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Abstract: The vital demand of reliable climatic and hydrologic data of fine spatial and temporal
resolution triggered the employment of reanalysis datasets as a surrogate in most of the hydrological
modelling exercises. This study examines the performance of four widely used reanalysis datasets:
ERA-Interim, NCEP-DOE R2, MERRA and CFSR, in reproducing the spatio-temporal characteristics
of observed daily precipitation of different stations spread across Ethiopia, East Africa. The
appropriateness of relying on reanalysis datasets for hydrologic modelling, climate change impact
assessment and regional modelling studies is assessed using various statistical and non-parametric
techniques. ERA-Interim is found to exhibit higher correlation and least root mean square error values
with observed daily rainfall, which is followed by CFSR and MERRA in most of the stations. The
variability of daily precipitation is better captured by ERA, CFSR and MERRA, while NCEP-DOE
R2 overestimated the spread of the precipitation data. While ERA overestimates the probability of
moderate rainfall, it is seemingly better in capturing the probability of low rainfall. CFSR captures the
overall distribution reasonable well. NCEP-DOE R2 appears to be outperforming others in capturing
the probabilities of higher magnitude rainfall. Climatological seasonal cycle and the characteristics of
wet and dry spells are compared further, where ERA seemingly replicates the pattern more effectively.
However, observed rainfall exhibits higher frequency of short wet spells when compared to that of any
reanalysis datasets. MERRA relatively underperforms in simulating the wet spell characteristics of
observed daily rainfall. CFSR overestimates the mean wet spell length and mean dry spell length.
Spatial trend analysis indicates that the northern and central western Ethiopia show increasing trends,
whereas the Central and Eastern Ethiopia as well as the Southern Ethiopia stations show either no trend
or decreasing trend. Overall, ERA-Interim and CFSR are better in depicting various characteristics of
daily rainfall in Ethiopian region.
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1. Introduction

Long term low frequency variations in rainfall intensity and spatial distribution are reported to be
adversely affecting many parts of the world in the recent period [1]. Signatures of similar variations
are also evident over Ethiopia, a region characterized by substantial climate variability on inter
seasonal, inter annual and long term scales. Often, agriculture, water supply and hydropower energy
sectors of this country have been adversely affected by the abrupt changes in the frequency and
intensity of dry/wet spells and also by unexpected extreme climate events such as droughts and floods.
The socio-economic systems exhibit low adaptive capacity and high sensitivity to these climate
variabilities, which in turn demands an intensive integrated hydrological and climatological modelling
of this region [2].

Simulation and assessment of potential climate change impacts through hydrological models over
any region demands reliable hydrological and meteorological variables for current (observed) and
future climate conditions [3]. However, water resources management and hydrologic modelling studies
are limited in Ethiopia, mainly due to the unavailability of long term observed data of hydrologic
variables [4]. Limited availability of data also restricts undertaking of any regional climate modelling
exercises and further assessment of impact of climate change on water resources over the region. The
absence of sufficient observed dataset for hydrologic modelling and climate change impact studies
forced researchers to simulate the systems with proxy datasets (global datasets or reanalysis datasets).
General Circulation Models (GCMs) are found to be good in reproducing the seasonal precipitation;
but fail to satisfy water balance requirements [5]. Satellite-based rainfall estimates (SRFE) are used
also as a replacement of observed datasets for hydrological simulations. The use of Version 7 TRMM
Multi-satellite precipitation analysis (TMPA) has improved simulations in mountainous areas [6].
Stisen and Sandholt showed the importance of satellite based rainfall estimates in simulating
continuous distributed hydrological models together with rain gauge observations [7-9]. Considerable
improvement in large-scale hydrological modelling is also reported using GRACE (Gravity
Recovery and Climate experiment) datasets [10].

Most of the related studies have been found to employ the global datasets for precipitation and
temperature [11-13], in the absence of observed datasets. Global Weather Experiments [14] aimed at
generating global datasets through a comprehensive space based observing system was an attempt to
overcome this major obstacle [15]. Though this was a major step, it is noted that the global
observational records prior to 1979 have considerable deficiencies. Last decade witnessed major
attempts to overcome this obstacle by creating comprehensive climate records for extended past
periods, by preferably reconstructing the three-dimensional state of the atmosphere of the past adopting
the similar methodology of Numerical Weather Prediction (NWP) by Bengtsson and Shukla [16]. The
available observations are re-analysed with advanced data-assimilation techniques to provide a
consistent initial state for the next short term forecast, thus generating a continuous stream of three-
dimensional fields of meteorological variables [17].

