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Abstract: This paper presents a technique for designing optimum reference temperature profiles for 
energy-efficient control of indoor air temperature in buildings. Arbitrarily chosen reference 
temperature profiles are often fraught with undesirable consequences, such as thermal discomfort for 
a building’s occupants or high consumption of fuels and electricity. An optimized reference 
temperature profile, on the other hand, attempts to seek a desired trade-off between the level of 
discomfort and amount of energy consumed. Also, the use of such optimized temperature profiles for 
adaptive control of indoor building temperature is discussed in details and some simulation results 
are presented.  

Keywords: Building temperature control; Energy saving control; optimum temperature profile; 
adaptive temperature control 
 

1. Introduction 

A great deal of research efforts is being spent these days on reducing the cost of heating, 
ventilation and cooling (HVAC) of residential and commercial buildings, because such costs 
constitute about 40–50% of the total electrical energy consumed in USA and elsewhere. Such efforts 
are deemed important, because they may not only result in cost savings but also reduce the carbon 
footprints of buildings.  

The reduction of HVAC energy consumption in buildings often requires deployment of advance 
control techniques, because the building’s characteristics and parameters are often unknown, their 
occupancy levels vary during different times in a day, and the outdoor conditions also vary widely from 
day-time to night-time and from season to season. In recent years, the advances in wireless sensors and 
sensor networks, installation of smart meters in buildings and advent of smart grid technology have 
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provided an impetus for development of advanced control schemes for reducing the energy consumed for 
heating/cooling of buildings, while assuring thermal comfort for their occupants.  

A variety of advanced HVAC control schemes have appeared in the literature [1-10]. Examples 
include classical PID controller, PID cum fuzzy logic control (PID-FLC) and PID combined with 
model predictive control (PID-MPC) [1], optimal, adaptive and intelligent control [2], artificial 
neural network (ANN) based control, and fuzzy logic (FL) controller [3]. Also, other approaches 
include model predictive control (MPC) [4-8], and predicted mean vote (PMV) based adaptive or 
PID controller [9,10]. In general, the performance of plain PID controllers have been found to be 
poor compared to other advanced control schemes, such as PID-FLC, PID-MPC, and MPC 
controllers. However, in terms of real-time computational cost, PID turns out to be the simplest, 
whereas MPC and PID-MPC seem to be most complicated controllers, because they require real-time 
optimization of certain cost functions.  

Among all HVAC control schemes proposed to date, the MPC controllers have been found to be 
most efficient and effective [5,6]. The MPC scheme introduced in [5] deserves a special mention 
because it uses a comfort based cost criterion and poses the control problem as a sequential linear 
programming [LP] problem. This LP formulation of the control problem makes it more attractive 
than the conventional MPC schemes that attempt to solve a sequential nonlinear optimization 
problem. The performance of the proposed controller is compared with that of two classical PID 
controllers and the proposed MPC controller is shown to perform significantly better than the PID 
controllers and also reduce energy consumption. The MPC controller studied in [6] is a reference 
temperature tracking controller that optimizes a weighted sum of tracking errors and control efforts. 
It is an interesting and important study because the controller was implemented in an actual building 
and shown to be highly effective and energy efficient compared to the existing controller.  

None of the above controllers, however, employ fully self-adaptive control techniques in the 
sense that the controller estimates all the parameters governing the nonlinear thermal dynamical 
model of a building and use it to design adaptive HVAC controllers. Two such adaptive controllers 
were presented in [11] and [12]. The adaptive control scheme presented in [11] addresses control of 
indoor temperature only, whereas the scheme presented in [12] addresses control of both temperature 
and relative humidity. Also, the control methodology presented in [11] is simpler compared to the 
one presented in [12]. A comprehensive review of all the control techniques proposed for controlling 
indoor temperature in buildings can be found in [13]. 

With the goal of improving a building’s energy efficiency, some research efforts have also focused 
on design of optimum HVAC systems and controllers. For instance, a technique for determining the 
optimal settings of a heat exchanger outlet water temperature to minimize the total energy consumption 
of pumps under varying working conditions was presented in [14]. Also, a number of other researchers 
have focused their efforts on global optimization of overall HVAC systems [15-17]. 

