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Abstract: Apomorphine (APOM) is a non-selective dopamine agonist for Parkinson’s disease (PD). 
It also offers protection against oxidative stress. Thus, it has been used for treating advanced PD 
patients who do not respond to levodopa or other dopamine agonists. However, side effects such as 
orthostatic hypotension, nausea, and fibrotic nodules at the site of APOM injection have been reported 
after long-term use of APOM in PD patients. To secure the use of APOM for PD treatment without 
side effect, it is essential to understand the molecular mechanism involved in the action of APOM in 
PD. In this study, gene expression profile changes by APOM in a PD cell model, i.e., MPP+-treated 
SH-SY5Y cells, were measured at six time points (0, 3, 6, 9, 12, and 24 h) after APOM treatment using 
a commercial whole-genome expression array. A total of 2249 genes showed significant and 
differential expression profile. Pathways significantly affected by APOM were estimated using 
signaling pathway impact analysis (SPIA). In addition, differentially regulated regions within each 
affected pathway were identified with covariance analysis using a structure equation model. 

Keywords: apomorphine; gene expression; structure equation model; signaling pathway anlaysis; 
SH-SY5Y cells; Parkinson’s disease 

 

 
1. Introduction 

 
Apomorphine (APOM) is a strong antioxidant and free radical scavenger as well as a non-

selective dopamine agonist that can stimulate D1-like (D1, D5) and D2-like (D2, D3, D4) receptors [1]. 
Due to its bioactivities, APOM has become the first dopamine agonist used to treat patients with 
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Parkinson’s disease (PD). As PD is caused by the loss of dopamine-generating neurons in the central 
nervous system, increase of dopamine in the brain has been used as a standard strategy for treating PD. 
Levodopa (l-dihydroxyphenylalanine), a natural dopamine precursor, can cross the blood-brain barrier. 
It can be converted to dopamine in the brain. Therefore, it has been used as a main drug for initial 
treatment of PD [2, 3]. However, long-term use of levodopa may cause drug resistance and aggravation 
of the symptoms [4]. APOM has been used to treat advanced PD patients with persistent and disabling 
motor fluctuations [5-7]. It has been suggested that APOM’s dyskinetic effect might be mediated by 
excessive activation of afferents to the centromedian-striatopallidal or pallidal-pedunculopontine 
pathways [8]. 

Although the neuroprotecive effect of APOM has been demonstrated both in vivo and in vitro 
experiments [9,10], the molecular mechanisms involved in the protection remains unclear. 
Furthermore, long-term use APOM for treatment of PD patients may lead to side effects such as 
orthostatic hypotension, nausea, and fibrotic nodules at the site of APOM injection [2]. To secure the 
use of APOM in PD treatment, it is essential to understand the underlying molecular mechanisms 
involved in the protection of APOM in PD patients. The aim of this study was to identify pathway 
regions significantly affected by APOM in PD cell model through analyzing two groups of time series 
microarray data, i.e., APOM treatment group and reference group using a structure equation model 
(SEM). Human neuroblastoma SH-SY5Y cells were treated with 1-methyl-4-phenyl-pyridium (MPP+) 
and used as a PD cell model because they mimic many aspects of dopaminergic (DAergic) neuronal 
death observed in PD [11,12]. MPP+, an active metabolite of 1-methyl-4-phenyl-1, 2, 3, 6-
tetrahydropyridine (MPTP), is taken up by DAergic neurons via dopamine and noradrenaline 
transporters, resulting in inhibition of complex I of the mitochondrial membrane potential and 
formation of reactive oxygen species (ROS) [13,14]. As mitochondrial complex I deficiency has long 
been implicated in the pathogenesis of PD [15], MPP+ treated SH-SY5Y cells have been extensively 
used as PD cell model. We investigated gene expression profile of SH-SY5Y cells co-treated by APOM 
and MPP+ at six time points (0, 3, 6, 9, 12, and 24 h) with a commercial whole-genome expression 
array. To examine the effect of APOM in MPP+-treated SH-SY5Y cells, a reference without APOM 
treatment was needed for comparison. It has been reported that the genome-wide gene expression data 
of MPP+-treated SH-SY5Y cells at 0 (control), 3, 6, 9, 12, and 24 h without APOM treatment [12]. 
Therefore, these expression data were used as reference. The treatment with APOM to MPP+-treated 
SH-SY5Y cells resulted in significant expression profile changes for a total of 2249 genes. Signaling 
pathway impact analysis (SPIA) for these 2249 genes were performed and identified KEGG (Kyoto 
Encyclopedia of Genes and Genomes) pathways significantly affected by APOM, including 
endoplasmic reticulum (ER) protein processing pathway, fanconi anemia pathway, colorectal cancer, 
pathogenic Escherichia coli infection, cell cycle, and TGF-beta signaling pathway. Covariance 
structure analysis of these perturbed pathways using SEM identified differentially regulated regions, 
i.e., significant modules within them. Significant modules might be closely related to the molecular 
function of APOM in PD cell model. Therefore, our results might improve the understanding of 
neuroprotective mechanisms of APOM in PD caused by the loss of DAergic neurons. 

