccone S, et al. (2011) Ceruloplasmin oxidation, a feature of Parkinson's disease CSF, inhibits ferroxidase activity and promotes cellular iron retention. J Neurosci 31:18568-18577.    

14. Iannaccone S, Cerami C, Alessio M, et al. (2013) In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson's disease. Parkinsonism Relat Disord19: 47-52.

15. Tohgi H, Abe T, Yamazaki K, et al. (1999) Alterations of 3-nitrotyrosine concentration in the cerebrospinal fluid during aging and in patients with Alzheimer's disease. Neurosci Lett 269:52-54.    

16. Poulsen K, Bahl JM, Simonsen AH, et al. (2014) Distinct transthyretin oxidation isoform profile in spinal fluid from patients with Alzheimer's disease and mild cognitive impairment. Clin Proteomics 11: 12.    

17. Nakamura T, Tu S, Akhtar MW, et al. (2013) Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron 78: 596-614.    

18. Yuan X, Desiderio DM (2003) Proteomics analysis of phosphotyrosyl-proteins in human lumbar cerebrospinal fluid. J Proteome Res 2: 476-487.    

19. Weintraub SJ, Deverman BE (2007) Chronoregulation by asparagine deamidation. Sci STKE2007: re7.

20. Barbariga M, Curnis F, Spitaleri A, et al. (2014) Oxidation-induced structural changes of ceruloplasmin foster NGR motif deamidation that promotes integrin binding and signaling. J Biol Chem 289: 3736-3748.    

21. Zhang J (2007) Proteomics of human cerebrospinal fluid-the good, the bad, and the ugly. Proteomics Clin Appl 1: 805-819.    

22. Schutzer SE, Liu T, Natelson BH, et al. (2010) Establishing the proteome of normal human cerebrospinal fluid. PLoS One 5: e10980.    

23. Perrin RJ, Payton JE, Malone JP, et al. (2013) Quantitative label-free proteomics for discovery of biomarkers in cerebrospinal fluid: assessment of technical and inter-individual variation. PLoS One 8: e64314.    

24. Stoop MP, Coulier L, Rosenling T, et al. (2010) Quantitative proteomics and metabolomics analysis of normal human cerebrospinal fluid samples. Mol Cell Proteomics 9: 2063-2075.    

25. Zhang J, Goodlett DR, Peskind ER, et al. (2005) Quantitative proteomic analysis of age-related changes in human cerebrospinal fluid. Neurobiol Aging 26: 207-227.    

26. Musci G, Bonaccorsi di Patti MA, Fagiolo U, et al. (1993) Age-related changes in human ceruloplasmin. J Biol Chem 268: 13388-13395.

27. Yuan X, Desiderio DM (2005) Proteomics analysis of prefractionated human lumbar cerebrospinal fluid. Proteomics 5: 541-550.    

28. Waller LN, Shores K, Knapp DR (2008) Shotgun proteomic analysis of cerebrospinal fluid using off-gel electrophoresis as the first-dimension separation. J Proteome Res 7: 4577-4584.    

29. Cannistraci CV, Montevecchi FM, Alessio M (2009) Median-modified Wiener filter provides efficient denoising, preserving spot edge and morphology in 2-DE image processing. Proteomics9: 4908-4919.

30. Cannistraci CV, Ravasi T, Montevecchi FM, et al. (2010) Nonlinear dimension reduction and clustering by Minimum Curvilinearity unfold neuropathic pain and tissue embryological classes. Bioinformatics 26: i531-539.    

31. Cannistraci CV, Alanis-Lobato G, Ravasi T (2013) Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding. Bioinformatics 29: i199-209.    

Copyright Info: © 2015, Massimo Alessio, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved