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Abstract: Global land-use/land-cover (LULC) change projections and historical datasets are 
typically available at coarse grid resolutions and are often incompatible with modeling applications 
at local to regional scales. The difficulty of downscaling and reapportioning global gridded LULC 
change projections to regional boundaries is a barrier to the use of these datasets in a 
state-and-transition simulation model (STSM) framework. Here we compare three downscaling 
techniques to transform gridded LULC transitions into spatial scales and thematic LULC classes 
appropriate for use in a regional STSM. For each downscaling approach, Intergovernmental Panel on 
Climate Change (IPCC) Representative Concentration Pathway (RCP) LULC projections, at the 0.5 
× 0.5 cell resolution, were downscaled to seven Level III ecoregions in the Pacific Northwest, United 
States. RCP transition values at each cell were downscaled based on the proportional distribution 
between ecoregions of (1) cell area, (2) land-cover composition derived from remotely-sensed 
imagery, and (3) historic LULC transition values from a LULC history database. Resulting 
downscaled LULC transition values were aggregated according to their bounding ecoregion and 
“cross-walked” to relevant LULC classes. Ecoregion-level LULC transition values were applied in a 
STSM projecting LULC change between 2005 and 2100. While each downscaling methods had 
advantages and disadvantages, downscaling using the historical land-use history dataset consistently 
apportioned RCP LULC transitions in agreement with historical observations. Regardless of the 
downscaling method, some LULC projections remain improbable and require further investigation. 

Keywords: Representative Concentration Pathways (RCP); downscaling; state-and-transition 
simulation modeling; scenarios; land-use 
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1. Introduction 

Global land-use/land-cover (LULC) change projections generated by the integrated assessment 
and climate modeling communities are used for a wide variety of applications including modeling 
carbon dynamics, water use, and land-change [1-3]. While increasingly sophisticated models are 
becoming available, applying global projections of LULC change at regional scales remains a 
challenge requiring further research [4,5]. Typically, global LULC models produce LULC 
projections at broad regional scales or at coarse grid resolutions [4,6]. However, modeling at local to 
regional scales is often of greater relevance for informing management decisions and mitigation 
strategies. For LULC change in particular, local factors have important and direct influence on 
land-use patterns necessitating modeling at finer scales where local data is available [7]. 

The climate modeling community has been moving towards a scenario framework in an effort 
to explore implications of alternative climate futures and mitigation outcomes [8]. Applying 
global-scale scenario data to regional-scale scenario modeling of LULC change has two important 
benefits: (1) it allows for the incorporation of global climate scenarios into regional-scale research, 
and (2) facilitates relevant comparisons between LULC modeling efforts [9]. Using global LULC 
data in regional assessments requires data downscaling to scales relevant for analysis. Downscaling 
refers to the process of translating data from a coarse scale to a more detailed scale while 
maintaining a degree of consistency between datasets [10,11]. 

Previous approaches to downscaling LULC projections have relied largely on finer scale 
classified LULC products derived from remote sensing sources to facilitate the downscaling of 
LULC data. Dendoncker et al. [12], used the Coordinated Information on the European Environment 
(CORINE) land cover map as a starting point for projecting land-use at fine spatial scales. West  
et al. [13], used Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover data to 
facilitate land-use downscaling from a 0.5 degree grid to a 0.05 degree grid for the United States. 
Other approaches have used finer scale models to downscale global land-cover data [14,15]. Sleeter 
et al. [16] and Sohl et al. [17] used an integrated assessment model combined with land-use histories 
and expert knowledge to drive downscaling.  

Representative concentration pathways (RCPs) are the latest set of climate scenarios used for 
the Intergovernmental Panel on Climate Change’s (IPCC) Fifth Assessment Report (AR5) [18]. The 
RCPs are a set of trajectories of land use, air pollutants, and greenhouse gas levels leading to total 
radiative forcing targets of 2.6, 4.5, 6.0, and 8.5 in W/m2 in the year 2100 [9]. Each RCP is named 
after the radiative forcing target value (e.g. RCP 2.6, etc.). Global RCP land-use transition 
projections (i.e. LULC change amounts) are available annually between 2005 and 2100 at 0.5 × 0.5 
degree grid cells [9]. While LULC transition values at this resolution may be suitable for global 
modeling efforts, local to regional scale land-use modeling often requires RCP LULC transition 
values summarized at the regional scale to maintain data consistency.  

Regional scale RCP LULC transition values can be created by simply aggregating RCP grid cell 
LULC transition values to a regional boundary of interest. However, a strategy is needed for dealing 
with coarse grid cells overlapping into two or more regions. For these cells, LULC transition values 
must first be downscaled to region boundaries before they can be summarized by region of interest. 
Since RCP cells are quite large (~ 3000 km2) the method used to downscale RCP boundary cells to 
regions may have a large impact on the resulting LULC projections.  
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We present three approaches for downscaling RCP land-use projections to Level III Ecoregions [19] 
in the Pacific Northwest, USA: (1) using area proportions (“area-based”), (2) using proportions of 
LULC from a classified remote sensing dataset (“composition-based”) and (3) using a historic LULC 
transition dataset (“transition-based”). Ecoregions are useful for regional scale analysis as they 
represent areas of similar biotic, abiotic, physical and aquatic characteristics [19,20] and have been 
proven useful in examining historical [3] and potential future land use change [21]. For RCP 6.0 [22] 
we used LULC projections from the RCP database [4] to derive ecoregion-scale projections of 
LULC change for each of the three downscaling approaches. We then used a state-and-transition 
simulation model (STSM) to project changes in LULC between 2005 and 2100 based on each 
downscaling outcome. Below we describe the three downscaling methods and compare the results of 
each simulation. Our goal was to assess the most effective downscaling technique for regional 
applications of RCP data.  

2. Methods 

2.1. Study area 

Seven Level III Ecoregions in the Pacific Northwest, USA were analyzed in this study including 
the Puget Lowland, Coast Range, Eastern Cascades Slopes and Foothills (hereafter East Cascades), 
Willamette Valley, Klamath Mountains, Cascades, and North Cascades. The total study area is 
comprised of approximately 266,734 km2 (Figure 1). The LULC mosaic in the Pacific Northwest is 
characterized by the forested mountainous terrain of the Cascades and Coast Range, agriculture and 
urban dominated land-use in Willamette Valley and Puget Lowland and grass/shrub dominated areas 
of the East Cascades. Historical LULC change rates within the Pacific Northwest are high with the 
greatest change rates found in the Puget Lowland, Coast Range and Willamette Valley ecoregions [23]. 
Logging, urbanization, and changes in agriculture are all important regional land change processes. 
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Figure 1. A) Study area with ecoregions and RCP cells (in orange). B) Study site in 
the context of the USA. 

2.2. Methods overview 

Global LULC projections from 2005 to 2100 for the RCP 6.0 scenario were available from the 
RCP database hosted by the International Institute for Applied Systems Analysis (IIASA) [24]. RCP 
6.0 is a medium to high emission pathway scenario where radiative forcing stabilized at 6.0 W/m2 in 
the year 2100. Mitigation efforts in this scenario were implemented around 2060 in an effort to 
reduce global greenhouse gas emissions, resulting in a decrease in fossil-based fuels and an increase 
in renewable energy sources [22]. Globally, land use change was characterized by increased area 
devoted to agriculture and development; however regional variation occurred in land-use patterns. A 
complete description of RCP 6.0 can be found in Masui et al. [22]. A total of 21 RCP land-use 
transitions were considered for downscaling (Table 1). RCP projections provide LULC transitions as 
a percentage of total cell area within a 0.5 × 0.5 degree cell.  
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Table 1. RCP transitions considered for downscaling and the average annual 
amount of transition over the study region between 2005 and 2100.  

RCP “from” Class RCP “to” Class Average Annual Transition (km2)

Crop Pasture 57.9 
Crop Primary land 0.0 
Crop Secondary land 25.4 
Crop Urban 30.7 
Pasture Crop 144.3 
Pasture Primary land 0.0 
Pasture Secondary land 551.4 
Pasture Urban 62.3 
Primary land Pasture 348.7 
Primary land Crop 8.1 
Primary land Secondary land 1278.1 
Primary land Urban 0.0 
Secondary land Pasture 158.8 
Secondary land Crop 4.6 
Secondary land Urban 135.2 
Urban Pasture 0.0 
Urban Crop 0.0 
Urban Secondary land 0.0 
Mature secondary forested land Harvested biomass 21871.8 
Primary forested land Harvested biomass 0.0 
Young secondary forested land Harvested biomass 0.0 

 
RCP grid cells within or partially overlapping the study area were selected for use in our 

downscaling methods. Large bodies of water within the study site were extracted and consolidated as 
a separate region so that water areas could be excluded when applying area-based reapportioning. 
Ecoregion and RCP cell layers were merged so that sub-cell zones were created at ecoregion 
boundaries. For the purpose of explaining our three downscaling approaches, we define the 
following terms in relation to Figure 2. Cells are 0.5 × 0.5 degree RCP cells (Figure 2A), regions 
refer to ecoregion boundaries (Figure 2B), and zones are sub-cell areas created by the intersection of 
a cell and region (Figure 2C‒D). 

Regional level transition values were created by aggregating cell transition values to regional 
boundaries. However, for RCP cells overlapping more than one ecoregion, RCP cell LULC 
transitions must be downscaled to zones before summarizing at the ecoregion level. Three methods: 
area-based, composition-based, and transition-based downscaling were tested. In order to use RCP 
transition values in our STSM, broad RCP classes were cross-walked into LULC classes consistent 
with remote sensing imagery and historical data. For the area and composition-based reapportioning 
methods, this process was done following aggregation of RCP transitions to the ecoregion level. For 
the transition-based method, cross-walking was required prior to RCP transition reapportioning, so 
that transition classes were consistent with the historical Land Cover Trends dataset [25] used in the 
downscaling process. Table 2 provides an overview of our three downscaling methods and 
crosswalking approaches. 
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Figure 2. A representation of A) an RCP 0.5 × 0.5 degree cell grid, B) two adjacent 
regions, C) a cell grid overlaid and merged with regions, and D) an RCP cell with 
sub-cell zones including a water zone.  