 

2. Materials and Methods 
 

2.1. Cell culture and co-treatment of SH-SY5Y cells with MPP+ and APOM 
 
Human neuroblastoma SH-SY5Y cells (ATCC CRL-2266) were cultured at 37 °C in 5% CO2 and 

95% air in a humidified incubator. They were maintained in Dulbecco’s modified Eagle’s Medium 
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(DMEM, Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% fetal bovine serum (FBS, 
Gibco BRL, Grand Island, NY, USA), 100 units/mL penicillin, and 100 mg/mL streptomycin. Freshly 
prepared APOM and MPP+ were added simultaneously to 100 mm2 cell culture dishes (Corning, 
Cambridge, MA, USA) plated with 1 × 106 cells followed by incubation at 37 °C for 0 (control), 3, 6, 
9, 12 and 24 h, respectively. The concentrations of APOM and MPP+ in the cultures were 10 μM and 
1 mM, respectively. Control and treatment experiments were repeated three times. 

 
2.2. RNA extraction and microarray experiment 

 
At each time point after co-treatment with APOM and MPP+, cells were harvested and total RNAs 

were extracted using TRIzol® (Invitrogen Life Technologies, USA). RNAs were purified using 
RNeasy columns (Qiagen, USA) according to the manufacturers’ protocol. The purity and integrity of 
the extracted RNA were examined with denaturing gel electrophoresis, optical density comparison of 
260/280 ratio, and Agilent 2100 Bioanalyzer (Agilent Technologies, USA). Microarray experiment 
was performed for the extracted RNA according to protocols described in Choi et al. [16]. Briefly, 550 
ng of the extracted total RNA was reverse-transcribed to first-strand cDNA using a T7 oligo (dT) 
primer. These first-stand cDNA was then converted to double stranded cDNA (ds-cDNA). The 
resulting ds-cDNA was employed as template for in vitro transcription to prepare labeled cRNA with 
biotin-NTP. Labeled cRNA (750 ng) was then hybridized to each human HT-12 expression v.4 bead 
array at 58 °C for 16–18 h according to the manufacturer’s instructions (Illumina, Inc., San Diego, 
USA). Detection of the array signal was carried out using Amersham fluorolink streptavidin-Cy3 (GE 
Healthcare Bio-Sciences, Little Chalfont, UK) following the bead array manual. Arrays were scanned 
using Illumina bead array Reader confocal scanner according to the manufacturer’s instructions. A 
total of 18 bead arrays were used for three controls (before treatment) and three samples at each time 
point (3, 6, 9, 12, and 24 h) after co-treatment with APOM and MPP+. 

 
2.3. Normalization of microarray data 

 
After microarray data were exported using Illumina GenomeStudio software v2011.1, values of 

probe signal were log2 transformed and normalized using the function of lumiN() from the R package 
lumi [17]. Since the Illumina BeadChip employed in this study was a single-channel array, quantile 
normalization was chosen. After the normalization, signals under the detection limit were replaced 
with missing values. Probes with two missing values for the three replicates were filtered out. 

 
2.4. Reference microarray data   

 
To identify perturbed pathways after the addition of APOM to MPP+-treated SH-SY5Y cells, 

gene expression data of MPP+-treated SH-SY5Y cells from the study of Kim et al. [12] were used as 
reference, including time series microarray data at the control (before MPP+ treatment) and 3, 6, 9, 12, 
and 24 h after exposure to 1 mM of MPP+.  

 
2.5. Selection of genes with differential expression profiles between two time series of microarray data 

 
To select genes showing differential expression profile from two time-series microarray data, 

maSigPro bioconductor package was employed [18]. This program uses a two-step regression 
approach to identify DEGs in time series microarray data. A global model was adjusted in the first step 
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whereas the application of variable selection strategy was made to identify significant profile 
differences between two groups under comparison in the second step. Before comparing expression 
profiles between two groups of microarray data, log2 ratio of treated sample versus untreated sample 
(control) was calculated for each group of the microarray data. Microarray data from the study of Kim 
et al. [12] were used as data for the reference group. Genes showing differential expression profiles 
were considered significant genes. Enriched GO terms in the set of significant genes were explored 
with the function enrichGO() in the R package clusterProfiler [19].  