The goals of a typical energy-efficient HVAC controller are two-fold: (i) reduction of fuel and 
electricity consumption, and (ii) assurance of adequate comfort for the building’s occupants. A 
majority of the HVAC controllers [1-11] mentioned above attempt to meet these goals by employing 
control techniques that are designed to track a desired reference temperature profile. More often than 
not, however, such reference temperature profiles are chosen rather arbitrarily without consideration 
of their relative merits or demerits. Thus, the resulting controller is not optimized for the right 
balance between comfort and energy efficiency. We attempt to address this shortcoming in this paper. 
In essence, we present a technique for designing optimum reference temperature profiles and 
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demonstrate its usage for energy-efficient control of indoor air temperature in a building. The design 
of adaptive one-step ahead (OSA) and weighted one-step-ahead (WOSA) controllers, similar to the 
ones presented in [11], is discussed here. These controllers are basically MPC controllers involving a 
one-step control horizon, which are very easy to implement, although they are less efficient 
compared to conventional MPC controllers. These are merely used as demonstration tools here, and 
in fact, the proposed optimum temperature profile construction strategy can also be useful for other 
temperature tracking control schemes, such as PID, fuzzy and MPC controllers. 

The organization of this paper is as follows. Section 2.1 presents methodology and objectives. A 
dynamical model of a building’s thermal system is summarized in Section 2.2. Section 2.3 describes 
a technique for designing an optimum indoor temperature profile, which is utilized to design an 
adaptive indoor temperature controller in Section 2.4. Section 3 presents some simulation results and 
a discussion. Finally, some concluding remarks are given in Section 4. 

2. Method 

2.1. An Overview of Methodology and Objectives 

The aim of this paper is two-fold. First, it presents a technique for generating an optimum 
indoor temperature profile that provides a desired trade-off between occupants’ comfort and energy 
efficiency. Second, it demonstrates the usage of the above temperature profile for adaptive control of 
indoor temperature in a building.  

The goal of a smart building temperature control system is to maintain the indoor temperature of 
a building by achieving an optimum tradeoff between heating/cooling energy consumption and 
occupants’ thermal comfort. The overall heating/cooling energy consumed in a building can be 
divided into two parts: (i) energy consumed to maintain the steady-state conditions, and (ii) energy 
consumed to raise (or lower) temperature to a different level. The latter becomes an important part of 
the overall energy saving strategy, because during favorable outdoor conditions and/or low 
occupancy levels and at nights, the target temperature can be lowered (during heating season) or 
raised (during cooling season) to save energy, and subsequently brought back to the desired level 
whenever desired. A significant amount of energy saving can be realized in the process.  

To demonstrate the above energy saving principle, we consider a winter (heating) season and 
assume prior knowledge of the user’s desired temperature levels during peak hours (when people are 
active and electronics/appliances are on) and off-peak hours (when there is no occupancy or no 
activity and no electronics are being used). Next, with the dual goal of energy efficiency and 
occupants’ comfort in mind, we formulate a multi-objective cost function that consists of a weighted 
sum of both costs, with individual weights being chosen by the user. This cost function is then 
minimized to generate an optimum reference temperature profile that attains the desired temperature 
levels during different times of the day. Finally, this optimum temperature profile is used to design a 
one-step ahead adaptive controller, which is similar to the one presented in [11]. 

2.2. Dynamical Model of a Building’s Thermal System 

To start with, a dynamical model of a building’s thermal system is summarized in this section. 
However, since heating and cooling dynamics are very similar, we discuss only heating dynamics here 
for the sake of brevity. Also, with the control design in mind, the complexity of the dynamical model is 
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kept to a minimum. Thus, although a very detailed multi-input single output transfer function model of a 
building’s thermal system is available in [18], we restrict this study to a simpler model proposed in [9]. 
Also, we restrict our attention to a model of an air-controlled building, even though the optimization 
strategy presented in this paper is general in nature and applicable to other types of building models as 
well. 

