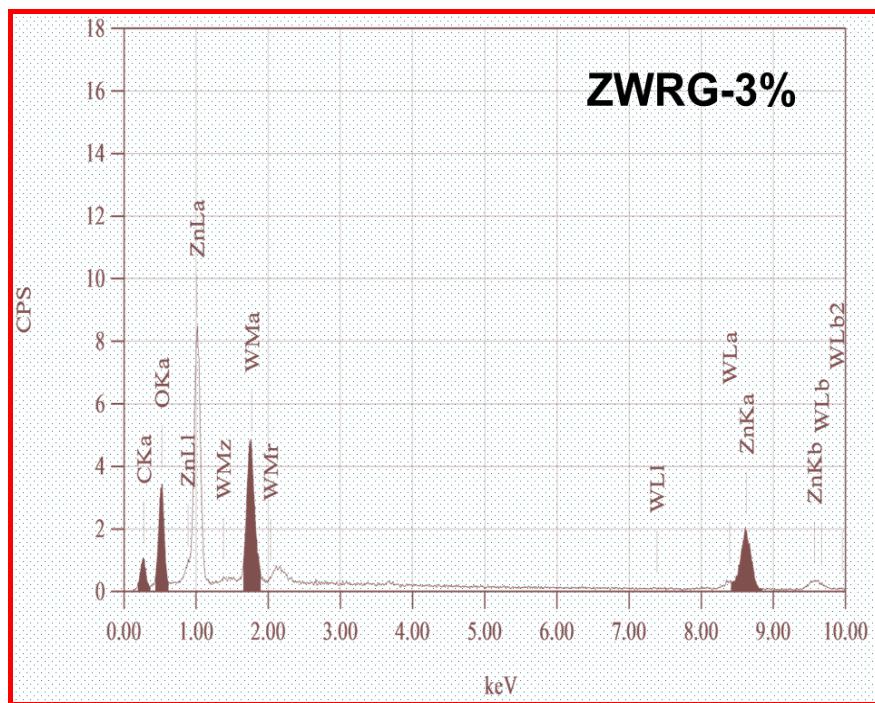
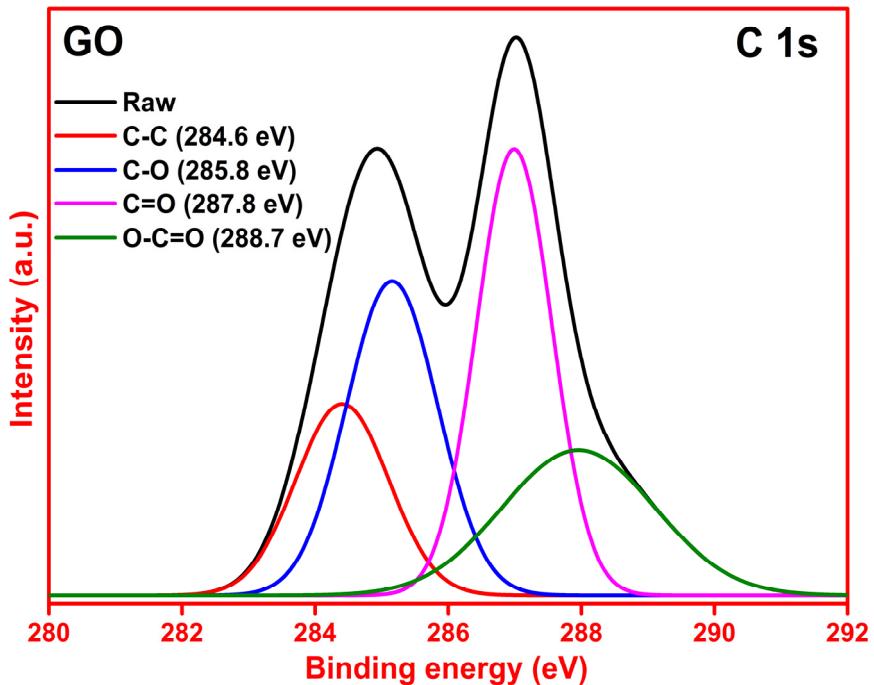