 
2.6. Identification of perturbed pathways with SPIA 

 
To identify affected pathways by APOM addition to MPP+-treated SH-SY5Y cells, an R package 

called SPIA [20] was employed. This program can find significantly affected pathways based on two 
types of evidence captured by two independent probability values, PNDE and PPERT. PNDE captures the 
significance of a given pathway Pi as provided by an over-representation analysis of the number of 
DEGs observed in the pathway whereas PPERT captures a total perturbation of the pathway and is 
estimated in a bootstrapping process where both pathway and the number of DEGs per pathway are 
maintained. Global probability PG was used for pathway ranking. It was estimated with the following 
equation:  

 
ln( )G i i iP c c c    

 
where ( ) ( )i NDE PERTc P i P i  . The net perturbation accumulation at the level of each gene i ( ig ), 

( )iAcc g , was calculated using the following equation: 
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where ij  was the strength of the interaction between genes ig  and jg . In this study, the value of 

  was +1 for activation and −1 for inhibition. ( )iPF g  was the perturbation factor of gene ig whereas 
( )ds jN g was the number of down-stream genes of gene jg . Activation/inhibition of pathway was 

decided by the sign of the total net accumulated perturbation in the pathway: ( )A ii
t Acc g .  

 
2.7. Construction of the shortest path model for perturbed pathways 

 
After identifying pathways affected by APOM addition to MPP+ treated SH-SY5Y cells, 

connected structures of DEGs within them were assessed by considering each pathway as a directed 
graph with the function get.shortest.paths() of the R package igraph [21]. Each node and edge in the 
shortest path could not be presented for more than once. Self-loops were excluded but feed-backs and 
cycles were kept. Non-DEGs might be included in the shortest paths linking DEGs to allow the 
discovery of genes that are not DEGs but can be important for their mediating roles. The shortest path 
model (SPM) for each perturbed pathway was constructed by merging all of shortest paths among 
DEGs for the corresponding pathway as shown in our previous work [22]. 
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2.8. Modularity measurement of SPM 
 
The modularity of SPM for each perturbed pathway was calculated with the following equation: 
 

,
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Where m is the number of edges, ijA  is the element of the i-th row and j-th column of the A adjacency 

matrix, ik and jk  are the degree of i and j, respectively, ic  and jc are component of i and j, 

respectively. The sum includes over all i and j pairs of vertices, and ( , )x y  is 1 if x y  and 0 

otherwise [23]. Modules within each SPM were detected by using the function walktrap.community() 
in the R package igraph [21], which could find densely connected subgraphs in a graph via random 
walks. If the value of modularity is greater than 0.35, each module in the SPM is considered separately.  

 
2.9. Evaluation of module/SPM with SEM 

 
To examine if a module or SPM are statistically significant by the addition of APOM in MPP+-

treated SH-SY5Y cells, they were evaluated with SEM, as in our previous work [22]. Briefly, a module 
or SPM are considered to have casual relationships among variables such as structure of SEM where 
all variables can be represented as a system of linear equation: 
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With a covariance structure: 
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Every ith node in the set of variables V are characterized by uni-directional relationships with its 
“parents” pa(i) via path coefficients ( ij ). The covariance structure can delineate the bi-directional 

relationships between the ith node ( iU ) and its “siblings” sib(i), as quantified by their covariance ( ij ). 

The parameters ( ; )ij ij    in SEM were estimated by Maximum Likelihood Estimation (MLE) with 

the R package lavaan. After parameter estimation of a module/SPM, the significant module/SPM was 
detected with the following omnibus test: 

   

0 11 2 1 2
: ( ) ( )        vs.    : ( ) ( )H H         

 
Where

1
( )  and 

2
( )  are model-implied covariance matrices of control and APOM added 

samples in MPP+-treated SH-SY5Y cells,   indicates the model parameter. A statistically significant 
module/SPM is determined by comparison of the likelihood ratio test (LRT) Chi-square ( 2 ) values 

at a given degree of freedom. When the p-value in the Chi-square test is less than 0.05, the 
module/SPM is considered as statistically significant.   
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3. Results 
 

3.1. Identification of genes with differential expression profiles  
 
Gene expression profiles of SH-SY5Y cells co-treated with APOM and MPP+ were determined with 

Illumina whole-genome array (human HT-12 expression v.4 bead array) using 47,231 probes. A total of 18 
arrays were employed for the examination of gene expression profile at six time points (0, 3, 6, 9, 12, and 
24 h) with three replicates for each time point. After log2 transformation, probe signals were normalized 
with quantile normalization. Log2 ratio (co-treated sample with APOM and MPP+ vs. control sample at 0 h) 
was obtained by subtraction of the average of normalized log2 values of three control arrays from 
normalized log2 value of each time point. When a gene had multiple probe IDs, the average value was 
assigned to the gene. Of 47,321 probes, only 32,421 probes with unique gene name were considered. To 
explore gene expression profile changes by the addition of APOM to MPP+-treated SH-SY5Y cells, gene 
expression data of MPP+-treated SH-SY5Y cells were required as reference. Thus, we employed the 
microarray data from the work of Kim et al. [12] as reference (see Materials and Methods section for details).  