Following the footsteps of Calvino et al. [9] and IBPT toolbox [19], a simplified dynamical model 
of an air-controlled building’s thermal system (during a heating season) can be described by the 
following equation:  

        

  
                                                        (1) 

where       denotes the indoor temperature at time t,     (t) is the outdoor temperature at time t, 
   denotes the total heat capacity of the indoor air mass and other objects inside the building,    is 
the specific heat of the warming carrier (air),   (t) denotes the flow rate of the warming carrier (air), 
    denotes the average air temperature inside the heat exchanger, η is a constant that depends on the 
heating source and heat transfer efficiency of the heat exchanger. Also, HT denotes the global heat 
transfer coefficient of the building envelope and       denotes the heat gains from various internal and 
external sources. A more detailed description of the above terms can be found in references [9] and [19]. 

At this point, for the sake of notational simplicity, it would be convenient to make the following 
changes of variables: 

    ,     ,          ,           

Thus, Equation (1), which represents a simplified dynamical model of the building, now takes 
the following form:  

  

  
                                                       (2) 

where y(t) denotes the indoor temperature, u(t) is the flow rate of the warming carrier and A, B and C 

denote the model parameters that are given by: 

  
   

  
                             (3a) 

  
  

  
                             (3b) 

  
      

  
                             (3c) 

As considered in [1], we assume that the thermal losses due to ventilation are insignificant, but 
the convective part of all heat sources, such as the solar heat gains and the heat gains from the 
heating system or casual gains, are considered to be parts of the model equation. The following 
discrete time model is derived from the system Equation (1) using a first order Euler approximation 

for   

  
 with a sampling interval, Ts: 

           

  
                                                 (4) 
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where k denotes the discrete time index (i.e., k = 1,2,3…) and the time instance,    , is simply denoted 
by k. The above thermal model is characterized by three unknown parameters, namely, A, B and C. 

2.3. A Technique for Designing an Optimum Reference Temperature Profile 

In this section, we consider the choice of a desired reference temperature profile over a period 
of 24 hours from 00:00 to 23:59.  

2.3.1. General Characteristics of a Reference Temperature Profile 

To start with, one can argue that we can choose a temperature profile arbitrarily depending on 
the heat delivery capacity of our furnace. For instance, if our furnace has a very high heat delivery 
capacity, we can choose a profile shown in Figure 1a, which shows the desired temperature settings 
between hours of 00:00 (12 am) to 23:59 (11:59 pm). This profile is characterized by lower 
temperature settings during low occupancy levels and/or night hours, and also steep ascents from 
lower temperature levels to higher ones, whenever desired. On the other hand, if our furnace has a 
relatively low heat delivery capacity, we can choose a profile shown in Figure 1b, which is 
characterized by relatively slow ascents from lower temperature levels to higher ones, whenever 
necessary. Unfortunately, both of these profiles represent suboptimal choices, because a steep-ascent 
profile minimizes thermal discomfort for the occupants at the cost of increased fuel, electricity and capital 
costs, whereas a slow-ascent profile lowers fuel, electricity and capital expenses at the cost of increased 
thermal discomfort. This motivates us to look for an optimum reference temperature profile that seeks a 
desired trade-off between the conflicting goals of low energy cost and low level of thermal discomfort for 
the occupants. Such a profile should look similar to Figure 1b, but incorporate optimum upswing 
sections. 

 

Figure 1. Arbitrarily chosen indoor temperature profiles: (a) Steep-ascent,  

(b) Slow-ascent between hours of 00:00 (12 am) to 23:59 (11:59 pm). 
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2.3.2. Design of an Optimum Reference Temperature Profile 

In view of above, let us assume that our desired optimum indoor temperature profile has a shape 
similar to Figure 1b above with upswing sections described by: 

                                                       (5) 

where    denotes a (current) lower temperature setting (°C) and    represents a desired higher 

temperature (°C). Also,  

 
 denotes the time constant that controls the rate of rise of temperature from 

   to   . A small value of α will give a slow-ascent profile similar to Figure 1b, whereas a relatively 
large value of α will give a steep-ascent profile similar to Figure 1a. 

