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Abstract: Prior research has found that known shapes and letters can be recognized from a sparse 

sampling of dots that mark locations on their boundaries. Further, unknown shapes that are 

displayed only once can be identified by a matching protocol, and here also, above-chance 

performance requires very few boundary markers. The present work examines whether partial 

boundaries can be identified under similar low-information conditions. Several experiments were 

conducted that used a match-recognition task, with initial display of a target shape followed 

quickly by a comparison shape. The comparison shape was either derived from the target shape or 

was based on a different shape, and the respondent was asked for a matching judgment, i.e., did it 

―match‖ the target shape. Stimulus treatments included establishing how density affected the 

probability of a correct decision, followed by assessment of how much positioning of boundary dots 

affected this probability. Results indicate that correct judgments were possible when partial 

boundaries were displayed with a sparse sampling of dots. We argue for a process that quickly 

registers the locations of boundary markers and distills that information into a shape summary that 

can be used to identify the shape even when only a portion of the boundary is represented. 
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1. Introduction 

Completion can and does occur only if the “seen” part implies a whole of which it is a part.  

Wilhelm Fuchs, 1921 [1]. 

Our goal is to better understand how the visual system is able to encode the shapes of objects, 

this being a first step toward classification, comparison, and recognition. A viable theory should be 
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based on concepts that are biologically plausible and should provide for the range of judgments of 

which humans are capable. The processing skills should include the ability to identify shapes 

irrespective of where they are placed within the visual field, or if the viewing distance has altered the 

size of the retinal image. There should be at least some ability to compensate for rotation of the shape. 

Computer scientists and engineers have developed numerous concepts for how to effectively 

encode shapes, and can often demonstrate the utility of their methods by accomplishing real-world 

tasks. One concept that has become popular in recent years has been to use metric information, 

specified in relation to a centroid, for object and shape identification. A sampling of applications 

using centroid-based encoding could include: Measuring attributes of 2D and 3D curves [2]; 

characterizing silhouette-like shapes [3,4]; personal identification on the basis of hand shape [5]; 

recognition of 3D objects in cluttered scenes [6]; object tracking [7]; head and face recognition 

under ―wild‖ conditions [8]; reading of traffic signs for driver assist with translation, rotation, and 

size invariance [9]. 

It seems clear that centroid-based shape summaries are both effective and robust, but are they 

biologically plausible? Greene [10–12] has suggested that the anatomy and physiology of the retina 

could provide for centroid-based shape summaries. A key concept is that stimulus-marked locations 

on the outer boundary of an object could provide angle and distance information through waves of 

activation that spread from each location, converging on the centroid. The time of arrival of 

successive waves would be registered at the centroid, such that the resulting moment-by-moment 

fluctuations of the converging activity would serve as a summary of the shape. 

It would be helpful to have a test of the centroid hypothesis; that was one goal of the present 

effort. The experiments reported here made use of unknown shapes in a match-recognition task that 

was initially developed by Greene and Hautus [13]. Their protocol displays shapes as a sequence of 

dots that are briefly flashed on an LED array. The first shape to be shown on a given trial is the target 

shape, which provides a continuous string of boundary dots. The comparison shape that follows is 

either a low-density (sparse) sequence of dots that matches the target shape, or is a non-matching 

shape. Low-density shapes are used so that participant performance will not be perfect, i.e., to avoid 

a ceiling effect. The respondent sees a given shape only once, either as a target or comparison shape, 

this being to preclude any role for long-term memory and to keep the focus on the encoding process. 

The judgments about whether comparison shapes match the targets are analyzed using the methods 

of signal-detection theory, also known as detection theory. This provides an index of the probability 

that the decisions are valid with correction for bias. 

Whereas Greene and Hautus [13] displayed boundary markers around the full perimeter of each 

comparison shape, here we are providing markers around only portions of the boundary. This 

modifies the location of the centroid in relation to the markers, which should impair the ability to see 

the boundary as a match to the target shape. The disruption should be worse when all the markers are 

on the same side of the shape and less if markers are symmetrically placed across the midline. The 

sequence of four experiments was designed to evaluate the ability of respondents to perform the 

matching judgment where density of markers, amount of marked boundary, and the balance of 

markers were manipulated as treatment variables. 