To identify genes showing differential expression profile between the two groups (APOM added 
group and reference group), a bioconductor package maSigPro [18] was employed using a two-
regression step approach. In the first step, a global regression model was adjusted with all the defined 
variables to detect differentially expressed genes (DEGs). In the second step, a variable selection 
strategy was applied to examine differences between groups and identify statistically significant 
profiles. When the p-value threshold associated to the F-Static in general regression model was 0.05, 
the number of DEGs in the first step was 9395. In the second step, 2249 genes of these 9395 DEGs 
were found to have significantly differential expression profiles between the APOM added group and 
the reference group (adjusted p-value < 0.05). In this study, genes showing differential expression 
profiles were considered as significant genes. Their expression profiles are shown in Figures 1 and 2 
using the clustering and plotting functions available in the maSigPro. In Figure 1, horizontal axis 
represents the array of reference and APOM added group at different time point. Replicate of each 
array was marked with a number. The vertical axis represents expression value (log2 ratio). A 
positive/negative value indicates up-/down-regulation, respectively. A value of 0 means no expression 
change. Clear contrast in expression profiles between the APOM added group and the reference group 
was observed in cluster 1. Genes in cluster 1 tended to be up-regulated in the APOM added group. 
However, they were not changed at expression level or down-regulated in the reference group. For 
easy comparison of their expression profiles between the two groups, average expression profiles were 
shown in Figure 2. The three values at each time point corresponded to the three replicates. Red and 
green lines represent the average expression profiles of the reference and the APOM added group, 
respectively. In the APOM added group, genes in cluster 1 and 3 tended to be up-regulated while genes 
in cluster 2 and 4 tended to be down-regulated at early stage.  

To catch functional characteristic of each cluster genes, enriched gene ontology (GO) terms were 
examined with the function enrichGO in the R package clusterProfiler [19]. With a cutoff q-value of 
0.05, GO terms such as GO:0036297 (interstrand cross-link repair) and GO:0022616 (DNA strand 
elongation) were significantly enriched in cluster 1 whereas GO terms such as GO:0009185 
(ribonucleoside diphospahte metabolic process), GO:0019320 (hexose catabolic process), and 
GO:0006096 (glycolytic process) were significantly enriched in cluster 3. The up-regulation of genes 
in cluster 1 and 3 might have contributed to resistance against DNA damage and cellular metabolic 
deactivation resulted from MPP+ toxicity. No significantly enriched GO terms were detected for cluster 
2 or 4. Top 15 genes of each cluster ranked by p-value are shown in Table 1.  
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Figure 1. Expression profiles of significant genes in four clusters for the reference group 
and the APOM added group. 

 
Table 1. Top 15 genes of each cluster ranked by p-value among significant genes showing differential 
profiles between the APOM added group and the reference group. 

Group Gene Description p-value 

1 EGR2 Early growth response 2 (Krox-20 homolog, Drosophila) (EGR2), mRNA. 5.49E−25 

NR4A3 Nuclear receptor subfamily 4, group A, member 3 (NR4A3), transcript variant 

3, mRNA. 

3.93E−22 

FOSB FBJ murine osteosarcoma viral oncogene homolog B (FOSB), mRNA. 6.58E−20 

SRF Serum response factor (c-fos serum response element-binding transcription 

factor) (SRF), mRNA. 

1.99E−18 

NPAS4 Neuronal PAS domain protein 4 (NPAS4), mRNA. 2.50E−18 



278 
 

AIMS Molecular Science  Volume 4, Issue 3, 271-287. 