Table 2. Overview of methods for the area-based, composition-based, and transition-based 
downscaling approaches. 

Area-based  Composition-based  Transition-based  

1. Areas for zones covered 
by water proportionally 
redistributed to land-based 
zones within each RCP cell. 
2. RCP transitions 
apportioned to zones based 
on each zone’s proportion 
of area, relative to its cell.  
3. Zone transitions summed 
across regions. 
4. RCP transition classes  
cross-walked to STSM 
transition classes.  

1. Landcover composition derived 
for each cell and zone from a 
classified remote sensing product. 
2. RCP transitions apportioned to 
zones based on each zone’s 
landcover area of the "from" class 
of the transition, relative to its 
cell. 
3. Zone transitions summed across 
regions. 
4. RCP transition classes  
cross-walked to STSM transition 
classes. 

1. RCP transition classes  
cross-walked to STSM transition 
classes.  
2. Region level transition data 
from the Trends dataset 
distributed to zones based on zone 
area relative to the region. 
3. RCP transitions apportioned to 
zones based the proportion of 
Trends transition occurring 
within each zone relative to its 
cell.  
4. Zone transitions summed 
across regions. 

2.3. Area-based downscaling 

For the area-based downscaling approach, cell transition values were downscaled based on the 
proportional area of each zone within a cell. Since LULC transitions cannot occur where water 
bodies are present, the relative proportion of land area (not total area) of each zone within a cell was 
used to determine RCP downscaling. RCP cell transitions were downscaled to zones as follows: 

ሻݐ௜,௝,௭ሺܣ ൌ 	 ௜ܲ,௝,௖ሺݐሻ	ܣ௖ 	
ሺ஺೥ି	ௐ೥ሻ

ሺ஺೎ି	ௐ೎ሻ
                   (1) 
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Where ܣ௜,௝,௭ሺݐሻ represents the area transitioning from class i to class j for zone z in timestep t. 

௜ܲ,௝,௖ሺݐሻ represents the RCP proportion of area transitioning from class i to j for cell c in timestep t. 
Variables	ܣ௖, ܣ௭, ௖ܹ, and ௭ܹ represent the area of cell c, the area of zone z, the water area of cell c, 
and the water area of zone z respectively. Thus, ௜ܲ,௝,௖ሺݐሻ	ܣ௖ represents the total area of transition in 

a cell, and 
ሺ஺೥ି	ௐ೥ሻ

ሺ஺೎ି	ௐ೎ሻ
 represents the ratio of zone land area to cell land area. Transitions downscaled to 

zones were then aggregated to regions.  

2.4. Composition-based downscaling 

Our composition-based downscaling approach assumes the relative presence of a particular 
LULC type determines the share of corresponding RCP transition apportioned between ecoregions. 
This method relied on a classified LULC map to facilitate the downscaling of RCP transitions to 
zones. The baseline LULC composition map must have a sufficiently high resolution to disaggregate 
RCP cells, offer a classification scheme capturing all of the RCP classes, and provide good spatial 
and temporal correspondence with the study region. The National Land Cover Database (NLCD) 
2006 dataset with a resolution of 30 m and 16-class classification scheme met these requirements 
(Table 3) [26].  

Table 3. NLCD 2006 classes and percent of study region area. 

NLCD Class Percent of Study Area (2006) 
Open water 1.32 
Perennial ice/snow 0.22 
Developed, open space 2.76 
Developed, low intensity 1.55 
Developed, medium intensity 0.69 
Developed high intensity 0.25 
Barren land (rock/sand/clay) 1.68 
Deciduous forest 1.54 
Evergreen forest 53.36 
Mixed forest 4.56 
Shrub/scrub 18.52 
Grassland/herbaceous  6.50 
Pasture/hay 3.37 
Cultivated crops 1.93 
Woody wetlands 1.02 
Emergent herbaceous wetlands 0.72 

 
Land-cover composition was derived for each cell and respective zone from the NLCD map. 

NLCD landcover classes were generalized to RCP LULC classes. RCP cell transition values were 
then downscaled to zones based on the NLCD area of the RCP transition “from” class. For example, 
the RCP transition “crop to urban” was reapportioned based on the area of the NLCD class “crop”. 
Each transition is apportioned as follows: 
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ሻݐ௜,௝,௭ሺܣ ൌ 	 ௜ܲ,௝,௖ሺݐሻ	ܣ௖ 	
ݖ,݅ܥ

∑ ܿ∋ݖݖ,݅ܥ
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ2ሻ	

where ܣ௜,௝,௭ሺݐሻ represents the area transitioning from class i to class j for zone z in timestep t. 

௜ܲ,௝,௖ሺݐሻ represents the RCP proportion of area transitioning from class i to j for cell c in timestep t. 
 is the NLCD area of the LULC class i in zone z. Transitions	௜,௭ܥ ௖ is the area of the cell andܣ	
downscaled to zones were then aggregated to regions.  