In addition to global datasets, various reanalysis datasets have found wide usage in modelling
exercises, due to the range of variables and the time span made available by various reanalysis.
Reanalysis datasets are frequently been used to provide initial and lateral boundary conditions for
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regional climate model simulations. Reanalyses have been popular for a wide range of studies due to
their homogenous nature compared to the raw observations and are an important source in climate
studies related issues for addressing long term climatic conditions [18]. Reanalysis data are classified
into three major phases corresponding to the advancements in the observing system: the ‘early’ period
from 1940 to 1957, when the first upper air observations were established; the ‘modern radisonde
network’ era from 1958 to 1978; and the era of ‘modern satellite’ from 1979 to present [19]. A few
frequently used reanalysis datasets are: European Centre for Medium-Range Weather Forecasts
(ECMWF’s) ERA-40 and ERA-interim, NASA’s Modern-Era Retrospective Analysis for Research
and Applications (MERRA), Japanese Meteorological Agency’s JRA-55, National Center for
Environmental Prediction/National Center for Atmospheric Science (NCEP/NCAR) Reanalysis I,
NCEP-Department of Energy (DOE) and NCEP Climate Forecast System Reanalysis (CFSR) [20-28].

The reanalysis datasets are continuously under improvement due to the significant changes in the
density of observations and modifications in the data assimilation systems [29-32], which in turn
compel the centres to improve their data assimilation systems used for numerical weather prediction.
As mentioned before, in recent years, different global reanalysis datasets with high spatial and temporal
resolution have been used to compensate the lack of direct observations. However, the quality and
reliability of these datasets need to be assured, since reanalysis data are bound to have regional biases.
This is highly significant for a country like Ethiopia where influence of geography in its climate is of
particular interest, with the central part of Ethiopia being dominated by the East Africa highlands which
split the country climatically into different regions by creating a spatially and temporally in-
homogeneous distribution of rainfall [33].

Accurate representation of the hydrological cycle in reanalysis data poses a special challenge
since it involves many parameters that are constrained only indirectly by observations. Estimates of
precipitation associated with the reanalysis data are produced by the forecast model, based on
temperature and humidity information derived from the assimilated observations. Approximations
used in the model’s representation of hydrologic processes strongly affect the quality and consistency
of the hydrological cycle. Any imbalances in the analysed fields relative to the model equations can
cause large initial changes in the forecast [29]. The strengths and weaknesses of different reanalysis
datasets in simulating various components of hydrologic cycle across the world are examined by many
studies [34-40]. Studies focussing on different aspects of precipitation such as climatology, inter-
annual variation, long term trend has pointed out the superiority of MERRA and ERA-Interim
datasets [38,39]. Global comparison of ERA-Interim and GPCC (Global Precipitation Climatology
Centre) indicate more rainfall than GPCC in most of the Northern Hemisphere, and in parts of South
America and ERA-Interim probably overestimates the decrease in rainfall in the central African
region [21]. Dee et al. compared ERA with Global Climatology Precipitation Project (GPCP), a dry
bias in GPCP over the northwest and western regions of Ethiopia is highlighted in Tsidu [21,41].
Nijssen et al. and Adler et al. also pointed out the insufficiency of GPCP, especially in mountainous
regions by highlighting its underestimation of precipitation in regions with orographic features [42,43].
However, number of such comparison studies of reanalysis datasets over Ethiopia is limited. Only a
few studies have attempted comparison of reanalysis datasets over African continent. Diro et al. found
that NCEP/NCAR and ERA-40 captured the spatial pattern of the climatology of the main rainy season