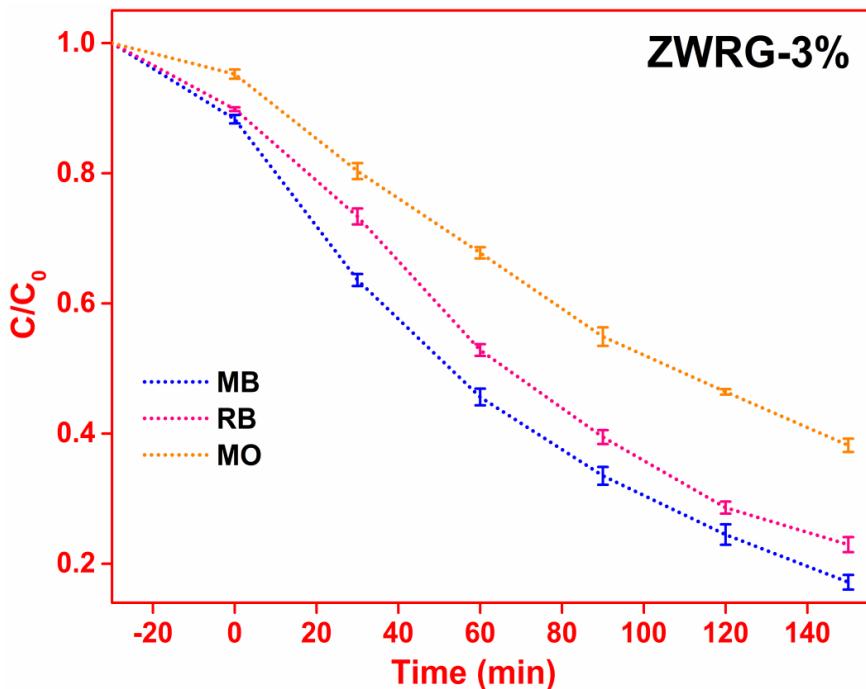
Research article

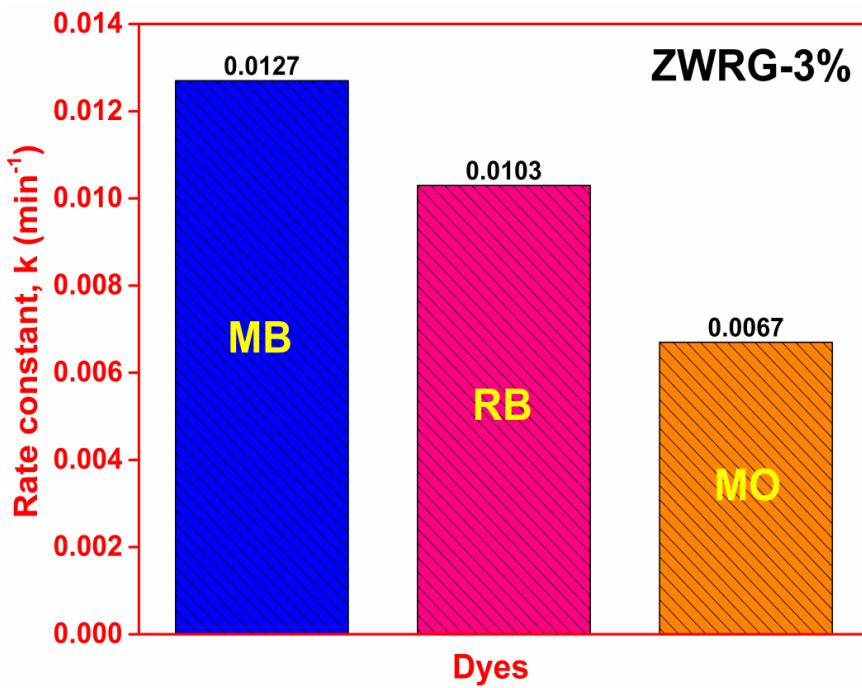

Novel ZnWO₄/RGO nanocomposite as high performance photocatalyst

Mohamed Jaffer Sadiq Mohamed and Denthaje Krishna Bhat *


Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore-575025, Karnataka, India

* Correspondence: Email: denthajekb@gmail.com; Tel: 0824-2473202.


Supporting Information


Figure S1. EDX spectra of ZWRG-3%.