2.5. Transition-based downscaling 

The transition-based downscaling approach utilized the USGS Land Cover Trends (hereafter 
referred to as “Trends”) dataset [25] of ecoregion-level LULC transitions to disaggregate RCP cells 
to zones. Trends data include LULC transition values for transitions between 11 LULC classes for 
four temporal periods between the years 1973 and 2000, for each Level III Ecoregion in the 
conterminous United States. The dataset was created using a statistical sampling method and manual 
interpretation of Landsat imagery [3,27]. RCP land-use transitions were crosswalked to transition 
classes used in our STSM as described in section 2.6. Average annual transition values for 9 Trends 
transitions corresponding to STSM transition classes were used to facilitate the disaggregation of 
crosswalked RCP cell values (Table 4). 

Table 4. Trends transitions and average annual transition 
amount over the study region between 1973 and 2000.  

Trends “from” Class Trends “to” Class Annual Transition (km2) 

Agriculture Developed 25.9 
Agriculture Forest 7.6 
Agriculture Grass/shrub 7.5 
Forest Agriculture 13.8 
Forest Developed 55.0 
Forest Grass/shrub 59.2 
Grass/shrub Agriculture 5.1 
Grass/shrub Developed 2.7 
Grass/shrub Forest 0.0 

Ecoregion-based transition values from Trends were distributed to zones based on the 
proportional area of each zone relative to its region. Crosswalked RCP transitions were matched with 
Trends transitions and apportioned to zones as follows:  

ሻݐ௜,௝,௭ሺܣ ൌ 	 ௜ܲ,௝,௖ሺݐሻ	ܣ௖ 	
ݖ,݆,݅ܶ

∑ ܿ∋ݖݖ,݆,݅ܶ
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ3ሻ	

where ܣ௜,௝,௭ሺݐሻ represents the area transitioning from class i to class j for zone z in timestep t. 

௜ܲ,௝,௖ሺݐሻ represents the RCP proportion of area transitioning from class i to j for cell c in timestep t. 
 .is the Trends area transitioning from class i to j in zone z	௖ is the area of the cell and ௜ܶ,௝,௭ܣ	
Transitions downscaled to zones were then aggregated to regions. 
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2.6. Crosswalk to STSM classes 

In order to utilize the downscaled RCP projections within our STSM approach, we first had to 
convert the broad RCP classification scheme into transition classes more consistent with remote 
sensing derived LULC maps. For example, the RCPs classify vegetation as either “primary” or 
“secondary”, where “primary” land refers to land that has not been altered by human activity and 
“secondary” land is land that is recovering from human disturbance [4]. On the other hand, remote 
sensing-based LULC maps most often classify vegetation according to basic functional types, such 
as whether a cell is dominated by forest or grass/shrub. To account for discrepancies between 
classification schemes, we cross-walked the RCP scheme to the classification system used for the 
STSM (Table 5).  

Table 5. RCP classes and corresponding STSM classes 
excluding forest to biomass transition classes. 

RCP Class STSM Classes 
Pasture  Agriculture, Grass/shrub  
Primary Land  Forest, Grass/shrub, Wetland  
Secondary Land  Forest, Grass/shrub, Wetland  
Crop  Agriculture  
Urban  Developed 

 
Translating from RCP transitions to STSM transitions would have been straight forward had 

each RCP class corresponded to a unique STSM class. However, the “primary-land”, 
“secondary-land”, and “pasture” RCP classes potentially encompass more than one STSM class. The 
“primary-land” and “secondary-land” RCP classes were split between STSM classes “grass/shrub”, 
“forest”, and “wetland”. Cross-walking the “pasture” RCP class was especially problematic since the 
RCP definition of “pasture” included rangeland, which encompasses both grazing lands dominated 
by natural vegetation as well as croplands producing forage. Since no unique STSM equivalent was 
available, the RCP class “pasture” was split between STSM classes “grass/shrub” and “agriculture”.  

RCP transitions into and out of “pasture”, “primary-land”, and “secondary-land” classes were 
allocated among possible STSM transitions based on landcover area derived from an NLCD 2006 
map. RCP transitions were first matched to corresponding STSM transitions. For example the RCP 
transition primary-land to pasture potentially encompasses five possible STSM transitions: wetland 
to agriculture, wetland to grass/shrub, grass/shrub to agriculture, forest to agriculture and forest to 
grass/shrub (Figure 3). The RCP transition was allocated among STSM transitions considering both 
the “from” class and “to” class of each crosswalked STSM transition. For each STSM transition the 
proportion of NLCD area of the “from” class of the transition relative to the NLCD area of all STSM 
classes crosswalked from the RCP “from” class was calculated. Next the proportion of NLCD area of 
the “to” class of the transition relative to the NLCD area of all STSM classes crosswalked from the 
RCP “to” class was calculated. RCP transition was allocated to STSM transitions based on the “from” 
class and “to” class proportions of each STSM transition.  

The three RCP forest to harvested biomass transitions uniquely represent the STSM transition 
forest harvest and were simply aggregated into a single STSM forest harvest transition. All 
transitions out of “developed” land were not relevant to our effort and were ignored. 
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Primary-to-secondary transitions were also ignored since the intent of our modeling effort was to 
examine LULC change, rather than natural environmental transitions. 

 

Figure 3. Crosswalking primary-land to pasture RCP transition to all potential 
STSM transition classes. 