The task of an optimal reference temperature profile generator involves finding an optimum 
value of α, which gives a desired trade-off between the conflicting goals of minimizing the heating 
energy cost,      , and minimizing the cost of thermal discomfort,      , for the occupants. This 
can be formulated as a multiobjective optimization problem as follows. 

To start with, we define the cost functions,       and      . First, notice that    can be 
calculated by integrating the thermal power supplied by the heat generating devices,    (t), over a 
desired time interval: 

          
 

 
              

 

 
                                   (6) 

Next, we assume that the instantaneous thermal discomfort can be measured as the deviation of 
the actual level of thermal comfort from the desired one. In order to do this, however, we need a 
commonly accepted measure of thermal comfort. For the sake of simplicity, we use predicted mean 
vote (PMV) [20,21] as our measure of thermal comfort. It is defined as an index that predicts the 
mean value of the votes of a large group of persons on a seven-point thermal sensation scale based 
on the heat balance of human bodies. In its original form [20], it predicts the thermal sensation as a 
function of clothing, insulation, activity level, ambient temperature, mean radiant temperature, 
relative air velocity and relative humidity. The seven point thermal sensation scale ranges from −3 to 
+3, corresponding to the sensations from cold to hot, respectively, with the zero value indicating a 
comfortable or neutral sensation (i.e., neither hot nor cold). 

Fanger’s original PMV equation is a rather complicated nonlinear function of all the above 
variables [20]: 

                                                                        

                                                                         (7a) 

where    ,    and    are given by: 

                                                                               (7b) 

    
            

                              
           

                                                  
           

           (7c) 

                              (7d) 
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In the above equations, Ti denotes the ambient air temperature (°C), Tmrt is the mean radiant 
temperature (°C), M denotes the metabolic rate per unit body surface area (kcal/hr m2), v is the 
relative velocity (m/s), pv denotes the water vapor pressure in ambient air (mmHg), Icl is the thermal 
resistance of the clothing (unit: 1 clo = 0.18 °C m2 h/kcal), hc denotes the convective heat transfer 
coefficient (kcal/m2 h °C), fcl is the ratio of the surface area of the clothed body to the surface area of 
the nude body, Tcl is the mean temperature of outer surface of the clothed body (°C), ps is the 
saturated water vapor in ambient air (mmHg) and RH is the relative humidity in percent.  

Since the above equation is complicated, a simplified equation would be highly desirable for 
simulation studies. With this in mind and following the lead of Calvino et al. [9], we assume constant 
values for some of the parameters, namely, M = 1 kcal/hr m2, Icl = 1 clo, v = 0.15 m/s, RH = 50%. 
Also, assuming the conditions stated in Appendix C of ASHRAE standard 55 [21] to be valid, we let 
Tmrt = Ti. In this case, as explained in [9], PMV becomes a linear function of indoor temperature, Ti 
or y (in our notation). This approximate relationship between PMV(t) and y(t) is given by [9]: 

                                                      (8) 

It may be pointed out that although the above relationship is valid only under limited operating 
conditions, it does not in any way preclude the usage of the original Equations (7a–d) in practical 
applications.  

Assuming PMV is given by (8), the instantaneous thermal discomfort can be measured as the 
total deviation of the actual PMV from the desired one, which is assumed to be zero. Thus, the cost 
of discomfort   , is given by: 

              
 

 
                                        (9) 

At this point, it would be helpful to find out how       and       are affected by the choice 
of α. From Equation (5), notice that a small value of α gives a slow-ascent profile similar to Figure 
1b, whereas a relatively large value of α gives a steep-ascent profile similar to Figure 1a. Thus, with 
increase of α, the cost of heating energy,      , will go up, but the cost of discomfort,      , will go 
down. As mentioned earlier, the goal of an optimal reference temperature profile generator is to find 
an optimum value of α, which gives a desired trade-off between the conflicting goals of minimizing 
both heating energy cost,        and the cost of thermal discomfort,       . This is clearly a 
multi-objective optimization problem that can be solved using a variety of approaches [22]. In this 
study, we investigate one of the simplest approaches known as the weighted sum method. Since both 
      and       are nonnegative functions of α, we consider minimization of a weighted sum of 
these two cost functions, i.e., the optimization problem is:   