 

 

 



134 

AIMS Neuroscience  Volume 5, Issue 2, 132–147. 

2. Method 

2.1. Authorization of research and informed consent 

Research protocols were approved by the USC Institutional Review Board. A total of 32 

respondents were recruited from the USC Psychology Subject pool, eight different respondents 

providing data in each of the four experiments. Each was informed that participation was voluntary 

and that they could discontinue at any time and for any reason. All who volunteered to participate 

completed the experiment for which he or she was recruited. 

2.2. Display equipment and experimental protocols 

Shape stimuli were displayed on a 64 × 64 array of light-emitting diodes (LEDs), designated 

hereafter as the ―display board‖. The shape stimuli (described more completely below) were 

displayed as 10 microsecond (µs) simultaneous flashes of all the dots comprising the shape, or with a 

sampling of those dots. Viewing distance was 3.5 m, so the visual angle subtended by each dot was 

4.92 arc ,́ dot-to-dot spacing was 9.23 arc ,́ and total span of the array (center-to-center of outside 

dots) was 9.80 arc .́ 

Intensities of the fixation point and of flashes were specified in radiometric units, specifically 

microwatts per solid angle (W/sr). The LEDs emitted at a peak wavelength of 630 nm (red). Given 

the narrow range of wavelengths of LED emissions, likely only L-opsin cones were stimulated. 

Experimental protocols were administered by a Mac G4 Cube, programmed with Tk/tcl 

instructions. These instructions were further interpreted as machine language through a Propox 

MMnet101 microcontroller with a running speed of 16 Mhz. This system provided flash durations 

and timing of stimulus displays with a temporal resolution of 1 s. 

2.3. Shape inventory and selection of shapes for display 

Each experiment drew from an inventory of 480 unknown shapes. This inventory was a bit 

larger than required by present experiments, but the number allows for a greater number of treatment 

combinations should they be needed. Each shape was formed as a continuous string of dots that 

formed a single unbroken loop, like an outline drawing. The dot sequences were constructed with 

arbitrary turns, arcs, and straight sections, yielding shapes that bear little resemblance to known objects. 

The number of boundary dots in the inventory of shapes ranged from 100 to 269, with a mean 

dot-count of 166. At the 3.5 m viewing distance, this corresponds to a range of 2.0 to 3.5 arcº, with 

mean distance being 2.6 arcº. 

For a given respondent, shapes were chosen at random from the inventory to be used as 

targets (described more completely below) or for development of stimuli to be compared for 

matching to these targets. A shape that was chosen for display of all boundary dots or a portion of 

the boundary dots is generically designated as a ―source shape‖. Each of the four experiments 

chose 300 source shapes from the inventory to be used as ―target shapes‖, and another 150 source 

shapes to be used for creating non-matching shapes (see below). 
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2.4. Common task conditions 

A match-recognition protocol was used for each of the four experiments; see Figure 1. On a 

given trial the respondent was presented with two successive displays. First a target shape was 

shown with simultaneous ultra-brief flashes of all the dots comprising the boundary, i.e., at 100% 

density. It was positioned with the centroid of the shape being at the center of the display board. In 

each of the experiments a given target shape was shown only once to a given respondent.  

 

Figure 1. Outline of match-to-sample protocol. In each experiment, a given trial began 

with display of a target shape that had been randomly selected from the shape inventory. 

Each dot in the boundary was simultaneously displayed as a 10 µs flash. A comparison 

shape was displayed 300 ms later, consisting either of a low-density sample of dots from 

the target shape (designated as matching) or a low-density sample of dots from a 

different shape (designated as non-matching). The comparison shape was also displayed 

as a simultaneous 10 µs flash of all sampled dots. Target shapes were centered on the 

display board, and a given target shape was shown only once to a given respondent. 

Comparison shapes were displayed at locations that were eccentric to the center. 