2.7. State-and-transition simulation modeling  

State-and-transition simulation models (STSMs) have been used in a variety of applications 
including simulating landscape level vegetation and fire dynamics, modeling the progression of 
invasive species, and projecting habitat suitability [28-30]. STSMs use an adaptive Markov chain 
approach to simulate changes in state class (e.g. vegetation, land use class) over time and can be used 
to model succession, disturbance, and management interactions [31]. An STSM splits the landscape 
into a set simulation cells which are each given an initial state class. State class transition pathways 
can be assigned either stochastic probabilities of occurrence or deterministic transition values [31]. 
More recently STSM’s have been designed to incorporate a spatial dimension, such as a region level 
stratification, or to be run in a spatially explicit fashion where transition probabilities are assigned by 
cell location [32]. While STSMs are suitable for modeling probability driven scenarios, only a few 
efforts have explicitly incorporated climate change scenarios into STSMs [33,34].  

We developed three, probabilistic LULC change downscaling scenarios (i.e. Area scenario, 
Composition scenario, and Transition scenario) for use in an STSM in order to test our three 
downscaling approaches. We converted the STSM transition class data from annual area targets into 
annual transition probabilities from 2005‒2100 for each scenario. Annual transition probabilities 
were calculated from transition target values by dividing the transition target value by the total 
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amount of the transition “from” class within each ecoregion for each timestep. Unlike transition 
targets, probabilities are driven by the amount of land available for transition.  

LULC change scenario modeling was done in the ST-Sim environment [35]. All scenarios were run 
using Level III Ecoregions as the spatial strata. Simulations were run annually from 2005 to 2100 using a 
10 km2 cell size and 100 Monte Carlo replicates over the 266,730 km2 study area. Initial land-cover state 
class values were derived from a harmonized classified LULC product. The harmonized dataset was 
developed using a pixel-based data fusion process combining a collection of fifteen land classification 
datasets into a single product and validated with remotely sensed imagery [36]. 

3. Results 

3.1. Pacific Northwest 

Under RCP 6.0, the Pacific Northwest was projected to see increases in developed land through 
the year 2100, with gains highly concentrated in the Willamette Valley, Puget Lowland, and Coast 
Range ecoregions. Large declines in forest cover and agriculture were largely the result of demand 
for developed land use, although agriculture increases were found in the East Cascades, North 
Cascades, Klamath Mountains, and Coast Range ecoregions (Figure 4). Forest harvest increased 
sharply by the year 2100 across all downscaling scenarios.  

 

Figure 4. Projected LULC change by downscaling scenario between 2005 and 2100 
over all ecoregions for A) Agriculture, B) Developed, C) Forest, and D) Grass/Shrub. 
Error bars represent the 95th percentile of Monte Carlo simulations. 

Downscaling scenarios were compared based on the mean and 95th percentile of Monte Carlo 
replicates. The difference between two scenarios was only considered important if each scenario’s 
mean value of Monte Carlo replicates fell outside the range of variation of the other scenario’s 
Monte Carlo replicates. Average LULC change totals for the Pacific Northwest between the Area 
and Composition scenarios were within each other’s ranges of variation and thus were not found to 
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be large enough to be important (Figure 4). However, several differences in projected LULC 
emerged between the Transition scenario and the Area and Composition scenarios. Projected 
agriculture loss, as well as developed and grass/shrub and gains were greater under the Transition 
scenario (Figure 4). Important differences between projected forest changes were not found between 
scenarios (Figure 4).  

Differences between Transition scenario projections and Area and Composition scenario 
projections over the study site were driven by the downscaling of transitions for cells on the study 
site border. The impact of the Columbia Plateau ecoregion, an ecoregion outside the study site, 
explains a great deal of the difference seen in agriculture and grass/shrub change between 
downscaling methods. The Columbia Plateau ecoregion has a much higher Trends transition value 
for the grass/shrub to agriculture transition than neighboring ecoregions. Both the North Cascades 
and East Cascades ecoregions were apportioned less grass/shrub to agriculture transition than the 
neighboring Columbia Plateau when applying transition-based downscaling compared to the 
composition or area-based downscaling (Figure 5). Since the Columbia Plateau ecoregion lies 
outside of the study site, grass/shrub to agriculture transition is effectively removed from the study 
site. This contributed to an increase in total grass/shrub and a decrease in total agriculture area for the 
Transition scenario compared to the Composition scenario. When combined, differences between 
reapportionment of RCP cells bordering ecoregions outside of the study site accounted for most of 
the differences in projected LULC totals.  

 

Figure 5. Total zone transition as a percent of total cell transition for the 
grass/shrub to agriculture transition in the North Coast, Eastern Cascades and 
Columbia Plateau ecoregions between 2005‒2100, for A) composition-based 
downscaling, B) transition-based downscaling. 
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3.2. Ecoregion variability 

3.2.1. Developed change 

Developed land-use totals increased over all ecoregions by the year 2100, with the largest 
increases occurring in the Cascades, Coast Range, Puget Lowland and Willamette Valley ecoregions 
(Figure 6). Of these ecoregions, the largest difference between downscaling methods occurred in the 
Puget Lowland ecoregion, where the Transition scenario projected nearly twice the amount of 
developed land than Area or Composition scenarios (Figure 6). The Transition scenario also differed 
from the Area and Composition scenarios in the Cascades, North Cascades and Willamette Valley 
ecoregions (Table 6). Between Area and Composition scenarios no important differences were found 
since the means of simulation runs were within the range of variability of each method (Figure 6).  