“Kiremt” (June to September) in Ethiopia [33]. However, it is also shown that NCEP/NCAR and
ERA-40, overestimate the mean rainfall in the North West, West and Central regions and underestimate
the same in the South and East regions. Overestimation by NCEP/NCAR is prominent in “Belg” (from
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February to May) season; whereas ERA-40 overestimates the mean rainfall in Kiremt. ERA-40 is
further shown to have captured the annual cycle over the country much better than NCEP/NCAR.
ERA-Interim reanalysis data is also found to be satisfactorily capturing the climatic trends and
variability over the entire African continent [44]. In addition, ERA-Interim’s regional heterogeneity is
also showed by highlighting its inability to reproduce the inter-annual variability over the West Sahel
and Central South Africa, and on the other hand its ability in effectively capturing the variability over
South Africa and East Sahel. Wu et al. compared MERRA, ERA-40, NCEP-DOE R2 and JRA-25 with
precipitation datasets from the Global Precipitation Climatology Project (GPCP) to represent the
circulation over the African Monsoon Region, and showed that MERRA produces the best estimate of
seasonal precipitation over that region [45]. Diaconescu et al. modelled Western Sahel region using
regional climate models (RCMs) from the AFRICA-CORDEX experiment, driven with gridded
observed datasets and reanalysis products, and showed that ERA-Interim and MERRA datasets
overestimate the number of wet days over Sahel region [46]. A shift in the frequency distribution
toward lower daily precipitation magnitude is also highlighted. CORDEX (COordinated Regional
Climate Downscaling Experiment) is contributed by the World Climate Research Program (WCRP)
and it is a climate model data not a reanalysis data. The RCM hindcast covers 1989-2008 with
boundary conditions from the ERA-Interim reanalysis data [47]. The ability of the CORDEX RCMs
in simulating large-scale global climate forcing signals was assessed in East Africa by compositing the
El Nino-Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) events. It is found that most
RCMs reasonably simulate the main features of the rainfall climatology over the three sub regions in
East Africa and also reproduce the majority of the documented regional responses to ENSO and 10D
forcing’s. Reda et al. used ERA-Interim to drive seven regional climate models and showed that the
simulations reproduce the temporal variability and the geographical distribution of precipitation
reasonably well [48]. Dee et al. compared ERA with GPCP, a dry bias in GPCP over the northwest and
western regions of Ethiopia is highlighted in Tsidu [21,41]. Nijssen et al. and Adler et al. also pointed
out the insufficiency of GPCP, especially in mountainous regions by highlighting its underestimation
of precipitation in regions with orographic features [42,43]. Cheung et al. showed no significant
changes in annual rainfall at the national or watershed level in Ethiopia [49]. On the other hand,
Wagesho et al. highlighted increasing trend in limited regions in the eastern Ethiopia, decreasing trend
in most parts of eastern and northeastern peripheries and negligible trend in most of the regions [50].

Performance evaluation of reanalysis data in simulating the climatic variability is of particular
interest especially for a region like Ethiopia, which is geographically heterogeneous with the East
Africa highlands in the central part dividing the country climatically and resulting in in-homogeneous
distribution of rainfall, with different seasonal cycles. Hence the present study is aimed at evaluating
the comparative performance of different reanalysis datasets in simulating the observed daily
precipitation of different stations spread across the country, using various statistical and non-
parametric techniques and assess the spatio-temporal variability, so as to recommend the most
appropriate reanalysis dataset to employ in future hydrologic modelling exercises, climate change
impact assessments and regional modelling studies over the region.
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2. Study region and Synoptic and Reanalysis Data

2.1. Study Region

Ethiopia is situated in the horn of the East Africa between latitudes 2.9 to 15.3 °N and longitudes
32.7 and 48.3 °E. The climate of the country is tropical in the South eastern lowland regions, and much
cooler in the large central highland regions. Annual average precipitation is around 848 mm. The
topography of Ethiopia is ragged, with elevation ranging from as low as 125 m below sea level at the
Denakil depression in the North east to as high as 4620 m at Ras Dashen in the North west within a
near vicinity [49] (Figure la). Elevation differences significantly influence the local microclimate,
thereby causing large variability and trends in the regional rainfall [51]. The spatio-temporal
distribution and magnitude of rainfall is highly variable across the country, with regions located at
higher elevations receiving more rainfall when compared to the low arid regions [48,52]. While, the
macro-scale pressure systems and monsoon flows which are related to the changes in the pressure
systems cause the seasonal and annual rainfall variations in the country [53], the changes in the
intensity, position, and direction of the weather systems causes the spatial variations of the rainfall [54].
National Meteorological Services Agency identified the common weather systems that cause rain over
Ethiopia as Sub Tropical Jet, Inter Tropical Convergence Zone, Red Sea Convergence Zone, Tropical
Easterly Jet, Somalia Jet, African Easterly Jet, and state of the El Nifo Southern Oscillation
(ENSO) [55,56]. The seasons in country are mainly classified into three: (i) Main rainy season
(Kiremt/Summer) from June to September; (i1) Dry season (Bega) from November to January and (iii)
Small rainy season (Belg) from February/March to May. The northern and central western part of the
country has a single rainy season June to September (Kiremt). Central and eastern Ethiopia has two
rainy periods March to May (Belg) and June to September (Kiremt). Southern Ethiopia has two rainy
seasons, the long rain (from March to May) and the short rain (from September/October to
November) [55].

2.2. Synoptic and Reanalysis Data

In this study, four reanalyses rainfall datasets are considered: ERA-Interim, NCEP-DOE R2,
MERRA and CFSR. These four reanalysis datasets have frequently been used in hydrologic and
climate studies, across the world. Reanalysis datasets are compared with the observed rainfall synoptic
stations. Based on the availability of observed data, all datasets are considered for the period
1981-2013. Observed station data is obtained from Ethiopian National Metrologic Agency (ENMA).
ERA-Interim reanalysis, NCEP-DOE R2 (NCEPR2) reanalysis, MERRA and CFSR reanalysis are
obtained from the data servers of ECMWEF (http://www.ecmwf.int/), NOAA (www.esri.noaa.gov)
NASA (http://disc.sci.gsfc.nasa.gov) and NCAR (http://rda.ucar.edu) respectively. The precipitation
field is given as a precipitation rate (kg m-2 s-1) in NCEP and CFSR, as total surface precipitation flux
(kg m-2 s-2) in MERRA and as total precipitation (m) in ERA Interim.