Shortly after display of the target shape, a comparison shape was shown. A comparison shape 

consisted of either a low-density sampling of dots from the target shape, designated as ―matching‖, 

or a low-density sampling of dots from a different source shape, designated as ―non-matching‖. In 

addition to being low in dot density, comparison shapes (matching or non-matching) were also 

subject to selective elimination of boundary sectors to evaluate judgments of shape matching 

where only a portion of the source-shape area was enclosed. 
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For each of the experiments, each trial was preceded by display of a fixation point that 

consisted of steady emission from four dots that were at the center of the display board. Emission 

intensity was 0.2 W/sr. The fixation dots were extinguished 200 ms prior to display of the target 

shape. Dots of the target shape were simultaneously flashed for 10 s at an intensity of 1000 W/sr. 

A matching or non-matching comparison shape was displayed 300 ms later at the same intensity and 

for the same duration. Ambient room illumination was 10 lx, so the flashed dots were very conspicuous. 

As indicated above, target shapes were displayed at the center of the board. Comparison 

shapes were displaced from that center at randomly determined eccentric locations. To this end, the 

centroid of the source shape was placed at a distance of 20 dots (3 arcº) and at a randomly chosen 

angle. Then the boundary dots were moved horizontally or vertically as needed to reposition the 

most extreme boundary dots to the edges of the LED array. 

Each trial was initiated by the experimenter by clicking an on-screen button, eliciting display of 

the target and comparison shapes. This was not a speeded task, but respondents generally judged the 

display and voiced a response—same or different—within a second or two. This answer was 

recorded by the experimenter by clicking a corresponding on-screen button. The computer 

recorded what had been displayed as well as the response. The experimenter was given no 

information about which shapes or conditions had been displayed or whether the response was 

correct, nor did the respondent receive any information about the validity of the answer.  

2.5. Individual experimental protocols 

Experiment 1 provided basic assessment of how dot density affects matching judgments under 

the present display conditions. Density of comparison stimuli was varied across five levels, 

specifically 4, 8, 12, 16, and 20%, as illustrated in Figure 2. The dots that were displayed from a 

given source shape were specified by first randomly choosing which boundary dot to use as a 

starting point, then moving through successive boundary locations selecting which dots to include 

for display at the specified density. An algorithm was used that maximized spacing of the sample, 

as prior research had found that uniform spacing enhances recognition of shapes [21]. For each of 

the five density treatment levels, a given respondent judged 30 matching trials and 30 non-matching 

trials, for a total of 300 trials. 

All comparison stimuli in Experiment 2 were displayed at a density of 16%. The amount of 

boundary perimeter to display was varied in 60 increments, as follows. Beginning with source 

shape, the centroid was established and angles were positioned every 60 to partition the shape into 

sectors. Treatment levels provided for display of dots within one to six sectors, i.e., with sector 

sizes being 60, 120, 180, 240, 300, and 360 (see Figure 3). Only boundary dots fell within the 

chosen sector were displayed, with deletion of any isolated sections of boundary even those dots 

fell within the sector that was specified. With six levels of sector size, there were 25 matching 

stimuli and 25 non-matching stimuli at each level, providing 300 total trials for a given respondent. 

As in Experiment 1, the comparison stimulus on a given trial was positioned eccentric to the center 

of the board, with the centroid of the original source shape being place at a 20-dot distance from the 

center of the board and at a random angle. 
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Figure 2. Density levels of the comparison shapes displayed in Experiment 1. If the 

shape in the left panel was chosen as a target, one of the density levels in the other five 

panels could be chosen to provide a matching comparison shape, or a non-matching 

shape might be displayed at one of the five density levels. The dots used to illustrate 

low-density boundary markers have been resized up to adjust for saliency in the 

illustration. The actual LED-flashed dots, seen in a dim room, were very readily perceived. 

 

Figure 3. Five sector sizes that pivoted on the centroid of the target shape in Experiment 2. 