EGR1 Early growth response 1 (EGR1), mRNA. 1.19E−16 

GINS2 GINS complex subunit 2 (Psf2 homolog) (GINS2), mRNA. 5.86E−16 

PDCL3 Phosducin-like 3 (PDCL3), mRNA. 9.04E−16 

ZNF503 Zinc finger protein 503 (ZNF503), mRNA. 9.41E−16 

HAUS8 HAUS augmin-like complex, subunit 8 (HAUS8), transcript variant 1, mRNA. 1.05E−15 

KLF6 Kruppel-like factor 6 (KLF6), transcript variant 2, mRNA. 1.32E−15 

DUSP1 Dual specificity phosphatase 1 (DUSP1), mRNA. 4.41E−15 

SLC30A1 Solute carrier family 30 (zinc transporter), member 1 (SLC30A1), mRNA. 4.49E−15 

MYADM Myeloid-associated differentiation marker (MYADM), transcript variant 4, 

mRNA. 

6.05E−15 

ARC Activity-regulated cytoskeleton-associated protein (ARC), mRNA. 7.41E−15 

2 TM4SF4 Transmembrane 4 L six family member 4 (TM4SF4), mRNA. 2.09E−23 

EFNA1 Ephrin-A1 (EFNA1), transcript variant 1, mRNA. 9.91E−20 

ARID5B AT rich interactive domain 5B (MRF1-like) (ARID5B), mRNA. 1.61E−17 

N4BP2L1 NEDD4 binding protein 2-like 1 (N4BP2L1), transcript variant 2, mRNA. 5.05E−15 

ABTB1 Ankyrin repeat and BTB (POZ) domain containing 1 (ABTB1), transcript 

variant 3, mRNA. 

1.32E−14 

NINJ1 Ninjurin 1 (NINJ1), mRNA. 4.48E−14 

SCG5 Secretogranin V (7B2 protein) (SCG5), mRNA. 4.94E−14 

WASPIP Wiskott-Aldrich syndrome protein interacting protein (WASPIP), mRNA. 8.18E−14 

SIRT4 Sirtuin (silent mating type information regulation 2 homolog) 4 (S. cerevisiae) 

(SIRT4), mRNA. 

2.26E−13 

CHODL Chondrolectin (CHODL), mRNA. 2.55E−13 

PRTFDC1 Phosphoribosyl transferase domain containing 1 (PRTFDC1), mRNA. 3.69E−13 

PAQR8 Progestin and adipoQ receptor family member VIII (PAQR8), mRNA. 4.27E−13 

PCTP Phosphatidylcholine transfer protein (PCTP), mRNA. 4.68E−13 

RWDD2A RWD domain containing 2A (RWDD2A), mRNA. 4.70E−13 

BTN3A3 Butyrophilin, subfamily 3, member A3 (BTN3A3), transcript variant 2, 

mRNA. 

6.09E−13 

3 FHL2 Four and a half LIM domains 2 (FHL2), transcript variant 4, mRNA. 3.51E−22 

MIR1978 MicroRNA 1978 (MIR1978), microRNA. 9.42E−22 

ID1 Inhibitor of DNA binding 1, dominant negative helix-loop-helix protein (ID1), 

transcript variant 2, mRNA. 

7.40E−17 

CDC25A Cell division cycle 25 homolog A (S. pombe) (CDC25A), transcript variant 1, 

mRNA. 

3.13E−14 

ACTB Actin, beta (ACTB), mRNA. 3.74E−14 

WDR1 WD repeat domain 1 (WDR1), transcript variant 1, mRNA. 6.86E−14 

TMEM178 Transmembrane protein 178 (TMEM178), mRNA. 1.83E−13 

LOC440043 PREDICTED: misc_RNA (LOC440043), miscRNA. 2.17E−13 

TSKU Tsukushin (TSKU), mRNA. 2.26E−13 

C17orf96 Chromosome 17 open reading frame 96 (C17orf96), mRNA. 2.71E−13 

POTEF POTE ankyrin domain family, member F (POTEF), mRNA. 3.85E−13 
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JUN Jun oncogene (JUN), mRNA. 4.30E−13 

SLC7A5 Solute carrier family 7 (cationic amino acid transporter, y+ system), member 5 

(SLC7A5), mRNA. 

5.78E−13 

ENO1 Enolase 1, (alpha) (ENO1), mRNA. 6.82E−13 

FAM80A Family with sequence similarity 80, member A (FAM80A), mRNA. 7.91E−13 

4 LOC643031 PREDICTED: similar to NADH dehydrogenase subunit 5 (LOC643031), 

mRNA. 

7.00E−18 

ZNF564 Zinc finger protein 564 (ZNF564), mRNA. 1.32E−17 

HSPC047 HSPC047 protein (HSPC047), mRNA. 2.83E−16 

LOC1001345

84 

PREDICTED: hypothetical protein LOC100134584 (LOC100134584), 

mRNA. 