The pre-processing of observed and reanalysis datasets is necessary because of the difference in
its spatial resolution and format. The location of the synoptic stations and spatio-temporal details of
all datasets are described below.
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Figure 1. Box Plots of annual observed and reanalysis rainfall (mm) for the period
1981—-2013 shows low (25 percentile) and upper quartiles (75 percentiles) for stations (a)
Awassa (b) Mekele (c) Gore (d) Bahir Dar (e) Dire Dawa and (f) Addis Ababa.
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2.2.1.  Synoptic Data

Observed precipitation data from 16 stations, Debre Zeit, Metehara, Awassa, Neghele, Mekele,
Nekemte, Combolcha, Debre Markos, Gore, Arba Minch, Gondar, Bahir Dar, Gode, Dire Dawa,
Jimma, and Addis Ababa stations are used for the analysis. The locations of these 16 stations are shown
in Figure Sla. The stations are well-spread across the country and well-capture the spatial
heterogeneity of the region. Various quality checks are conducted in the observation datasets before
comparing it with reanalysis data. It is found that missing data is as low as 0.39% for Combolcha
station and as high as 19.34% for Gode station. The limitations are mainly due to the stations are not
accesable, a problem of data collectors and in addition the civil war in the country may also have
contribute for the missing data in the north part of the country (personal communication). In addition
to the above limitation, the existing meteorological network density of Ethiopia (about 832) doesn’t
satisfy the World Meteorological Organization (WMO’s) recommendations (2399—5428) [57]. The
percentage of missing data for various stations is shown in Figure S1b. The choice of interpolation
method depends on the type of data used to fill the gap. Correlation of precipitation data of the nearby
station can be used but as precipitation can be quite variable on a short distance, the correlation may
not be very good. The conventional centroid method and time-dynamic Voronoi tessellation method
were used for swat simulation. Time-dynamic Voronoi tessellation utilizes available data more
efficiently and significantly reduces the amount of missing data in sub basin climate time series [58].
Missing data at a test station are estimated by weighted averages of observations at neighbouring
stations. The weights are inversely proportional with some power of the distance between the test
station and the neighbour stations. Spatial interpolation of missing data by weighted average of a
spatial data such as Inverse Distance Weighting (IDW), Ordinary Kriging (OK), Universal Kriging
(UK), Spline (S) and Topo to Raster (TR) are also used by researchers. Since precipitation data from
only 16 stations are available, an intensive missing data replacement (e.g., any spatial interpolation
technique) is not advisable. Therefore, missing observed data are infilled through climatological daily
precipitation wherever needed. The bias that may arise due to this will be minimal, since the data is
missing at different time periods and a huge gap period is not present in any precipitation time series.

Outliers separated from extreme events by homogeneity test. Outliers are defined to be the
marginal values of a climate time series, which are very distant from the mean value. They can be due
to measurement errors or extreme meteorological events. Outliers that are known to be wrong
measurements should be excluded from the data set, but for those that may have a physical background,
whether correction should be made or not is an important question [59,46]. The extreme values, if they
are correct, carry valuable climatological information that should not be dismissed [60]. On the other
hand, outliers can affect the estimation of sample statistics during the use of non-resistant techniques.
These techniques are known to be sensitive to the presence of outliers [61]. In order to retain the
information of extreme events while not influencing non-resistant statistics too much, outliers can be
replaced by a threshold value specific for each time series [59]. Outlier detection is performed using
boxplots and using a threshold suggested by Gonzdez-Rouco et al. [60]. Outliers trespassing a
maximum threshold should be replaced by Pout = Qo.75 + 3 IQR, where Qo.7s is the third quantile and
IQR is the interquartile range. No significant outliers are detected in the daily precipitation data of 16
stations. Consistency and homogeneity are assured by performing a double mass curve analysis. For
this purpose, the commonly adopted three rainfall regimes based on the rainfall homogeneity
determined by the topographical variation, seasonal cycles and regional & global weather systems are
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considered [33,62]. Stations in western Ethiopia (from southwest through to northwest) such as
Mekale, Debre Markose, Bahir Dar, Jimma, Gore, Nekemte, and Gonder with a mono-modal rainfall
pattern fall in regime A and those stations in Central and Eastern Ethiopia such as Awassa, Methara,
Debre Zeit, Dire Dawa, Combolcha, and Addis Ababa with bi-modal long rainy season fall in regime
B. Whereas stations in South and South Eastern Ethiopia such as Arba Minch, Gode and Neghele with
two disctinct dry and wet seasons lie in regime C. For more details, readers are referred to Diro et al.
and Dawit et al. [33,62]. As an illustration, double mass curve of Debre Markose precipitation is plotted
with the cumulative average precipitation of six other stations lying on regime A and is shown in
Figure Slc. A straight line with no deviations indicates no significant change in the Debre Markose
precipitation regime. Similar exercise is performed for all 16 synoptic stations, considering its rainfall
regime and no inconsistency is found in the synoptic precipitation data of 16 stations. These checks
also prove that 16 synoptic stations used in this study well represent the three rainfall regimes of the
country and are adequate for any comparison study.