                                  ]                       (10) 

where        dictates the weights associated with    and   , respectively. Any efficient single 
variable optimization technique, such as Golden Section search method [23], can be used to 
minimize (10) for a specific value of β, chosen by the user. A choice of β = 0.5 weighs both costs 
equally, whereas a choice of β > 0.5 emphasizes minimization of    over   , and β < 0.5 emphasizes 
minimization of    over   . Any specific choice of β yields a Pareto optimal solution [22]. Although 
the choice of β depends on the user’s preference, it should not be chosen to be too close to either 0 or 1, 
because such extreme values emphasize one of the cost factors too heavily compared to the other. 
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An alternative way of choosing β is based on utilization of a min-max principle [24], which 
involves a two-step optimization process. The first step is basically same as what is described above, 
i.e., minimization of        with respect to α for a particular choice of β. Suppose this yields an 
optimum value of the decision variable, α*, and the corresponding optimal function value, 

                                ].         (11) 

Repetition of the above step for various values of β, yields a function,        ,       . 
Next we need to choose an optimal value of β. To explain this choice, we follow the arguments given 
in [24]. Notice from Equation (10) that the main problem in choosing β is that if we choose it either 
too small (close to zero) or too large (close to 1), the right side of (10) effectively consists of only 
one of the cost components, minimization of which yields a very low value of        , which is 
suboptimal. Thus, one way to achieve a good trade-off between the two cost components in the right 
side of (10) is to seek a value of β that maximizes        . Thus, the second step of optimization 
involves finding         

       
The above ideas are illustrated in Figures 2 and 3 below. For a typical value of β,       , 

Figure 2 illustrates the variation of the total cost,       , as a function of α. In this case, the optimal 
value of α turns out to be approximately 0.005. For a choice of β = 0.7, we get the optimal 
temperature profile shown in Figure 3. 

 

Figure 2. Total cost function       vs  . 

 
Figure 3. Optimal indoor temperature profile (for β = 0.7) between hours of 

00:00 (12 am) and 23:59 (11:59 pm). 
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2.4. Application of an Optimum Reference Temperature Profile for Adaptive Control of Indoor 

Temperature 

The design of adaptive OSA and WOSA controllers capable of following a reference 
temperature profile can be carried out in a straightforward way [11]. For the sake of brevity, only 
outlines are provided below, because this paper focuses mainly on optimization aspects and details of 
both OSA and WOSA can be found in [11,25].  

2.4.1. Fixed One Step Ahead Control Algorithm 

An OSA control law brings the current state        to the desired value         in one 
step. From Equation (4), it can be easily shown that the OSA control law is given by [11]: 

      
                                  

                 
,                               (12) 

where    denotes the sampling interval. It is constrained by the maximum capacity of the furnace, 
umax, as follows: 

            if                                (13a) 

                        if                                 (13b) 

                      if                                 (13c) 

2.4.2. Fixed Weighted One Step Ahead Control Algorithm 

In addition to output tracking, the goal of a WOSA control scheme is to regulate the control 
efforts by adding an extra term to the OSA cost function. The WOSA control law minimizes the 
following cost function: 

        
 

 
                   

 

 
                     (14) 

where 0 < λ < 1 controls the trade-off between tracking and smoothness of control efforts. A larger 
value of   reduces control efforts at the cost of higher tracking error and vice versa. 

The control law minimizing the         is given by 

      
                    

                                  

                 
   

             (15) 

which is, once again, constrained by the maximum capacity of the furnace umax as shown in 
Equations (13a–c). 