The angle that bisected the sector was chosen at random. The size and positioning of the 

sector determined whether a low-density boundary dot would be displayed. Boundary 

dots lying within the inclusive zone were sampled to provide a 16% density. 
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Experiment 3 displayed partial boundaries as comparison stimuli using a single sector size of 

180. Whereas Experiment 2 specified the sectors as fixed angular departures from 0, here the 

sectors were specified relative to an angle that varied. For a given trial, an angle was randomly 

chosen, and the boundary dots to be displayed fell within the 90 sector on each side of that angle. 

Here also, any isolated boundary sections were deleted. Therefore, each comparison stimulus 

provided a string of boundary markers that spanned 180, but with the choice of which portion of the 

source-shape boundary to use was determined at random (see Figure 4). Dot density was varied, 

using density levels that were double the percentages of Experiment 1, namely: 8, 16, 24, 32, and 

40%. A given respondent saw thirty matching and thirty non-matching comparison shapes at each of 

the five density levels for a total of 300 trials. Here also, the centroid of the source shape was used to 

determine the eccentric location at which the comparison stimuli would be placed. 

Experiment 4 was identical in design to Experiment 3 except the boundary dots to be 

displayed were positioned in two opposing 90 sectors. For a given comparison stimulus, after 

choosing the random angle that would bisect the sector, the sector size was set at 90 (45 on each 

side of the angle) and this zone was mirrored on the opposite side of the centroid. This provided a 

total amount of boundary that was comparable to a 180 sector. The difference was that 

Experiment 4 provided boundary markers on both sides of the centroid, whereas the boundary 

markers of Experiment 3 were all on the same side (see Figure 4). The significance of this 

difference will be discussed subsequently. 

 

Figure 4. Matching comparison shape density levels in Experiment 3 and 4. Experiment 3 

varied the bisecting angle of a 180° sector at random, and provided for five density levels 

within the sector that might be chosen for display. The upper panels illustrate three of the 

five levels that might be shown as a matching comparison shape. Experiment 4 provided 

for two 90° sectors that were centered on the bisecting axis. The same five density levels 

were tested, with the lower panels illustrating three of the levels that might be chosen for 

a matching comparison shape. 
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2.6. Respondent judgments 

Respondents were instructed not to move their gaze from the fixation point. However, it is 

unlikely that changes of gaze would modify response performance, because each display trial was 

completed in 300 ms and the respondent had no information about where the comparison stimulus 

would appear. Respondents were told that the first display would show the outline of a shape using a 

string of dots, and the second display would show a low-density version of the target boundary or a 

low-density boundary of a different shape. Instructions for the last three experiments included 

clarification that the stimulus might provide only a low-density partial boundary. Respondents were 

told that they should say ―same‖ if the comparison stimulus displayed dots that could have come 

from the target shape, and should say ―different‖ if the stimulus likely came from a different shape. 

Respondents appeared to understand the instructions and task performance on all four experiments is 

consistent with proper interpretation of task demands. 

2.7. Quantitative analysis of data 

Once task protocols were established through pilot work, each respondent who volunteered for 

testing was able to complete his or her test session without difficulty, and all data that was collected 

for a given experiment has been included in the quantitative analysis. The analysis of data was based 

on detection theory, as detailed in an earlier report [13]. 

For all experiments, each respondent provided judgments at each level of the independent 

variable yielding false-alarm (F) and hit (H) rates. Each rate was based on 30 trials for 

Experiments 1–3 and on 25 trials for Experiment 4. In each case, an estimate of d′ was determined 

from each (F, H) pair together with its associated variance. Results are reported here at the group 

level rather than for individuals. To obtain these we averaged individual d' estimates across 

respondents for each level of the independent variable [14–20]. The variance associated with these 

averaged estimates were also calculated and used to generate 95% confidence intervals around the 

group estimate of d'. These performance measures, including confidence intervals, were then 

transformed to values of p(c)max. For the index, p(c)max, a score of 0.50 represents chance 

performance and a score of 1 indicates judgments that were always correct. 