Frequency of wet and dry days to check whether the reanalysis hit or miss the reference daily
observations was calculated by several categorical indices based on the contingency table. Probability
of Detection (POD), False Alarm Ratio (FAR) and Critical Success Index (CSI) were used for this
performance test [63]. POD, FAR and CSI were used for this performance test [63]. All three indices
range from zero to one. While POD and CSI take zero as worst and one as best, FAR takes zero as best
and one as worst. A wet (dry) day is defined as a day with precipitation more (less) than 1 mm. Since
most regions of Ethiopia receive significant percentage of its total rainfall during the months of May
to October much similar to the seasonal cycle over the northern tropical regions lying between equator
and 30 °N, hence, the period between May to October (MJJASO; 184 days) is only considered for this
analysis [51,62].

2.2.2. Reanalyses Datasets

Since, the four reanalyses datasets differ in their spatial resolution, an interpolation technique is
employed to obtain the precipitation values corresponding to the 16 station locations. Interpolation is
done for reanalysis data and not for synoptic data in order to preserve the variations in observed data,
if any. The interpolation is done by regridding through a nearest neighbour method. However, while
assessing spatial variations and trends, a spline interpolation technique is adopted using Geographic
Information Systems (GIS) platform at several irregularly spaced station locations [65].

3. Results and discussion

Spatio-temporal characteristics of four reanalysis datasets are examined for its efficacy in
reproducing long and short term characteristics of observed precipitation values across Ethiopia. Skill
of different reanalysis datasets in simulating the annual and monthly precipitation characteristics are
initially analysed. Further, a detailed investigation is carried out to compare the daily precipitation
characteristics.
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Table 1. Showing the detail description of the reanalysis datasets (as mentioned
briefly in [21,25,66,67,27])

Reanalysis Availability Spatial Data Assimilation Description Sources
Data Resolution
ERA-Interim 1979 to present  0.25°x0.25°  4-dimentional variational assimilation ECMWF

system. Horizontal resolution of the
dataset is 80 km (T255 spectral) with 60
vertical levels from the surface up to 0.1
hPa
NCEP-DOER2 1979to Present 0.57x0.5" Horizontal resolution of the NCEP-DOE ~ NASA
R2 model is T62 (210 km) with 28
vertical sigma levels. The data
assimilation system used is 3-dimentional
variational analysis technique

MERRA 1979 to Present  2/37x1/2° Uses the Goddard Earth Observing NASA
with 72 System Data Assimilation (GEOS-5). 3-
vertical dimentional variational analysis
levels assimilation
CFSR CFSR (1979to  1/2°x1/2°  high-resolution coupled atmosphere- NASA
2010) and global grid ocean-land surface-sea ice system
CFS version 2,  with 64 designed to out-perform the older
CFSv2 (2011 vertical products
till present) levels
CORDEX AFR 1981 to 2005 0.44°%0.44° lateral boundary forcing obtained from MPI-M,
ERA-Interim reanalysis Germany

3.1. Characteristics of Annual Rainfall

Often, water resources management studies demand annual rainfall and seasonal cycle rather than
daily rainfall. Hence the accurate simulation of annual rainfall series need to be checked in reanalysis
datasets. The box plots of annual rainfall of observed as well as reanalysis datasets are shown in Figure
1. The behaviour of reanalysis sets are found to be varying for different stations. While NCEP-DOE
R2 is significantly different, ERA, MERRA and CFSR tends relatively closer to the spread of the
observed annual rainfall, with ERA and CFSR being more close to the observed rainfall in most of the
stations. The climatological annual mean is simulated better by ERA and CFSR when compared to
NCEP-DOE R2 and MERRA. The inability of NCEP-DOE R2 in simulating the long-term averages
is evident from the boxplots.