2.4.3. Adaptive OSA and WOSA Temperature Controllers 

In an adaptive controller, the sampled measurements, u(k) and y(k), are used to estimate the 
model parameters, A, B and C in Equation (2), using a recursive parameter estimation method, such 
as recursive least squares (RLS) [25]. The estimated values of theses parameters are then used to 
compute the OSA/WOSA control signals.  
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2.4.3.1. Parameter Estimation 

First we write model Equation (2) in the following form: 

                                                  (16) 

where  

                                                           
           (17a) 

  =                                                  (17b) 

2.4.3.2. Adaptive Control Algorithms 

Next, the estimated value of    is computed recursively using the recursive least squares (RLS) 
algorithm [11]. The adaptive OSA and WOSA controllers use the estimate,      , to compute the 
control signal, u(k), from the following adaptive versions of Equations (12) and (16): 

For OSA:       
                                            

                     
              (18) 

For WOSA:       
                        

                                           

                     
   

     (19) 

where      ,       and       denote the estimated values of A, B and C, respectively, at time k.  

2.4.4. Global Stability 

Under mild assumptions, it can be shown that the above control law results in a globally stable 
system [11] and                  . 

3. Results and Discussion 

In this section, we present the results of a simulation study of the proposed adaptive OSA and 
WOSA controllers by employing both arbitrary and optimal reference temperature profiles. This 
study focuses on a small single story residential home containing three bedrooms, one living room, a 
kitchen, and two bathrooms. The home is assumed to be rectangular in shape, with a living space of 
approximately 1200 square feet, and it is assumed to be heated by forced air delivered from a 
hydro-air heating system. The capacity of the heating unit is assumed to be 60,000 BTU, and it is 
assumed to have a continuously variable speed blower with a maximum discharge rate of 0.51 Kg/s, 
which is typical. Some of the physical and thermal characteristics of the building are listed in Table 1 
below. 
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Table 1. Some physical and thermal characteristics of the building. 

Total Volume of building          Overall Heat 
Transmittance 

           

Specific Heat of air                Air Density                 
Average air temperature 
inside heat exchanger 

          Specific Heat of 
water 

               

Thermal Gains                            

For the purpose of this simulation, the average outdoor temperature during the cold months of 
winter in Midwest is assumed to vary sinusoidally between a low of −11 °C (12° F) to a high of 
7.75 °C (46° F). This diurnal variation of temperature is approximated by the following equation:   

                     
   

       
 .                   (21) 

Also, the diurnal heat gains from solar and other sources, such as lighting, appliances and 
occupants, are assumed to follow the profiles depicted in Figures 4 and 5, respectively.  

 

Figure 4. Profile of diurnal solar heat gains.  

 

Figure 5. Profile of diurnal heat gains from lighting, appliances and occupants. 
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To start with, we discuss the results of simulation of adaptive OSA and WOSA controllers for 
an arbitrarily chosen steep-ascent reference temperature profile, as shown in Figure 1a. As mentioned 
earlier, such a steeply ascending temperature profile emphasizes comfort over cost, which is likely to 
increase the consumption of heat energy.  

For the adaptive OSA controller, the variation of indoor temperature and the control efforts are 
shown in Figures 6a and 6b, respectively. Figure 6a shows excellent tracking between the indoor 
temperature and the reference temperature, which is expected from a typical OSA controller. The 
corresponding control efforts, shown in Figure 6b, is seen to be somewhat bumpy, which is also 
expected from an OSA controller. The adaptive WOSA controller, on the other hand, attempts to 
seek a trade-off between tracking error and control efforts by minimizing the cost function given by 
Equation (15), where λ controls the trade-off between tracking error and control efforts. The performance 
of adaptive WOSA for a choice of λ = 0.1 is shown in Figures 7a and 7b. As expected, a comparison of 
Figures 6a and 7a shows that the WOSA controller exhibits moderate tracking errors, but on the positive 
side, it smooths the control efforts, which can be seen by comparing Figures 6b and 7b.  

 

Figure 6. Performance of adaptive OSA controller for an arbitrarily chosen steep-ascent 

reference temperature profile: (a) Indoor temperature, y(t), (b) Air flow rate, u(t). 