5.32E−16 

SCGN Secretagogin, EF-hand calcium binding protein (SCGN), mRNA. 8.23E−15 

IFNAR1 Interferon (alpha, beta and omega) receptor 1 (IFNAR1), mRNA. 8.37E−15 

SNORA25 Small nucleolar RNA, H/ACA box 25 (SNORA25), small nucleolar RNA. 1.63E−14 

ZNF606 Zinc finger protein 606 (ZNF606), mRNA. 1.98E−14 

NAPEPLD N-acyl phosphatidylethanolamine phospholipase D (NAPEPLD), mRNA. 1.08E−13 

CLK4 CDC-like kinase 4 (CLK4), mRNA. 1.12E−13 

BCL2 B-cell CLL/lymphoma 2 (BCL2), nuclear gene encoding mitochondrial 

protein, transcript variant alpha, mRNA. 

1.85E−13 

ZNF35 Zinc finger protein 35 (ZNF35), mRNA. 2.39E−13 

C1orf63 Chromosome 1 open reading frame 63 (C1orf63), transcript variant 1, mRNA. 3.62E−13 

COX19 COX19 cytochrome c oxidase assembly homolog (S. cerevisiae) (COX19), 

mRNA. 

3.81E−13 

RPL23AP13 Ribosomal protein L23a pseudogene 13 (RPL23AP13), non-coding RNA. 4.93E−13 

 

3.2. Analysis of perturbed pathways by the addition of APOM in MPP+-treated SH-SY5Y cells 
 
Pathways significantly affected by APOM might be closely related to molecular roles of APOM 

in MPP+-treated SH-SY5Y cells. Thus, pathways significantly affected by the addition of APOM were 
examined with a Bioconductor package SPIA through signaling pathway impact analysis [20]. This 
analysis considered two independent probability values, PNDE and PPERT, which were calculated for 
each pathway with incorporating parameters such as log2 ratios (APOM added group/reference group) 
of genes showing differential profiles, statistical significance of the set of pathway genes, and the 
topology of the signaling pathway. Two types of probability were finally combined into a global 
probability value, PG, which was used for ranking the pathways and testing the hypothesis that the 
pathway was significantly perturbed by APOM addition. The impact analysis was performed for 2249 
significant genes that showed differential expression profiles between the APOM added group and the 
reference group for 135 well characterized human gene signaling pathways available in KEGG (Kyoto 
Encyclopedia of Genes and Genomes). Since several pathways were tested simultaneously, the 
significance level was set at 5% after false discovery rate (FDR) correction [24].  

Three KEGG pathways (protein processing in endoplasmic reticulum (ER), Fanconi anemia 
pathway, and TGF-beta signaling pathway) showed significant perturbation at 6, 12, and 24 h after 
APOM treatment. It is interesting to note that the ER protein pressing pathway is affected by APOM 
addition because MPP+ toxicity in SH-SY5Y cells might induce ER stress [16]. Table 2 shows the six 
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Figure 2. Average expression profiles of significant genes in four clusters of Figure 1 for 
the reference group and the APOM added group. 

 
perturbed pathways detected at 12 h. Status of each pathway was determined by the total net 
accumulated perturbation of a given pathway, At , which was calculated as the sum of all perturbation 
accumulations for all genes in the pathway. If the value of At  for a given pathway was negative, the 
pathway was considered as negatively perturbed, i.e., inhibited. On the contrary, if the value of At  for 

a given pathway was positive, the pathway was considered as activated. APOM addition to MPP+-
treated SH-SY5Y cells resulted in the activation of three pathways (ER protein processing, colorectal 
cancer, and TGF-beta signaling pathway) and the inhibition of three pathways (fanconi anemia, 
pathological Escherichia coli infection, and cell cycle) compared to the reference group (Table 2).   
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Table 2. Perturbed pathways at 12 h after APOM addition to MPP+-treated SH-SY5Y cells. 

KEGG pathway KEGG ID Psize NDE PNDE TA PPERT PG, FDR Status 

Protein processing in 

endoplasmic reticulum 

4141 166 31 0.000 1.462 0.257 0.001 Activated 

Fanconi anemia pathway 3460 52 14 0.000 −0.041 0.947 0.013 Inhibited 

Colorectal cancer 5210 62 12 0.002 3.392 0.032 0.027 Activated 

Pathogenic Escherichia coli 

infection 

5130 54 12 0.000 −3.299 0.232 0.032 Inhibited 

Cell cycle 4110 124 21 0.000 −2.411 0.411 0.032 Inhibited 

TGF-beta signaling 

pathway 

4350 84 11 0.044 8.516 0.004 0.037 Activated 

 

3.3. Identification of significantly affected regions within each perturbed pathway with SEM 
 
In the above section, pathways significantly affected by APOM addition in MPP+-treated SH-