Further analysis is carried out by computing the climatological annual cycle, to check the
capability of reanalysis datasets in simulating the seasonal variation of rainfall over the country. The
mean annual cycle computed from observed and reanalysis datasets is shown in Figure 2. While NCEP-
DOE R2 is evidently inferior, MERRA tends closer to the observed long-term monthly cycle. However,
the seasonal variations in rainfall are simulated well by ERA, MERRA and CFSR, though the
magnitudes differ. The seasonality is different for different stations, which further indicates the wide
spatial variability of rainfall across the country. The eastern part of the country (Dire Dawa station)
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receives rain twice in a year in the months of March to May and in months of July to October. The
South-Central part of the country (Awassa station) receives rain in the months of March to June and
also in the months of June to September. Regions following a bimodal rainfall pattern are well captured
by ERA and MERRA datasets. The month January for ERA shows a fourfold increase of rainfall for
Bahir Dar and MERRA a fivefold increase for Dire Dawa (Figure 3).
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Figure 3. Percentage change of the reanalysis relative to the observed Rainfall value for
the period 19812013 for stations (a) Awassa (b) Mekele (c) Gore (d) Bahir Dar (e) Dire
Dawa and (f) Addis Ababa.

e Spatial Variability and Trends of Annual Rainfall

Areal average rainfall is computed from the station data using the spline interpolation in GIS
platform, since spline interpolation is recommended for sparse observed data [68]. The spatial variation
of long term average annual rainfall of observed and reanalysis rainfall series is shown in Figure 4.
Ethiopia receives heavy rainfall in higher elevations which are densely populated and have cultivated
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lands. On the contrary, lower elevation areas are more arid and receive less rainfall. The observed
annual precipitation is high in the Northern and Central Western Ethiopia. The Central and Western
Ethiopia as well as the Southern Ethiopia regions receive ample precipitation (Figure 4). The
precipitation pattern is different for four reanalysis rainfall series. While ERA and CFSR tend to under
predict the annual precipitation, MERRA and NCEP-DOE R2 tend to over predict the same. MERRA
annual precipitation shows high values in the South-Western parts whereas scarce rainfall in the
Eastern and upper Northern parts. NCEP-DOE R2 annual precipitation pattern shows low rainfall in
the Northern and Southern part of the country. ERA annual precipitation distribution, though almost
similar to observed annual rainfall distribution, shows low magnitudes in the South-Eastern part of the
country. CFSR annual precipitation shows high values of rainfall in the Central Western part of
Ethiopia that shows spatial similarity to the ERA and observed values. The underestimation by ERA
appears to disagree with the earlier studies conducted on this region. This might be due to the difference
in comparison approaches adopted. Earlier studies had taken a grid-wise comparison while the present
study has adopted a station-wise comparison. It is observed that, while for Gore, ERA Interim over
estimates the observed rainfall in 8§ months (October to March) and underestimates in 4 months (June-
September); for Bahirdar, ERA Interim underestimates the observed rainfall in most of the months.
The distinct behavior of each station is hence evident from the present analysis, which may not be
apparent in grid-wise (spatial averaging) analysis. Hence, a possible overestimation of wet bias in ERA
cannot be avoided. The long term mean precipitation demonstrated in these studies may not reveal the
station-wise monthly precipitation variations.

A detailed trend analysis is also performed to determine the efficacy of reanalysis series in
reproducing the trends in observed data was done by Man-Kendall non-parametric test. Most of the
stations located in the northern and central western Ethiopia shows Zc value shows a very highly
significant (99%) increasing trend. The Central and Eastern Ethiopia as well as the Southern Ethiopia
stations show either no trend or a decreasing trend at a 90% significance. The increasing trend is more
or less positively correlated with the elevation. While similar results are obtained with previous results,
contradictory results are obtained for other regions, which could be due to the difference in time period
and the stations considered. The performance of reanalysis datasets is not satisfactory in replicating
the observed trends. While NCEP-DOE R2 shows an increasing trend in the North-Western and
Eastern parts of the country and a very highly significant decreasing trend in the Western regions,
MERRA shows an increasing trend in almost all parts of the country. ERA dataset shows a decreasing
trend in the Central part of the country and an increasing trend in the Southern part. CFSR shows an
increasing trend in the Northern parts of the country. NCEP-DOE R2 shows the highest decrease of 65
mm of rainfall per year in the Western parts and MERRA shows a decrease of 7 mm in the Northern
parts. MERRA shows a maximum increasing trend of 45 mm per year for the South-Western parts of
the country. In short, reanalysis datasets fail in reproducing the exact spatial patterns of trends of annual
rainfall across the country (See Table S1).