 

Figure 7. Performance of adaptive WOSA controller for an arbitrarily chosen 

steep-ascent reference temperature profile: (a) Indoor temperature, y(t), (b) Air 

flow rate, u(t). 

0 1 2 3 4 5 6 7 8

x 10
4

14

16

18

20

22

24

26
Adaptive One-step ahead control 

time (s)

T
e
m

p
e
ra

tu
re

 (
C

)

 

 

Desired Indoor Temperature

Actual Indoor Temperature

0 1 2 3 4 5 6 7 8

x 10
4

-1

-0.5

0

0.5

1

1.5

2
Controlled Heat Input u(t)

Time (s)

C
o
n
tr

o
lle

d
 H

e
a
t 

In
p
u
t 

K
g
/s

0 1 2 3 4 5 6 7 8

x 10
4

14

16

18

20

22

24

26
Adaptive Weighted One-step ahead control 

time (s)

T
e
m

p
e
ra

tu
re

 (
C

)

 

 

Desired Indoor Temperature

Actual Indoor Temperature

0 1 2 3 4 5 6 7 8

x 10
4

-1

-0.5

0

0.5

1

1.5

2
Controlled Heat Input u(t)

Time (s)

C
o
n
tr

o
lle

d
 H

e
a
t 

In
p
u
t 

K
g
/s

(a) (b) 

(a) (b) 



918 

AIMS Energy  Volume 4, Issue 6, 906-920. 

Next, we discuss the simulation results for an optimal reference temperature profile, shown in 
Figure 3. As mentioned earlier, such an optimal temperature profile attempts to seek a trade-off 
between the costs of discomfort and energy, by choosing an appropriate value of β in the total cost 
function described by Equation (10). In this study, we chose β = 0.7, which weighs the cost of energy 
slightly more than the cost of discomfort. The tracking error and control efforts for the adaptive OSA 
controller are depicted in Figures 8a and 8b, whereas the same for the adaptive WOSA controller are 
shown in Figures 9a and 9b, respectively. These exhibit essentially similar characteristics, as 
discussed above.  

 

Figure 8. Performance of adaptive OSA controller using an optimal reference 

temperature profile (for β = 0.7): (a) Indoor temperature, y(t); (b) Air flow rate, u(t). 

 

Figure 9. Performance of adaptive WOSA controller for an optimal reference 

temperature profile (for β = 0.7): (a) Indoor temperature, y(t), (b) Air flow rate, u(t). 

Finally, the potential for daily energy savings depends on various factors, such as outdoor 
temperature, maximum heat delivery capacity of the furnace, number of up-down temperature cycles, 
etc. Our preliminary simulation results indicate that both OSA and WOSA controllers can reduce 
daily heating energy consumption by more than 5%, as compared to the energy consumed by using 
an arbitrarily chosen steep-ascent temperature profile. This just illustrates the feasibility of the 
proposed optimization concept. In fact, such energy savings can be increased significantly by 
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choosing more efficient temperature profiles characterized by three or more temperature settings and 
more frequent hops between them. Also, considering the accumulated savings over an entire cold 
season lasting four to five months, the resulting savings can be significant. An additional benefit of 
OSA and WOSA controllers may result from the savings in capital and maintenance costs of the 
furnace, because such controllers can meet the heating needs of a building by using furnaces of 
significantly lower capacity. These and other related cost saving aspects are currently under 
investigation. 

4. Conclusion 

This paper presents a technique for designing optimum reference temperature profiles for 
energy-efficient control of indoor temperature in buildings. With the dual goal of energy efficiency 
and occupants’ comfort in mind, we formulate a multi-objective cost function that consists of a 
weighted sum of both costs, with individual weights being chosen by the user. This cost function is 
then minimized to generate an optimum reference temperature profile. Finally, the usage of such a 
temperature profile for controlling indoor temperature is demonstrated by designing a one-step ahead 
adaptive temperature controller for a single story residential building. A comparative evaluation of 
the performance of the proposed controller with and without the optimized temperature profile shows 
that the controller with the optimization temperature profile performs better and also saves energy.   
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