SY5Y cells were estimated with SPIA. Perturbed pathway may have different regulation structure 
between the two groups under comparison. To detect specific regions showing different regulation in 
each perturbed pathway, a graph model describing interactions in the pathway is useful. Since the 
perturbation of pathway is driven by significant genes showing differential profile between the APOM 
added group and the reference group, we focused on the connection of these genes. To identify how 
significant genes were connected in each perturbed pathway with the other genes on the microarray, 
the shortest paths (geodesic distance) between genes with differential profile on each perturbed 
pathway were searched with the function get.shortest.paths() of the R package igraph [21]. All shortest 
paths detected in a given pathway were merged into a graph called a shorted path model (SPM), where 
each node and each edge could not be presented for more than once while self-loops were excluded 
but feed-backs and cycles were kept. Table 3 shows the number of nodes and edges of SPMs 
corresponding to the six perturbed KEGG pathways shown in Table 2. Modularity and module for 
each SPM were detected by using the function of walktrap.community() of the R package igraph. The 
modularity indicates how good the division is or how separate the different vertices are from each 
other. A high degree of modularity indicates dense connections between the nodes within the same 
module but rare connections between nodes in different modules. The SPM for cell cycle and its 
module are shown in Figure 3. The connections between nodes in the same module were indicated in 
a black arrow while the connections between nodes in the different modules were represented by a red 
arrow. Each module within the SPM of the cell cycle was connected with genes such as CDC2 and 
CDC6. 

Next, we detected specific regions showing significantly different regulation in each perturbed 
pathway. For this, each SPM/module was evaluated with SEM to verify whether the covariance 
structure was significantly different between the two groups. Here, covariance structures for 
SPM/module were calculated from the two conditions of gene expression data, i.e., the APOM added 
group and the reference group. SPM/module showing significantly different covariance structures 
between the two groups corresponded to regions perturbed by the addition of APOM in MPP+-treated 
SH-SY5Y cells. Evaluation of covariance structure with SEM was performed against each module of 
SPM except for two pathways (fanconi anemia and pathogenic Escherichia coli infection) which 
showed very low modularity in their SPMs (Table 3). 
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Table 3. Modularity evaluation of shortest path models constructed from significant genes within 
perturbed pathways. 

KEGG pathway Original 

pathway 

(nodes/edges) 

Shortest path 

model 

(nodes/edges) 

Modularity of shortest 

path model 

No. of 

module 

Protein processing in endoplasmic 

reticulum 

51/83 11/10 0.395 3 

Fanconi anemia pathway 39/185 14/43 0.055 3 

Colorectal cancer 49/106 18/22 0.458 3 

Pathogenic Escherichia coli 

infection 

40/74 4/3 0.000 4 

Cell cycle 124/932 47/105 0.412 5 

TGF-beta signaling pathway 73/186 11/10 0.395 3 

 

 
 
Figure 3. Five modules within the cell cycle SPM. Genes (nodes) in the same module are 
shown in the same color.  

 
Evaluation of these two pathways was carried out against SPM itself and no significant difference 

was detected at any time points. Significant modules were detected in the other four pathways and 
summarized in Table 4. Module 1 of TGF-beta signaling pathway showed significance only at 3 h 
whereas module 4 of cell cycle showed significance at 6, 9, and 24 h. The fusion of all significant 
modules might provide an insight into the specific cellular mechanisms induced by APOM addition in 
MPP+-treated SH-SY5Y cells. Figure 4 shows the union of all significant modules in Table 4. The 
yellow and green nodes represent significant genes and non-significant genes within modules, 
respectively. The total number of genes on the graph of Figure 4 was 47, including 18 significant genes 
and 29 non-significant genes. Although non-significant genes did not show differential expression 
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profile between the APOM-added group and the reference group, they might have important role as 
signal mediator when they are connected directly or indirectly to significant genes.  

To examine the association of these 47 genes with disease, enriched disease ontology (DO) terms 
were investigated with the function enrichDO() of the R package DOSE [25]. DO analysis against 
these 47 genes detected many significant DO terms such as DOID:0060116 (sensory system cancer, 
q-value = 1.52 × 10−15), DOID:768 (retinoblastoma, q-value = 6.07 × 10−14), and DOID:769 
(neuroblastoma, q-value = 6.99 × 10−6). Most of the enriched DO terms were related to cancer. 
 
Table 4. Significant modules detected by covariance analysis with SEM for the four shortest path models. 