 

Figure 6. Projected total developed area change by ecoregion and downscaling 
scenario between 2005‒2100 (average over 100 Monte Carlo replicates). Error bars 
represent the 95th percentile of Monte Carlo simulations.  

The transitions forest to developed and agriculture to developed drove most of the change in 
developed land over our study site as transitions out of developed were not included in the scenarios 
and grass/shrub to developed transitions were small. For composition-based downscaling, the 
amount of the “from” class of the transition determines how border cells are reapportioned. 
Therefore, the amount of forest and agriculture land at border cells drives reapportioning, not the 
amount of developed land. However, in the Puget Lowland we expected the presence of existing 
developed land in the greater Seattle Metropolitan area would influence patterns of future 
development (Figure 7) since new development is likely to occur near existing developed areas [37]. 
Compared to the Transition scenario, the Composition scenario led to less forest to developed 
transition in the Puget Lowland (Figures 7B‒C). Apportioning transitions into developed land 
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without incorporating historic patterns of development may lead to an under-allocation of transition 
in the Puget Lowland.  

 

Figure 7. Total zone transition as a percent of total cell transition for the forest to 
developed transition in the Coast Range, Puget Lowland, Cascades, and North 
Cascades ecoregions, for A) area-based downscaling B) composition-based 
downscaling and C) transition-based downscaling. 

Area-based downscaling split RCP transitions between ecoregions based solely on the 
proportion of cell area within respective ecoregions. This method does not follow any spatial pattern; 
instead, the relative size of each zone determines the amount of transition apportioned to each 
ecoregion. Again, the high apportionment of transitions into developed land that we would expect to 
see in the Puget Lowland based on the historical presence of developed land did not occur in the 
area-based scenario (Figure 7A). Like composition-based reapportioning, area-based reapportioning 
leads to an under-allocation of transitions into developed land in the Puget Lowland.   
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When applying transition-based downscaling, greater Trends transition values for transitions 
into developed land in the Puget Lowland compared to adjacent ecoregions led to a greater 
apportionment of the RCP transitions into developed in the Puget Lowland and subsequently a higher 
amount of change into developed land (Figure 7C). Transition-based downscaling led to an 
apportionment of developed land more consistent with historical, empirical patterns.  

3.2.2. Agriculture change 

Between 1973 and 2000, agriculture in the Pacific Northwest was largely concentrated in the 
Eastern Cascades, Puget Lowland, and Willamette Valley ecoregions [23]. Under each of the three 
downscaling scenarios, agriculture was projected to increase in the Eastern Cascades, and decline in 
the Puget Lowland and Willamette Valley ecoregions (Figure 8). Differences between downscaling 
scenarios were small for most ecoregions. In the Cascades and Willamette Valley ecoregions, the 
Composition scenario mean was outside the range of variability of both the Area and Transition 
Scenarios (Figure 8). Differences were also found between the Area and Transition scenarios in the 
Coast Range and Puget Lowland ecoregions.  

 

Figure 8. Projected total agriculture change by ecoregion and downscaling scenario 
between 2005‒2100 (average over 100 Monte Carlo replicates). Error bars represent 
the 95th percentile of Monte Carlo simulations. 

In the Willamette Valley the Composition scenario led to the highest projected decline in 
agriculture. Agriculture in the Willamette Valley constitutes a much higher percentage of the 
landscape (16% from NLCD 2006), than in surrounding ecoregions, and follows the ecoregion 
border closely (Figure 9). As a result, most of the agricultural loss in border cells (e.g. agriculture to 
forest) was allocated to the Willamette Valley (Figure 9B). The apportionment of agriculture 
transitions in this case demonstrates a typical problem with composition-based downscaling 
approach. Composition-based downscaling apportions transitions based on the presence of a 
transition’s “from” class. However, the presence of a land-use is not necessarily indicative of future 
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change. In some cases transitions out of a land-use will more likely occur in areas where land-use is 
rare since conditions are likely to be less suitable. Composition-based reapportioning may lead to an 
over-apportionment of the agriculture to forest transition to the Willamette Valley and subsequent 
overestimation of the agricultural decline. 

Another problem with composition-based downscaling is that all transitions out of a LULC 
class are reapportioned equally. While agriculture is available for transition to forest in the 
Willamette Valley ecoregion, agriculture will likely transition to developed land given a high 
demand for developed land. In contrast, in the forest-dominated Coast Range, agricultural land may 
be more likely to transition back to forest. Potential differences between the likelihood of 
transitioning into the “to” class are not well distinguished in composition-based downscaling and 
may lead to implausible results.  

 

Figure 9. Total zone transition as a percent of total cell transition for the agriculture 
to forest transition in the Coast Range, Willamette Valley, and Cascades ecoregions, 
for A) area-based downscaling, B) composition-based downscaling, and C) 
transition-based downscaling. 
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The Transition scenario resulted in lower amounts of agriculture returning to forest in the 
Willamette Valley, the result of capturing recent historical LULC conversions occurring in the 
neighboring Coast Range ecoregion [23].  