3. Results 

For Experiment 1, the mean p(c)max values across respondents are plotted in Figure 5, along 

with 95% confidence intervals. Experiment 1 provided a strong confirmation of prior results that 

used a very similar experimental protocol [13]. It affirms that an unknown shape consisting only of 

boundary markers that is seen only once, can be identified when only a small number of the markers 

are used to elicit recognition. Additionally, the experiment provided an anchor for the subsequent 

experiments by showing a consistent decrease in the probability of correct decisions as the density of 

boundary was reduced, i.e., which increased the sparseness of the resulting dot pattern. With a 20% 

density the unbiased proportion of decisions that were correct was above 0.9. This level of 

performance decreased as density was reduced, such that at a 4% density of comparison shapes 

provided p(c)max = 0.708. Given that the error bars in Figure 5 for the 4% and 20% conditions do not 

overlap, this difference is significant. 
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Figure 5. Experiment 1 p(c)max values. The p(c)max values affirm that subjects provided 

above-chance decisions about whether the comparison shapes matched the target shapes. 

The p(c)max value provides an unbiased index of correct judgments by using detection 

theory to adjust the match probability for the number of trials wherein the non-matching 

shapes were incorrectly judged. Chance performance is at 0.5, so clearly the respondents 

provided accurate decisions on most trials, even when the comparison shape displayed 

only 4% of the dots that were provided by the target shape. 

Experiment 2 tested identification of 180° partial boundaries with the density of comparison 

shapes set at 16%. Group data are illustrated in Figure 6. The value of p(c)max was above chance at 

all tested partial-boundary angles. However, the confidence limits still show lower bounds that 

were below chance at the first three angles (60°, 120°, and 180°). When a larger portion of the 

boundary was provided, judgments were significantly above chance. This provides a caution that 

the encoding and recognition of unknown shapes can be less than reliable if only half of the shape 

boundary is provided. 

Experiment 3 was designed to test how various levels of density would provide for valid shape 

discrimination of partial boundaries. Each comparison shape was displayed with a partial boundary 

that was half of the full perimeter, i.e., 180°, and given the findings of Experiment 2, the experiment 

used a range of densities that was double that provided by Experiment 1, specifically: 8, 16, 24, 32, 

and 40 percent. Group data are illustrated in Figure 7. Performance was above chance at all levels of 

density, ranging from just below 60% to just above 70%. 

Experiment 4 addressed the question of whether effective shape encoding requires a balance 

of boundary information on each side of a centroid. Whereas Experiment 3 provided boundary 

markers from half of the original shape, all being on the same side of the shape, those from 

Experiment 4 displayed markers that were positioned on opposite sides of the shape. Therefore, the 

absolute quantity of shape perimeter was the same for both experiments, with those of Experiment 4 

being balanced across the centroid of the shape. As can be seen from the group data illustrated in 

Figure 8, the plot of p(c)max across density was very similar to that seen in Experiment 3, so there 

is no evidence that having a balance of boundary markers provides an advantage for match 

recognition. 
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Figure 6. Experiment 2 p(c)max values. Experiment 2 varied the amount of boundary that 

was displayed for target shapes, this being specified as an angular sector size that pivoted 

on the centroid of each shape. A sector size of 360° provided boundary markers around 

the full perimeter of the shape. The other panels provide examples of smaller sector 

angles. Sector size was varied across the six levels, i.e. 60° through 360°, as illustrated, 

but the exact zone to be displayed was varied at random on each trial. Note that with 16% 

density the mean judgments were above chance for all sector sizes. The probability of 

correct judgment began to rise substantially once sector size exceeded 180°. 

 

Figure 7. Experiment 3 p(c)max values. Experiment 3 used random 180° sectors and 

varied the density of the boundary markers within a given sector. Density was varied 

from 8% to 40% and correct judgments were above chance at each of these densities. 
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Figure 8. Experiment 4 p(c)max values. Experiment 4 used two 90° sectors that were on 

opposite sides of the centroid. The p(c)max values were much the same as found in 

Experiment 3, which suggests that the ability to make correct judgments depends more 

on the number of boundary markers displayed and not the degree of symmetry of those 

markers around the centroid. This deals a blow to encoding concepts that focus on 

distances and angles relative to the centroid. Alternative concepts are needed to explain 

how the visual system encodes partial boundaries. 