Shortest path model Time (h) 

3 6 9 12 24 

Protein processing in endoplasmic 

reticulum 

- - Module 1 Module 3 Module 3 

Colorectal cancer Module 2 Module 2 - - - 

Cell cycle - Module 4 Module 3, 4 Module 3 Module 4 

TGF-beta signaling pathway Module 1 - - - - 

 

 
 
Figure 4. Merged graph of significant regions. Yellow and green colors represent 
significant and non-significant genes, respectively.  
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This indicates that APOM might induce the expression change of cancer related genes to overcome 
the toxicity of MPP+. Figure 5 shows the expression profiles of 18 significant genes shown in Figure 5. 
The red color and the green color represent the reference and the APOM added group, respectively. The 
expression profile of BCL2 showed clear contrast between the two groups. It showed a time-dependent 
increase in the reference group but a time-dependent decrease in the APOM added group. This indicates 
that APOM may be able to induce the inhibition of BCL2 in MPP+-treated SH-SY5Y cells. Genes such 
as CDC14A, RBL2, and SMAD4 tended to be up-regulated in the reference group while genes such as 
ABL1, GADD45G, and GSK3B tended to be up-regulated in the APOM added group.  

 

 
 
Figure 5. The expression profiles of significant genes (yellow nodes) in the network shown 
in Figure 4. Red and green lines represent average expression profiles of the reference and 
APOM added groups, respectively. The expression values of replicates were indicated with 
three circles (○) at each time point.   



285 
 

AIMS Molecular Science  Volume 4, Issue 3, 271-287. 

4. Discussion and Conclusion 
 
The antiparkinsonian effect of APOM on PD patients is similar to that of levodopa. However, 

different from levodopa, APOM does not require decarboxylation to be activated. That is, levodopa 
needs to be converted into dopamine to be effective for PD, whereas APOM is readily diffused across 
the blood-brain barrier, directly playing a role as non-selective dopamine agonist. Besides its receptor-
mediated action, APOM functions as a potent antioxidant and free radical scavenger [9,10]. Currently, 
APOM is used for treating advanced PD patients who do not respond to levodopa or other dopamine 
agonists [26]. However, side effects such as orthostatic hypotension, nausea, and fibrotic nodules at 
the site of APOM injection have been reported after long-term use of APOM for treatment of PD 
patients [2]. To secure the use of APOM in PD treatment, it is essential to understand the molecular 
mechanism involved in its effect. In this study, genome-wide gene expression profiles were examined 
at several time points after the addition of APOM to a PD cell model, i.e., MPP+-treated human 
neuroblastoma SH-SY5Y cells. They were compared to those of PD cell model without APOM 
treatment. Among a total of 32,421 genes, 2249 genes showed significantly different expression 
profiles between the APOM added group and the reference group. These 2249 genes were divided four 
clusters (Figure 1). Genes of cluster 1 were up-regulated in the APOM added group but down-regulated 
in the reference group. GO enrichment analysis against genes of cluster 1 showed enrichment of GO 
terms such as GO:0036297 (interstrand cross-link repair) and GO:0022616 (DNA strand elongation). 
This suggests that APOM might provide protective mechanism against DNA damage induced by MPP+ 
toxicity. The up-regulation of genes in cluster 3 indicated that APOM could activate the metabolic 
process because GO terms such as GO:0009185 (ribonucleoside diphospahte metabolic process), 
GO:0019320 (hexose catabolic process) and GO:0006096 (glycolytic process) were enriched in cluster 
3.  

To systematically investigate the role of significant genes in cells, significantly affected pathways 
by APOM addition were explored with SPIA. Significant perturbation at 6, 12, and 24 h was found for 
the following three KEGG pathways: protein processing in endoplasmic reticulum (ER), Fanconi 
anemia pathway, and TGF-beta signaling pathway. To detect specific regions with differential 
regulation of each perturbed pathway, SPM/module constructed with significant genes were evaluated 
with SEM. Significant modules were detected from SPMs for the following four pathways: ER protein 
processing, colorectal cancer, cell cycle, and TGF-beta signaling pathway (Table 4). As significant 
modules may reflect the effect of APOM on PD cells in terms of molecular interaction, identification 
of them will be important for understanding the molecular mechanism involved in the action of APOM. 
The fusion of all significant modules consisting of 18 significant genes and 29 non-significant genes 
was shown in Figure 4. Non-significant genes connected to significant genes might have important 
role as signal mediators. DO analysis against these 47 genes detected many enriched DO terms, most 
of which were related to cancer. This suggests that APOM might induce changes in the expression of 
some cancer related genes for survival from MPP+-induced neuronal toxicity. Crosstalk among these 
47 genes might improve our understanding of the molecular mechanism involved in the effect of 
APOM on PD.  
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