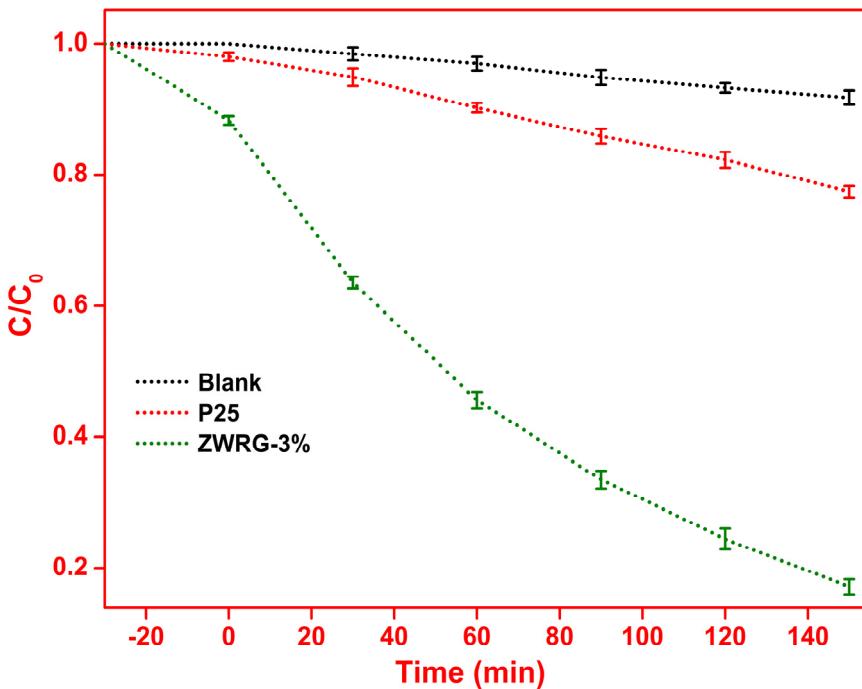

Figure S2. High resolution XPS spectra of C 1s in GO.

Figure S3. Photocatalytic degradation MB, RB and MO by ZWRG-3%.

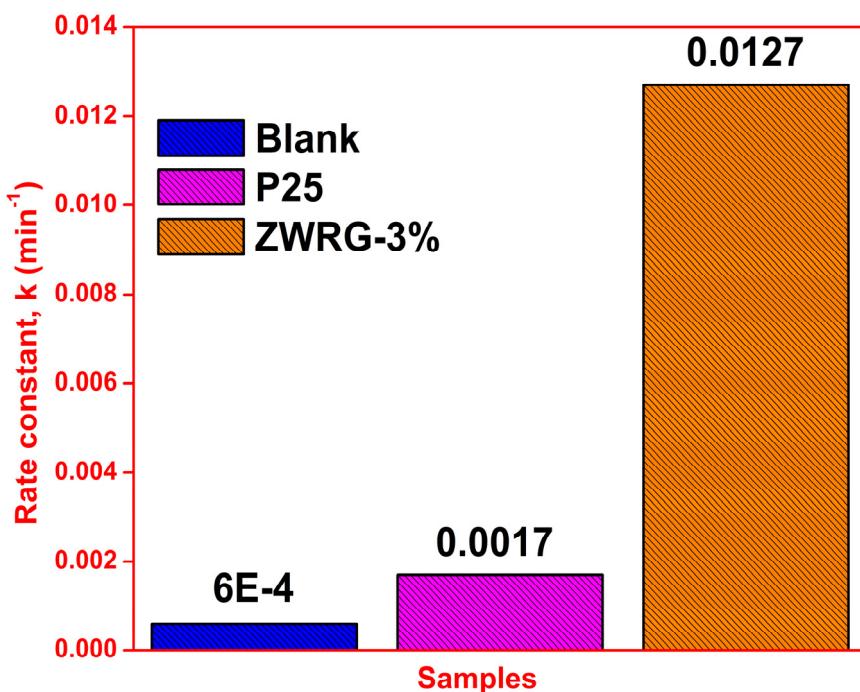

Figure S4. First order rate constants for degradation of MB, RB and MO by ZWRG-3%.

Figure S5. Comparison of photocatalytic degradation efficiency between ZWRG-3% and P25.

Table S1. Comparison of photocatalytic efficiency of ZWRG-3% nanocomposite with other photocatalysts.