3.2. Characteristics of Monthly Rainfall

The four reanalysis datasets are used to derive the rainfall values at 16 locations employing
nearest neighbour interpolation technique. The comparison of ERA-Interim, MERRA and NCEP-DOE
R2 datasets with the observational data for 16 stations are carried out by estimating various moments
and performance measures. The correlation, standard deviation and root mean square (RMSE) of
monthly rainfall (mm/day) of observed and reanalyses datasets are compared through Taylor diagrams.
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Figure 4. Spatial variation of long term average annual precipitation in mm/year for (a)
Observed, (b) ERA-Interim, (c) MERRA, (d) NCEP-DOE R2 and (e) CFSR datasets.
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For the purpose of illustration, results of only six stations, (a) Awassa (b) Mekele (c) Gore (d) Bahir
Dar (e) Dire Dawa (f) Addis Ababa and (g) mean of all 16 stations are presented. These six stations
were chosen as they represent each administrative region in Ethiopia, encompassing the cardinal and
middle parts of the country so as to well-represent the spatial rainfall pattern of the country. ERA-
Interim exhibit higher correlation values with observed daily rainfall, in most of the stations. High
correlation coefficients of around 0.8—0.9 are found for ERA, which is followed by CFSR and MERRA
in most of the stations. Performance in terms of least root mean square error is also better for ERA as
can be seen from Figure 5. RMSE values are comparatively large for NCEP-DOE R2, when compared
with that of ERA, CFSR and MERRA datasets. Further analysis is done by estimating various statistical
moments, mean, skewness and kurtosis of monthly rainfall (mm/day) for 16 stations, from observed and
four reanalysis sets are shown in Figure 5. As shown in Figure 5c¢, mean daily precipitation values of
CFSR are much closer to the observed values for most of the stations. This is followed by ERA and
MERRA reanalysis values. It is noted that NCEP-DOE R2 and MERRA are overestimating the mean
daily precipitation values, with NCEP-DOE R2 being the worst. The standard deviation of daily
precipitation is also better captured by ERA, MERRA and CFSR, while NCEP-DOE R2 overestimates
the spread of precipitation data (Figure 6).

Though all datasets exhibit a positive skewness, with more values aggregated below the mean, it
is evident from Figure 6b that MERRA underestimates the skewness value for most of the stations.
ERA is relatively closer but marginally overestimates the skewness for some of the stations. Kurtosis
values are the least for MERRA, and the highest for NCEP-DOE R2 values (Figure 6¢). The positive
kurtosis exhibited by observed precipitation indicates heavy tailed distribution with sharper peak when
compared to the normal distribution. Higher kurtosis values of ERA, CFSR and NCEP-DOE R2
indicate that the variability in data is mainly due to values lying near to the mean than due to occurrence
of extreme values. A comparison of the probability distributions and quantile-quantile plots should
reveal more details on this aspect.

3.3. Probable Occurrence of Daily Rainfall Values

A comparison of cumulative distribution functions (CDFs) of the daily precipitation from observed
dataset and reanalysis datasets are shown in Figure S2. For the purpose of illustration, results of only six
stations, (a) Awassa (b) Mekele (¢) Gore (d) Bahir Dar () Dire Dawa and (f) Addis Ababa are presented.
While goodness of fit test fails for all the four reanalysis datasets, a visual comparison shows that MERRA
precipitation underestimates the probabilities of both zero rainfall or dry days and heavy rainfall. However, it
seemingly replicates the probability of moderate rainfall values. ERA appears to be overestimating the
probability of moderate rainfall, while capturing the probability of low rainfall fairly well. While, NCEP-
DOE R2 is better in capturing the high magnitude rainfall values, CFSR outperforms all three reanalyses in
simulating the overall distribution of observed daily rainfall. A percentile-wise performance analysis through
quantile-quantile plots is further carried out, for obtaining a clearer picture.

Quantile-quantile (Q-Q) plots of daily rainfall of observed and reanalysis datasets are shown in
Figure 7 for the six stations. Although reanalysis datasets are unable to capture the lower percentile
values accurately, the superiority of ERA and CFSR is clearly visible from the Q-Q plots. The
performance of NCEP-DOE R2 is the worst when compared to other reanalysis datasets.
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3.4. Hits and Misses of Daily Rainfall

The dry season and wet season classified as stated in section 2.1.1 and the period between May
to October is considered for explaining statistical performance of the frequency of wet and dry days
by using the probability of detection (POD), False Alarm Ratio (FAR) and Critical Success Index (CSI).
Table S2 gives the summary of these indices for wet and dry days for four reanalysis datasets. Except
NCEP-DOE R2, all reanalysis is comparable to yield the hits and misses of both wet and dry days.
Overall, NCEP-DOE R2 is inferior in all indices, with worst POD (and CSI) and high FAR. MERRA
is seemingly superior in detecting the POD of dry days for most of the stations. Nevertheless, ERA,
MERRA and CFSR are in good agreement with each other in simulating different characteristics.
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3.5. Characteristics of Wet and Dry Spells