4. Discussion 

Our major goal is to better understand how shape information is encoded for purposes of 

recognition. There are several aspects of the current research protocol that contribute to that effort. 

The use of discrete dots to represent the shape boundary constrains the encoding concepts to those 

that are biologically plausible. By using ultra-brief flashes, one assures that the shape cues are being 

delivered to only a single location on the retina. One can ignore ambiguity about whether eye scans 

or even eye tremors are contributing to the shape-encoding process. Using unknown shapes puts the 

focus on encoding mechanisms and working memory. Asking for judgment of partial boundaries also 

limits the concepts that are plausible. 

The results show that matching judgments were above chance even when the comparison 

stimulus provided a low-density sampling of boundary dots. This is consistent with earlier work that 

questioned whether lines and edges serve as elementary shape cues, and whether activation of 

orientation-selective neurons in primary visual cortex provide an essential first step for shape 

encoding. Greene [21] found that common shapes could be identified from a small sampling of 

boundary dots, and recognition was possible even when the spacing between adjacent dots was 

greater than the largest receptive fields of orientation selective neurons [22]. Further, boundary 

dots can be displayed as successive 4-dot subsets, which provide partial cues that can be integrated 

over time to accomplish shape recognition. Subsets that have sufficient proximity to activate 

orientation-selective neurons are no more effective as shape cues than are subsets whose members 

are randomly chosen [23]. Each of the prior reports [21–23] provide evidence against the common 

assumption that lines and edges are elemental shape cues. Further, based on recognition results 
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wherein each dot in the boundary was delivered one-at-a-time, Greene and Ogden [24] inferred that 

each dot contributes semi-autonomous shape information that can be summed to elicit recognition. 

The work cited above studied recognition of known objects. The target shapes used for the 

current work were unknown. They were displayed only once for a given respondent, and a matching 

judgment was made quickly after each was shown. This required immediate encoding of shape 

information and the ability to judge (recognize) matching of shapes based on information stored in 

working memory. 

Greene and Hautus [13] used a similar protocol and found that respondents made above-chance 

match recognition with comparison shapes providing dot densities as low as 5%. Our first experiment 

also varied density of the comparison shapes and found that matching judgments were well above 

chance when they were displayed at 4% density. This supports the challenge to the idea that lines 

and edges provide elemental shape cues, and reinforces the concept that shapes can be specified 

using discrete location markers. Further, the earlier study found that decisions were significantly 

above chance even when comparison shapes were shifted to a different location, magnified in size, 

or rotated [13]. Matching decisions were rendered quickly after display of the target and 

comparison shapes, so shape encoding and match-recognition was immediate. This is a challenge 

to neural connectionist modeling where the encoding process requires many hundreds or thousands 

of training trials to achieve shape recognition, translation invariance, size invariance, and rotation 

invariance [25–31]. 

Three of the present experiments asked whether respondents could render above-chance 

judgments when the comparison shapes provided only a portion of the targets’ full boundary. Asking 

for identification of partial boundaries provides a special challenge to models for how shapes are 

encoded. Any theory that characterizes shapes using area or volume filling could not readily 

explain how a partial boundary would be encoded. At best a partial boundary would provide 

incomplete containment of a given area. An area is even less enclosed where the stimulus is a  

low-density set of spaced boundary markers. 

Greene [10–12] proposed that distances among boundary markers, or perhaps from markers to 

a centroid, could be measured by spreading waves within the retina or tectum. A summary of 

distances could provide for immediate encoding of marker locations, and depending on other 

assumptions, that summary could be location, size, and rotation invariant. 