3.2.3. Forest change 

Large reductions in forest were projected for all ecoregions except for the Willamette Valley 
where forests were projected to increase by 339 km2, 619.1 km2 and 131.0 km2 for the Area, 
Composition, and Transition scenarios respectively (Figure 10). The Transition scenario projected 
higher total forest loss in the Puget Lowland ecoregion and less forest loss in the Cascades ecoregion 
than the Area or Composition scenarios (Figure 10). In the Willamette Valley the Composition 
scenario led to greater forest gains than the Area or Transition scenarios (Figure 10).  

In the Puget Lowland greater forest loss projected by the Transition scenario was largely driven 
by two factors. First, a high Trends transition value for the forest to developed transition in the Puget 
Lowland, relative to surrounding ecoregions, led to a greater apportionment of the transition into the 
Puget Lowland when applying transition-based downscaling opposed to area or composition-based 
downscaling. Secondly, forest area constitutes a smaller percentage of total area in the Puget 
Lowland (40% from NLCD 2006) than in the forest dominated Coast Range (66% from NLCD 2006) 
and Cascades (75% from NLCD 2006) ecoregions [23]. Since, composition-based downscaling 
apportions transition values based on the “from” class of the transition, less transition out of forest 
was apportioned to the Puget Lowland when applying composition-based downscaling than for area 
or transition-based downscaling. Combined, these factors led to a large difference in projected forest 
change between the Transition and Composition scenarios.  

 

Figure 10. Projected total forested area change by ecoregion and downscaling 
scenario between 2005‒2100 (average over 100 Monte Carlo replicates). Error bars 
represent the 95th percentile of Monte Carlo simulations. 
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Large amounts of forest harvest are projected by 2100, with most harvest occurring the in 
Cascades, Coast Range and Klamath Mountains ecoregions. However, differences between 
downscaling scenarios were within each other’s range of variability and not large enough to be 
considered important (Figure 11).  

 

Figure 11. Projected total forest harvest by ecoregion and downscaling scenario 
between 2005 and 2100 (average over 100 Monte Carlo replicates). Error bars 
represent the 95th percentile of Monte Carlo simulations. 

3.2.4 Grass/shrub change 

Grass/Shrub area was projected to increase in all ecoregions with the exception of the Eastern 
Cascades and North Cascades (Figure 12). Only in the North Cascades and Willamette Valley 
between the Transition and Composition scenarios and in the Willamette Valley between 
Composition and Area scenarios were differences in projected grass/shrub seen.  

While grass/shrub makes up a relatively small proportion of landcover within our study region, 
the Columbia Plateau, Northern Basin and Range and Blue Mountains ecoregions to the East of the 
study region are largely composed of grass/shrub (Figure 13A). However, looking closely at cells on 
the border of the Columbia Plateau and the Northern Cascades, actual grass/shrub boundaries are not 
as abrupt as ecoregion boundaries. In some places dense grass/shrub areas spill over into the 
Northern Cascades (Figure 13B).  
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Figure 12. Projected total grass/shrub area change by ecoregion and scenario 
between 2005‒2100 (average over 100 Monte Carlo replicates). Error bars represent 
the 95th percentile of Monte Carlo simulations. 

 

Figure 13. A) The Northeast edge of the study site with grass/shrub area from 
NLCD 2006 and RCP cell boundaries. B) A close up of an RCP cell spanning the 
North Cascades and Columbia Plateau Ecoregions. 
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For transitions out of grass/shrub, transition-based downscaling may underestimate the amount 
of transition that should be apportioned to ecoregions such as the Northern Cascades because Trends 
values are derived for ecoregions as a whole. Within ecoregion variation, not captured in the Trends 
transition value, may warrant higher rates of transition near ecoregion borders.  

The composition-based downscaling approach may be beneficial in this case because the NLCD 
map can indicate where gradual change between LULC occurs (Figure 13B). The impact of this type 
of spill over is not always clear, however, since historical drivers of LULC change such as 
management practices may be more important than land-cover in determining how LULC change 
should be reapportioned between ecoregions.  

4. Discussion 

Of our three downscaling approaches, the area-based approach is the simplest to implement 
because it requires  no additional datasets. This method may be entirely sufficient when splitting 
transitions across a homogenous landscape and would also be suitable if land-use history data or a 
land-use composition data was not available or reliable. However, area-based downscaling has 
several key disadvantages. In some cases, regions have distinct differences in the amount of expected 
LULC transition. Area-based downscaling fails to incorporate the regional heterogeneity of the 
landscape in the downscaling method. As demonstrated above, this can lead to large differences in 
land-use projections and reduced confidence in the scenario itself. Results from area-based 
downscaling may be especially questionable when a large proportion of RCP cells fall on the edge of 
two or more regions of interest. Such is the case with most of the ecoregions within our study site. 
The Willamette Valley, for example is made up of only edge cells.  