Photocatalysts	Lamp Source	Dye Concentration	Degradation Percentage	References
10 mg of ZWRG-3%,	Visible Light (250 W Hg lamp, $\lambda = 400$ nm)	MB (100 mL, 10 mg/L) RB (100 mL, 10 mg/L) MO (100 mL, 10 mg/L)	82.85% for 150 minutes 77.06% for 150 minutes 61.81% for 150 minutes	Present Work
0.15 g 70 wt% g-C ₃ N ₄ /Bi ₂ WO ₆	Visible Light (500 W Xe lamp, $\lambda = 420$ nm)	MO (50 mL, 10 mg/L)	MO could be decomposed after 180 minutes	[1]
50 mg of RC/TiO ₂ /ZnO nanocomposites	Ultraviolet irradiation (PHILIPS, 365 nm)	RhB (100 mL, 2×10^{-5} M)	97% for 200 minutes	[2]
200 mg of NiW4SG	UV light (125 W high pressure mercury lamp, wavelength range of 295–390 nm)	MB, (350 ml, 20 ppm)	92.5% for 400 minutes	[3]
1.5 g/L of ZnO-RGO-CNT composite	UV light (500W high pressure Hg lamp, $\lambda = 365$ nm)	MB (100 mL, 5 mg/L)	96% for 260 minutes	[4]
100 mg of 4% Eu ³⁺ -doped ZnWO ₄	Four 4 W UV lamps ($\lambda = 254$ nm)	RB (100 mL, 1.0×10^{-5} mol/L)	RhB could be decomposed less than 100 minutes	[5]
10 mg of graphene/TNTs nanocomposites	UV irradiation, (300 W Mercury lamp)	MO, (40 mL, 20 mg/L)	Nearly 100% after 3.5 hours	[6]
80 mg of N-TiO ₂ /NG	Visible light (300 W Xenon lamp, $\lambda = 420$ nm)	MB (100 mL, 10 mg/L)	87.9% after 180 minutes	[7]
50 mg of g-C ₃ N ₄ -ZnWO ₄	Visible light (300 W metal-halide lamp, $\lambda = 420$ nm)	MB (100 mL, 10 mg/L)	86% for 150 minutes	[8]
2 g/L of Bi ₂ O ₃ -RGO composite	Visible light irradiation (400 W metal halogen Lamp, $\lambda > 400$ nm)	MB (80 mL, 5 mg/L) MO (80 mL, 5 mg/L)	96% for 240 minutes 93% for 240 minutes	[9]
0.25 g of WO ₃ -TiO ₂ composite	Simulated sunlight illumination using a 300 W Xe lamp	MO (250 mL, 20 mg/L)	79% for 120 minutes	[10]

Figure S6. Comparison of first order rate constants between ZWRG-3% and P25.

References

1. Ge L, Han C, Liu J (2011) Novel visible light-induced $\text{gC}_3\text{N}_4/\text{Bi}_2\text{WO}_6$ composite photocatalysts for efficient degradation of methyl orange. *Appl Catal B-Environ* 108: 100–107.
2. Li C, Liu Q, Shu S, et al. (2014) Preparation and characterization of regenerated cellulose/TiO₂/ZnO nanocomposites and its photocatalytic activity. *Mater Lett* 117: 234–236.
3. Mohamed MM, Ahmed SA, Khairou KS (2014) Unprecedented high photocatalytic activity of nanocrystalline WO₃/NiWO₄ hetero-junction towards dye degradation: Effect of template and synthesis conditions. *Appl Catal B-Environ* 150: 63–73.
4. Lv T, Pan L, Liu X, et al. (2012) Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide-carbon nanotube composites synthesized via microwave-assisted reaction. *Catal Sci Technol* 2: 2297–2301.
5. Dong T, Li Z, Ding Z, et al. (2008) Characterizations and properties of Eu³⁺-doped ZnWO₄ prepared via a facile self-propagating combustion method. *Mater Res Bull* 43: 1694–1701.
6. Zhao F, Dong B, Gao R, et al. (2015) A three-dimensional graphene-TiO₂ nanotube nanocomposite with exceptional photocatalytic activity for dye degradation. *Appl Surf Sci* 351: 303–308.
7. Liu C, Zhang L, Liu R, et al. (2016) Hydrothermal synthesis of N-doped TiO₂ nanowires and N-doped graphene heterostructures with enhanced photocatalytic properties. *J Alloy Compd* 656: 24–32.
8. Sun L, Zhao X, Jia CJ, et al. (2012) Enhanced visible-light photocatalytic activity of gC_3N_4 -ZnWO₄ by fabricating a heterojunction: investigation based on experimental and theoretical studies. *J Mater Chem* 22: 23428–23438.

9. Liu X, Pan L, Lv T, et al. (2013) Visible light photocatalytic degradation of dyes by bismuth oxide-reduced graphene oxide composites prepared via microwave-assisted method. *J Colloid Interf Sci* 408: 145–150.
10. Sun D, Liu J, Li J, et al. (2014) Solvothermal synthesis of spindle-like $\text{WO}_3\text{-TiO}_2$ particles with enhanced photocatalytic activity. *Mater Res Bull* 53: 163–168.

AIMS Press

© 2017 Denthaje Krishna Bhat, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>)