The accurate simulation of wet and dry spells is important for the application of any reanalysis
dataset as a proxy data for studies related to agricultural and irrigation management such as design of
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rain water harvesting system, risk assessment of crop destruction through water stress, design of
supplementary irrigation system etc. Similar to the previous analysis, period between May to October
is only considered for spell analysis. The wet spell length is estimated as the consecutive days (number
of days) with precipitation more than 1 mm/day. The variation of wet spell frequency with length is
shown in Figure 8. Observed rainfall exhibits higher frequency of short wet spells when compared to
that of reanalysis datasets. MERRA is inferior in simulating the wet spell characteristics of observed
daily rainfall.

Similarly, dry spell is defined as the consecutive days with precipitation value less than 1
mm/day [69,70]. The variation of dry spell frequency with length is shown in Figure 9. Reanalysis
datasets under-estimate the frequency of short dry spell. NCEP-DOE R2 shows higher frequency of
short dry spell when compared to that of another reanalysis. As shown in Figure 10, a comparison of
mean dry spells indicates that MERRA and NCEP-DOE R2 under-estimate the observed mean dry
spell length, whereas ERA and MERRA overestimate the observed mean wet spell length. While, ERA
simulates observed mean dry spell length relatively well, NCEP-DOE R2 is effective in capturing the
observed mean wet spell length. CFSR is overestimating both the mean wet spell and dry spell lengths.
However, considering the ability in replicating diverse characteristics of observed rainfall series, ERA
followed by CFSR are evidently more effective when compared with MERRA and NCEP-DOE R2 in
simulating the rainfall characteristics.

The results detailed above should be examined with caution since 16 stations may under-represent
the precipitation variability of Ethiopia. Though the preciseness of the analysis directly depends on the
density of rain gauges, in this study a good spread of stations is ensured across the country to represent
the remarkable precipitation zones. While more number of stations will definitely improve the
reliability of the results, the under-representation of a few regions like southeast and Western regions
may not significantly affect the results obtained since enough number of stations are present for each
rainfall regime. Though dense precipitation data from as large as 233 gauge stations over Ethiopia has
been used by a few studies, the quality of data was not assured [41]. The quality of data used in the
present study over the 16 selected synoptic stations are assured, however.

4. Conclusions

Hydrologic modelling and climate change impact studies need reliable and long term information
about various climatic variables. The lack of sufficient observed dataset to fulfil this requirement puts
demand on alternate proxy datasets. The performance of four reanalysis precipitation data is evaluated
and compared with observed station rainfall data. The analysis reveals that mean annual precipitation
is well captured spatially over the entire country by all the four reanalysis datasets. The performance
of ERA appears to be the best in terms of capturing the diverse characteristics of daily and annual
rainfall, followed closely by CFSR. NCEP-DOE R2 is found overestimating the daily, annual and
longterm averages. However, reanalysis datasets in general failed to capture the long-term trends in
annual rainfall spatially.
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Figure 8. Frequency distribution of wet spell lengths of observed and reanalysis rainfall
for stations (a) Awassa (b) Mekele (c) Gore (d) Bahir Dar (e) Dire Dawa and (f) Addis
Ababa (Zoomed version of moderate wet spell frequency are shown as insets).

However, it is noted here that the presence of gaps in the observed rainfall data (though less when
compared to other studies) in a few stations may limit the performance analysis. The lack of observed
data affects the accuracy of reanalysis datasets, since reanalysis datasets are derived from the
combination of observed data and model simulations. In particular, reanalysis data is expected to
perform poorly over Ethiopian region because of the highly heterogeneous rainfall pattern which is
majorly attributed to its topography. Various pressure systems and circulation patterns predominantly
influence the spatio-temporal characteristics of Ethiopian rainfall, hence limiting its predictability.
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Ababa (Zoomed version of moderate dry spell frequency are shown as insets).

Long period reliable observed meteorological data over this region should be made available to

improve the reanalysis model outputs like precipitation. In addition, reanalysis products through
improved spatio-temporal resolution and model modifications would be able to remove the above
highlighted deficiencies. Nevertheless, further investigation on climatic variables other than the
precipitation needs to be performed for a holistic accuracy analysis.
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As presented above, the detailed performance analysis highlights the superiority of ERA-Interim and
CFSR among other reanalysis datasets in replicating the rainfall characteristics over Ethiopian region
and hence may be employed in performing hydrologic and climate modelling studies that go with their
level of accuracy and resolution in the region.
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