Differences between the Area and Composition scenarios were mostly within each other’s range 
of variability, indicating that they were not large enough to be important. One main benefit of 
composition-based downscaling is that it accounts for regional heterogeneity between LULC. 
However, the composition-based downscaling assumes LULC composition is a suitable proxy for 
LULC change. This may prove inaccurate for transitions where land management practices are more 
important drivers of change than landcover presence [38]. Furthermore, since composition-based 
downscaling is determined only by the relative zone composition of the “from” class for each 
transition, transitions can be apportioned to ecoregions where the LULC of the “to” class is not 
historically present. LULC composition datasets, such as the NLCD, are available for the 
conterminous United States, and coarser datasets such as the Global Landcover 2000 dataset are 
available globally [39]. Datasets like the MODIS dataset have been effective in downscaling scenario 
data and may be applicable in this case as well [13].  

The transition-based downscaling method has the inherent advantage of using the same data 
type as the original data to downscale. Differences between the Transition scenario and the Area and 
Composition scenarios were found for most LULC classes, and were especially pronounced for 
projections of developed land. Historical transition data can be used to guide future patterns of 
transitions not evident in land-cover composition data. Land-use management and ownership 
patterns are inherently represented in historical transition datasets, providing an added benefit over 
area and composition-based downscaling methods. However, one potential problem with 
transition-based downscaling is the process inherently assumes regional patterns and distribution of 
land-use change will continue on a similar trajectory into the future. In reality LULC change is 
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driven by a host of processes, both physical and anthropogenic, with interactions varying across 
space and time [40]. In addition, land-use transition datasets are less likely to be available at desired 
regional scales. The most important advantages and shortcomings of each of the three downscaling 
methods are outlined in Table 6.  

Table 6. Summary of advantages and disadvantages of area-based, composition-based, and 
transition-based downscaling approaches.  

  Downscaling Method 
 Area Composition  Transition  
Advantages 1. No additional data 

needed. 
2. May be applicable 
when region boundaries 
do not follow LULC 
patterns. 

1. Easy to find composition 
dataset like “NLCD”. 
2. Does a better job than Area 
based downscaling at 
accounting for transition 
differences between regions. 

1. Using transition history 
data to downscale 
incorporates historical 
management and 
ownership patterns. 
2. Historical transition 
data takes into account 
both the “from” and “to” 
class of transition. 

Shortcomings 1. Reapportions 
transition data without 
regard to regional land 
use pattern or history. 
2. Simplistic approach, 
can lead to large 
discrepancies. 

1. Since only the “from” class 
of the transition is 
considered, in some cases, 
may not accurately 
reapportion transition data. 
2. The presence of a 
land-cover is not necessarily 
indicative of future change. 

1. Low availability on 
large scale or globally. 

 
Several other factors impact the outcome of the downscaling method for reapportioning RCP 

values. Total region size determines the relative influence of edge cells since reapportioned edge 
cells have relatively less impact when aggregating to larger regions. Also, the shape of the region, 
specifically the ratio between area and perimeter of the region will impact the proportional 
contribution of edge cells to the total transition amount within the ecoregion (e.g. Willamette Valley). 
Ecoregions do a very good job of spatially organizing LULC change, but do not perform well when 
using an area-based downscaling approach. If spatial strata or regions are a) sufficiently coarse, b) 
represent large homogenous regions, or c) based on administrative boundaries or some other 
non-ecological framework, area-based downscaling might be a more suitable approach.  

Since our STSM was driven solely by RCP transition probabilities and available land-use for 
transition, model outputs closely reflect RCP projections. It should be noted that an initial inventory 
of RCP transition totals at the ecoregion level suggests that a validation process is needed to ensure 
values are within reasonable bounds. 
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5. Conclusion 

Here we present the results of three downscaling methods used to downscale RCP transition 
values to scales relevant for analysis in an STSM model. While all three methods may be sufficient 
in certain circumstances, downscaling using a historical LULC transition data such as the Trends 
dataset has some distinct advantages. Most importantly using a historical transition dataset to 
downscale RCP transition values accounts for regional patterns in both the “from” and “to” class of 
the RCP transition. Historical LULC change data also often captures LULC change information 
related to land ownership and management. When historical transition data is not available it may be 
necessary to apply an area or composition downscaling approach instead.  

To our knowledge this is the first attempt to use global RCP LULC transition data to drive a 
region level STSM of LULC change. This paves the way for more sophisticated STSM analysis of 
LULC change using the latest global climate data. One such refinement will be to run the model in a 
spatially explicit manner as was done by Wilson et al. [21]. In this case a raster of LULC was used to 
initialize the model spatially. Also, spatial multipliers were included to further spatially constrain 
allowable transition areas. The use of downscaled RCP data in an STSM allows modelers to 
incorporate climate change scenarios at the regional scale. It will also enable comparisons between 
study areas, scales, and land cover types within a larger framework.   

Our approach was developed specifically for reapportioning RCP transition values to region 
level scales, but it may be applicable to several other global gridded LULC change products. Our 
reapportioning techniques are immediately applicable to the HYDE dataset which provides global 
gridded LULC change data for the past 12,000 years [41]. Downscaling historic and future data 
projections will provide a consistent and continuous set of LULC change data that can be used within 
a STSM.  
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