The present results cast doubt on the concept that the visual system is registering distances 

from boundary markers to the centroid. The positioning of boundary markers in the target shape 

determines where its centroid lies. Display of a matching comparison shape at a different location 

would provide a similar centroid summary if dot-markers were provided around the full perimeter 

of the shape. A reduction in dot density might move the centroid by a small amount, but the 

location would still have substantial correspondence to that provided by the target. However, the 

centroid for a partial boundary lies at a different position in relation to the markers, and the 

distance information can differ greatly. 

The fundamental problem is especially illustrated by comparing results from Experiments 3 

and 4. Experiment 4 used boundary markers that were on opposite sides of the shape. This put the 

centroid for a given matching partial boundary approximately where it was for the corresponding 

target shape. However, all the markers for Experiment 3 are on one side of the shape, which changes 

the location of the centroid for the sampled dots. Matching judgments should have been far worse for 
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Experiment 3 than for Experiment 4. The fact that probabilities of correct decision were similar for 

the two experiments is at odds with the centroid-encoding hypothesis. 

However, the idea that traveling waves within retina and/or tectum can derive shape-encoding 

information may still be viable. The system might generate waves that pass across the pattern of 

markers, generating spike activity that specifies how many markers were encountered at successive 

moments. This approach corresponds somewhat to the latency encoding concept advanced by 

Hopfield [32]. Hopfield described a way to encode stimulus patterns that have differentials of 

intensity, e.g., odor components. An oscillation source could bring a more intense element to 

threshold a bit sooner than one that was less intense, and thus the time-to-fire differences in the 

resulting population response could be used to specify the intensity profile of the pattern. 

Subsequent research by Thorpe and VanRullen also suggested a population coding mechanism 

for shape recognition. Thorpe and associates [33] had respondents complete a go/no-go task 

classifying images as containing an animal or not. Analysis of event-related potentials indicated that 

participants processed the visual stimuli in less than 150 ms. VanRullen and Thorpe [34–36] 

conducted experiments using images in different target categories and found similar results. 

Regardless of image type, processing speed was incredibly rapid. VanRullen and Thorpe argue that 

the rapid speed at which image content is registered by the brain provides evidence that the retina 

only has enough time to generate one or a few spikes, which supports an encoding process such as 

that proposed by Hopfield [32]. 

Although Thorpe and VanRullen’s work focused on complete, identifiable shapes rather 

than partial, unknown shapes, the findings have implications for a model of partial boundary 

encoding. As adapted, a complement of spreading waves, likely from specified directions, could 

cross the dot pattern and generate differential amplitudes of population spikes as markers were 

encountered. The shape summary would consist of two or more complex waveforms, each 

reflecting the density of spikes being elicited from the neuron population. The waveforms from 

specified travel directions would constitute the shape summary that would be stored for a time in 

working memory, available for evaluation of the summary from the comparison shape. 

Recognition would require moment-by-moment matching of waveform amplitudes, which could be 

thought of as analogous to a sum-of-squared-deviations calculation that is commonly used for 

comparing two distributions. 

This laboratory has recently conducted a computational implementation of the scan-encoding 

concept [37]. Polling scans were passed across the inventory of unknown shapes to derive histogram 

summaries, and these summaries were compared to derive a scale of shape similarity. The scale 

values proved to be significantly able to predict human judgments of similarity of selected pairs, as 

evidenced by the frequency at which they were judged as being the ―same‖ in the match-recognition 

task [37]. This supports the concept that polling scans provide a biologically plausible method for 

encoding shapes. 

5. Conclusions 

The present work provides additional evidence that shape information is quickly encoded and 

stored in working memory. This allows for immediate comparison of shapes that have not been seen 

previously. The ability to provide immediate above-chance match recognition of an unknown shape 

is at odds with neural-network (connectionist) models that require numerous training trials to change 
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connectivity or strength of connection among neuron populations as the basis for encoding and 

recognition. Our findings also suggest that the encoding of shape information is not based on metric 

information specified relative to the shape’s centroid. 

Finding that matching judgments are above chance with low-density partial boundaries calls 

for an innovative encoding principle. Here we suggest an adaptation of Hopfield’s proposal [32] that 

stimulus information is provided by differentials in spike latency within a stimulus-encoding 

population of neurons. 
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